Predicting Chemical Body Composition Using Body Part Composition in Boer × Saanen Goats
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Feed
2.3. Slaughter and Body Composition
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paulino, P.V.R.; Valadares Filho, S.C.; Costa, M.A.L.; Paulino, M.F.; Magalhães, K.A.; Detmann, E.; Valadares, R.F.D.; Porto, M.O.; Andreatta, K. Validation of the 9–11th rib cut to estimate the chemical composition of the dressed carcass and of the whole empty body of Zebu cattle. Livest. Prod. Sci. 2005, 93, 245–253. [Google Scholar] [CrossRef]
- Schumacher, M.; DelCurto-Wyffels, H.; Thomson, J.; Boles, J. Fat Deposition and Fat Effects on Meat Quality—A Review. Animals 2022, 12, 1550. [Google Scholar] [CrossRef] [PubMed]
- Agricultural Research Council. The Nutrient Requirements of Ruminant Livestock; Commonwealth Agricultural Bureaux: Slough, UK, 1980; p. 351. [Google Scholar]
- Teixeira, I.A.M.A.; Almeida, A.K.; Fernandes, M.H.M.R.; Resende, K.T. Applying the California net energy system to growing goats. Transl. Anim. Sci. 2019, 3, 999–1010. [Google Scholar] [CrossRef]
- Véras, A.S.C.; Valadares Filho, S.C.; Silva, J.F.C.; Paulino, M.F.; Cecon, P.R.; Valadares, R.F.D.; Ferreira, M.A.; Silva, C.M.; Silva, B.C. Predição da composição química corporal de bovinos Nelore e F1 Simental × Nelore a partir da composição química da seção Hankins e Howe (Seção HH). Rev. Bras. Zootec. 2001, 30, 1112–1119. [Google Scholar] [CrossRef]
- Lewis, R.M.; Emmans, G.C. Feed intake of sheep as affected by body weight, breed, sex, and feed composition. J. Anim. Sci. 2013, 88, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Greenhalgh, J.F. Recent studies on the body composition of ruminants. Proc. Nutr. Soc. 1986, 45, 119–130. [Google Scholar] [CrossRef]
- Lerch, S.; Torre, A.D.; Huau, C.; Monziols, M.; Xavier, C.; Louis, L.; Le Cozler, Y.; Faverdin, P.; Lamberton, P.; Chery, I.; et al. Estimation of dairy goat body composition: A direct calibration of eight methods. Methods 2021, 186, 68–78. [Google Scholar] [CrossRef]
- Martin, R.A.; Ehle, F.R. Body composition of lactating and dry Holstein cows estimated by deuterium dilution. J. Dairy Sci. 1986, 69, 88–98. [Google Scholar] [CrossRef]
- Hankins, O.G.; Howe, P.E. Estimation of the Composition of Beef Carcasses and Cuts; Technical Bulletin No. 926; US Department of Agriculture: Washington, DC, USA, 1946; pp. 1–19.
- Xavier, C.; Driesen, C.; Siegenthaler, R.; Dohme-Meier, F.; Cozler, Y.L.; Lerch, S. Estimation of empty body and carcass chemical composition of lactating and growing cattle: Comparison of imaging, adipose cellularity, and rib dissection methods. Transl. Anim. Sci. 2022, 6, txac066. [Google Scholar] [CrossRef]
- Fernandes, M.H.M.R.; Resende, K.T.; Tedeschi, L.O.; Fernandes, J.S.; Teixeira, I.A.M.A.; Carstens, G.E.; Berchielli, T.T. Predicting the chemical composition of the body and the carcass of ¾ Boer × ¼ Saanen kids using body components. Small Rumin. Res. 2008, 75, 90–98. [Google Scholar] [CrossRef]
- Barcelos, S.S.; Vargas, J.A.C.; Mezzomo, R.; Gionbelli, M.P.; Gomes, D.I.; Oliveira, L.R.S.; Luz, J.B.; Maciel, D.L.; Alves, K.S. Predicting the chemical composition of the body and the carcass of hair sheep using body parts and carcass measurements. Animal 2021, 15, 100139. [Google Scholar] [CrossRef] [PubMed]
- Härter, C.J.; Silva, H.G.O.; Lima, L.D.; Castagnino, D.S.; Rivera, A.R.; Boaventura Neto, O.; Gomes, R.A.; Canola, J.C.; Resende, K.T.; Teixeira, I.A.M.A. Ultrasonographic measurements of kidney fat thickness and Longissimus muscle area in predicting body composition of pregnant goats. Anim. Prod. Sci. 2014, 54, 1481–1485. [Google Scholar] [CrossRef]
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef]
- Berg, E.P.; Marchello, M.J. Bioelectrical impedance analysis for the prediction of fat-free mass in lambs and lamb carcasses. J. Anim. Sci. 1994, 72, 322–329. [Google Scholar] [CrossRef]
- Moro, A.B.; Pires, C.C.; Silva, L.P.; Dias, A.M.O.; Simões, R.R.; Pilecco, V.M.; Mello, R.O.; Aguiar, L.K. Prediction of lamb body composition using in vivo bioimpedance analysis. Meat Sci. 2019, 150, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Alleoni, G.F.; Leme, P.R.; Boin, C.; Nardon, R.F.; Demarchi, J.J.A.A.; Vieira, P.F.; Tedeschi, L.O. Avaliação da composição química e física dos cortes da costela para estimar a composição química corporal de novilhos Nelore. Rev. Bras. Zootec. 1997, 26, 382–390. [Google Scholar]
- Fonseca, M.A.; Tedeschi, L.O.; Valadares Filho, S.C.; Paula, N.F.; Silva, L.D.; Sathler, D.F.T. Evaluation of equations to estimate body composition in beef cattle using live, linear and standing-rib cut measurements. Anim. Prod. Sci. 2017, 57, 378–390. [Google Scholar] [CrossRef]
- Medeiros, A.N. Body Composition and Net Energy and Protein Requirements for Maintenance and Weight Gain of Goats Saanen in the Initial Growth. Ph.D. Dissertation, Universidade Estadual Paulista/UNESP, Jaboticabal, Brazil, 2001. [Google Scholar]
- Wilkinson, R.G.; Greenhalgh, J.F.D. Prediction of the body composition of lambs from the composition of their non-carcass components. Anim. Sci. 1995, 61, 265–268. [Google Scholar] [CrossRef]
- Trindade, I.A.C.M. Composição corporal e exigências nutricionais em macrominerais de ovinos lanados e deslanados, em crescimento. Master’s Thesis, Universidade Estadual Paulista/UNESP, Jaboticabal, Brazil, 2000. [Google Scholar]
- Blaxter, K.L. The Energy Metabolism of Ruminants, 1st ed.; Hutchinson: London, UK, 1962; p. 329. [Google Scholar]
- Teixeira, I.A.M.A.; Fernandes, M.H.M.R.; Pereira Filho, J.M.; Canesin, R.C.; Gomes, R.A.; Resende, K.T. Body composition, protein and energy efficiencies, and requirements for growth of F1 Boer × Saanen goat kids. J. Anim. Sci. 2017, 95, 2121–2132. [Google Scholar] [CrossRef]
- Pereira Filho, J.M.; Resende, K.T.; Teixeira, I.A.M.A.; Silva Sobrinho, A.G.; Yáñez, E.A.; Ferreira, A.C.D. Características da carcaça e alometria dos tecidos de cabritos F1 Boer × Saanen. Rev. Bras. Zootec. 2008, 37, 905–912. [Google Scholar] [CrossRef]
- AOAC. Official Methods and Analysis, 15th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1990. [Google Scholar]
- Charrad, M.; Ghazzali, N.; Boiteau, V.; Niknafs, A. NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set. J. Stat. Softw. 2014, 61, 1–36. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D.; DebRoy, S.; Sarkar, D.; R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R Package Version 3.1-145. 2020. Available online: https://CRAN.R-project.org/package=nlme (accessed on 18 October 2021).
- Bartoń, K. MuMIn: Multi-Model Inference. 2023. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 18 October 2021).
- Fox, J.; Weisberg, S.; Price, B.; Adler, D.; Bates, D.; Baud-Bovy, G.; Bolker, B.; Ellison, S.; Firth, D.; Friendly, M.; et al. Car: Companion to Applied Regression. 2019. Available online: https://CRAN.R-project.org/package=car (accessed on 18 October 2021).
- Bibby, J.; Toutenburg, H. Prediction and Improved Estimation in Linear Models, 1st ed.; Wiley: Chichester, UK, 1977; p. 188. [Google Scholar]
- Lin, L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef] [PubMed]
- Henrickson, R.L.; Ranganayaki, M.D.; Asghar, A.; Bailey, D.G. Age, species, breed, sex, and nutrition effect on hide collagen. CRC Crit. Rev. Food Sci. Nutr. 1984, 20, 159–172. [Google Scholar] [CrossRef]
- Almeida, A.K.; Resende, K.T.; Tedeschi, L.O.; Fernandes, M.H.M.R.; Regadas Filho, J.G.L.; Teixeira, I.A.M.A. Using body composition to determine weight at maturity of male and female Saanen goats. J. Anim. Sci. 2016, 94, 2564–2571. [Google Scholar] [CrossRef]
- Yáñez, E.A.; Resende, K.T.; Ferreira, A.C.D.; Pereira Filho, J.M.; Silva Sobrinho, A.G.; Teixeira, I.A.M.A.; Medeiros, A.N. Restrição alimentar em caprinos: Rendimento, cortes comerciais e composição de carcaça. Rev. Bras. Zootec. 2006, 35, 2093–2100. [Google Scholar] [CrossRef]
- Owens, F.N.; Dubeski, P.; Hanson, C.F. Factors that alter the growth and development of ruminants. J. Anim. Sci. 1993, 71, 3138–3150. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, A.C.; Yáñez, E.A.; Medeiros, A.N.; Resende, K.T.; Pereira Filho, J.M.; Fernandes, M.H.M.R.; Almeida, A.K.; Teixeira, I.A.M.A. Protein and energy requirements of castrated male Saanen goats. Small Rumin. Res. 2015, 123, 88–94. [Google Scholar] [CrossRef]
- Resende, K.T.; Fernandes, M.H.M.R.; Hentz, F.; Teixeira, I.A.M.A.; Garcia, J.A. Methods of body composition estimative of growing goats. Acta Sci.—Anim. Sci. 2017, 39, 189–194. [Google Scholar] [CrossRef]
- Marcondes, M.I.; Tedeschi, L.O.; Valadares Filho, S.C.; Chizzotti, M.L. Prediction of physical and chemical body compositions of purebred and crossbred Nellore cattle using the composition of a rib section. J. Anim. Sci. 2012, 90, 1280–1290. [Google Scholar] [CrossRef]
- Sousa, A.R.; Campos, A.C.N.; Silva, L.P.; Bezerra, L.R.; Furtado, R.N.; Oliveira, R.L.; Pereira, E.S. Prediction of the chemical body composition of hair lambs using the composition of a rib section. Small Rumin. Res. 2020, 191, 106189. [Google Scholar] [CrossRef]
- Medeiros, E.J.L.; Mendonça, F.H.O.; Queiroga, R.C.R.E.; Madruga, M.S. Meat quality characteristics of exotic and SPRD crossbred goats from the semiarid region. Food Sci. Technol. 2012, 32, 768–774. [Google Scholar] [CrossRef]
- Shrestha, J.N.B.; Fahmy, M.H. Breeding goats for meat production: 2. Crossbreeding and formation of composite population. Small Rumin. Res. 2007, 67, 93–112. [Google Scholar] [CrossRef]
- Gawat, M.; Boland, M.; Singh, J.; Kaur, L. Goat Meat: Production and Quality Attributes. Foods 2023, 12, 3130. [Google Scholar] [CrossRef] [PubMed]
Experimental Rations | |||
---|---|---|---|
Nutrient | Milk | 1 | 2 |
Dry matter (%) | 10.72 | 89.10 | 89.85 |
Crude protein (%) | 31.33 | 16.31 | 15.50 |
Metabolizable energy (Mcal/kg MS) 1 | 5.34 | 2.86 | 2.88 |
Ash (%) | 6.86 | 7.65 | 8.00 |
Fat (%) | 2.14 | 2.79 | |
Neutral detergent fiber (%) | 38.19 | 38.86 | |
Acid detergent fiber (%) | 16.60 | 17.87 | |
Lignin (%) | 2.41 | 2.36 |
Composition | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Empty body | ||||
Dry matter (%) | 30.51 | 3.16 | 21.4 | 37.5 |
Ash (% DM) | 13.35 | 2.3 | 9.12 | 20.7 |
Fat (% DM) | 23.05 | 8.39 | 4.29 | 42.27 |
Protein (% DM) | 62.06 | 6.71 | 46.44 | 77.93 |
Energy (kcal/kg DM) | 5560.51 | 472.25 | 4410.86 | 6510.14 |
Half carcass | ||||
Dry matter (%) | 29.47 | 2.35 | 23.04 | 35.87 |
Ash (% DM) | 15.78 | 3.11 | 10.74 | 27.09 |
Fat (% DM) | 23.84 | 9.01 | 2.77 | 43.62 |
Protein (% DM) | 59.6 | 6.95 | 45.02 | 73.53 |
Energy (kcal/kg DM) | 5504.94 | 553.73 | 4211.38 | 6712.63 |
9–11th ribs | ||||
Dry matter (%) | 31.51 | 3.45 | 22.49 | 40.28 |
Ash (% DM) | 13.84 | 3.3 | 8.8 | 23.99 |
Fat (% DM) | 21.23 | 10.27 | 2.39 | 42.58 |
Protein (% DM) | 64.47 | 7.58 | 47.32 | 76.97 |
Energy (kcal/kg DM) | 5477.9 | 614.5 | 3847.66 | 6605.02 |
Loin | ||||
Dry matter (%) | 30.16 | 3.54 | 21.44 | 39.81 |
Ash (% DM) | 12.53 | 3.06 | 8.28 | 22.96 |
Fat (% DM) | 22.28 | 9.71 | 3.24 | 45.22 |
Protein (% DM) | 63.76 | 8.86 | 43.42 | 82.82 |
Energy (kcal/kg DM) | 5679.99 | 541.27 | 4316.58 | 6758.22 |
Leg | ||||
Dry matter (%) | 31.13 | 2.55 | 25.32 | 36.72 |
Ash (% DM) | 13.86 | 3.33 | 8.58 | 25.58 |
Fat (% DM) | 21.18 | 7.08 | 4.59 | 36.51 |
Protein (% DM) | 64.04 | 6.81 | 50.56 | 80.18 |
Energy (kcal/kg DM) | 5576.42 | 530.41 | 4188.97 | 6413.07 |
Neck | ||||
Dry matter (%) | 30.25 | 2.88 | 24.22 | 37.61 |
Ash (% DM) | 14.52 | 2.87 | 9.4 | 21.7 |
Fat (% DM) | 21.95 | 8.88 | 5.41 | 39.4 |
Protein (% DM) | 63.23 | 7.52 | 46.48 | 79.44 |
Energy (kcal/kg DM) | 5545.74 | 528.98 | 4529.03 | 6489.33 |
Ribs | ||||
Dry matter (%) | 31.77 | 3.45 | 24.2 | 41.01 |
Ash (% DM) | 13.75 | 2.86 | 9.8 | 26.14 |
Fat (% DM) | 24.32 | 9.6 | 3.97 | 41.85 |
Protein (% DM) | 58.41 | 8.19 | 42.59 | 72.46 |
Energy (kcal/kg DM) | 5725.82 | 528.92 | 4251.61 | 6654.11 |
Shoulder | ||||
Dry matter (%) | 31.73 | 2.37 | 27 | 36.45 |
Ash (% DM) | 18.9 | 3.47 | 13.81 | 30.89 |
Fat (% DM) | 19.9 | 8.14 | 0.08 | 33.61 |
Protein (% DM) | 59.87 | 5.29 | 49.5 | 68.49 |
Energy (kcal/kg DM) | 5203.96 | 555.66 | 3778.31 | 5970.13 |
Organs | ||||
Dry matter (%) | 23.19 | 4.48 | 14.04 | 36.63 |
Ash (% DM) | 4.09 | 0.87 | 2.14 | 5.95 |
Fat (% DM) | 29.34 | 12.77 | 3.05 | 60.98 |
Protein (% DM) | 63.28 | 12.77 | 32.02 | 92.83 |
Energy (kcal/kg DM) | 6392.94 | 576.17 | 5031.37 | 7683.04 |
Head + Feet | ||||
Dry matter (%) | 37.58 | 4.7 | 25.15 | 52.64 |
Ash (% DM) | 22.01 | 2.58 | 16.89 | 28.89 |
Fat (% DM) | 23.63 | 6.24 | 5.38 | 33.05 |
Protein (% DM) | 51.98 | 5.01 | 45.29 | 69.52 |
Energy (kcal/kg DM) | 4944.4 | 372.03 | 3632.83 | 5848.57 |
Hide | ||||
Dry matter (%) | 33.16 | 3.49 | 25.56 | 42.71 |
Ash (% DM) | 2.27 | 0.35 | 1.41 | 3.23 |
Fat (% DM) | 6.3 | 2.12 | 3.46 | 12.73 |
Protein (% DM) | 95.12 | 4.25 | 82.15 | 99.91 |
Energy (kcal/kg DM) | 5205 | 157.33 | 4745.52 | 5502.83 |
Variable | Principal Component 1 | Principal Component 2 |
---|---|---|
Dry matter | 0.833 | 0.325 |
Minerals (ash) | −0.846 | 0.503 |
Fat | 0.976 | 0.032 |
Protein | −0.884 | −0.341 |
Energy (kcal/kg DM) | 0.964 | −0.184 |
Model | AICC | R2 | RMSE (% Mean) | CCC | |
---|---|---|---|---|---|
Models for estimating body dry matter (%) | |||||
1 | Dry MatterBody (%) = 13.55 (±2.59 ***) + 0.27 (±0.067 ***) BW (kg) + 0.44 (±0.101 ***) DM9–11th ribs (%) | 227.18 | 0.74 | 5.23 | 0.851 |
2 | Dry MatterBody (%) = 13.92 (±2.24 ***) + 0.26 (±0.063 ***) BW (kg) + 0.44 (±0.091 ***) DMLoin (%) | 223.50 | 0.76 | 5.06 | 0.861 |
3 | Dry MatterBody (%) = 10.23 (±3.44 **) + 0.22 (±0.078 **) BW (kg) + 0.58 (±0.14 ***) DMNeck (%) | 227.98 | 0.74 | 5.26 | 0.848 |
Models for estimating body ash (% DM 1) | |||||
4 | AshBody (%) = 10.56 (±1.29 ***) − 0.19 (±0.041 ***) BW (kg) + 0.37 (±0.063 ***) Ash9–11th ribs (%) | 176.06 | 0.80 | 7.69 | 0.887 |
5 | AshBody (%) = 9.43 (±1.14 ***) − 0.16 (±0.036 ***) BW (kg) + 0.47 (±0.061 ***) AshLoin (%) | 162.03 | 0.84 | 6.81 | 0.913 |
6 | AshBody (%) = 11.33 (±1.64 ***) − 0.23 (±0.046 ***) BW (kg) + 0.33 (±0.081 ***) AshNeck (%) | 188.88 | 0.75 | 8.59 | 0.855 |
Models for estimating body fat (% DM) | |||||
7 | FatBody (%) = 6.61 (±0.81 ***) + 0.77 (±0.034 ***) Fat9–11th ribs (%) | 282.83 | 0.90 | 11.39 | 0.947 |
8 | FatBody (%) = 4.29 (±1.10 ***) + 0.62 (±0.15 ***) BW (kg) + 0.51 (±0.0802 ***) FatLoin (%) | 304.14 | 0.86 | 13.43 | 0.926 |
9 | FatBody (%) = 3.19 (±0.97 **) + 0.32 (±0.15 *) BW (kg) + 0.73 (±0.084 ***) FatNeck (%) | 286.06 | 0.90 | 11.49 | 0.947 |
Models for estimating body protein (% DM) | |||||
10 | ProteinBody (%) = 41.92 (±6.30 ***) − 0.64 (±0.12 ***) BW (kg) + 0.43 (±0.079 ***) Protein9–11th ribs (%) | 272.45 | 0.88 | 3.80 | 0.933 |
11 | ProteinBody (%) = 55.99 (±3.99 ***) − 0.87 (±0.087 ***) BW (kg) + 0.26 (±0.050 ***) ProteinLoin (%) | 274.75 | 0.87 | 3.87 | 0.930 |
12 | ProteinBody (%) = 47.89 (±5.34 ***) − 0.76 (±0.1004 ***) BW (kg) + 0.37 (±0.068 ***) ProteinNeck (%) | 273.30 | 0.87 | 3.82 | 0.932 |
Model | AICC | R2 | RMSE (% Mean) | CCC | |
---|---|---|---|---|---|
13 | EnergyBody (kcal/kg DM) = 2205.58 (±265 ***) + 22.68 (±7.33 **) BW (kg) + 0.56 (±0.061 ***) Energy9–11th ribs (kcal/kg DM) | 752.09 | 0.90 | 2.65 | 0.948 |
14 | EnergyBody (kcal/kg DM) = 2790.76 (±441 ***) + 27.99 (±8.31 **) BW (kg) + 48.15 (±6.72 ***) FatLoin (%) + 21.33 (±5.41 ***) ProteinLoin (%) | 766.31 | 0.88 | 2.93 | 0.935 |
15 | EnergyBody (kcal/kg DM) = 2044.72 (±369 ***) + 30.57 (±8.35 ***) BW (kg) + 0.55 (±0.079 ***) EnergyLoin (%) | 769.17 | 0.87 | 3.07 | 0.929 |
16 | EnergyBody (kcal/kg DM) = 4453.74 (±59.5 ***) + 19.02 (±8.96 *) BW (kg) + 39.97 (±5.17 ***) FatNeck (%) | 763.52 | 0.88 | 2.92 | 0.934 |
17 | EnergyBody (kcal/kg DM) = 2320.53 (±444 ***) + 34.27 (±10.16 **) BW (kg) + 0.51 (±0.098 ***) EnergyNeck (kcal/kg DM) | 783.11 | 0.83 | 3.46 | 0.908 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teixeira, I.A.M.A.; Ferreira, A.F.M.; Pereira Filho, J.M.; Tedeschi, L.O.; Resende, K.T. Predicting Chemical Body Composition Using Body Part Composition in Boer × Saanen Goats. Ruminants 2024, 4, 543-555. https://doi.org/10.3390/ruminants4040038
Teixeira IAMA, Ferreira AFM, Pereira Filho JM, Tedeschi LO, Resende KT. Predicting Chemical Body Composition Using Body Part Composition in Boer × Saanen Goats. Ruminants. 2024; 4(4):543-555. https://doi.org/10.3390/ruminants4040038
Chicago/Turabian StyleTeixeira, Izabelle A. M. A., Adrian F. M. Ferreira, José M. Pereira Filho, Luis O. Tedeschi, and Kleber T. Resende. 2024. "Predicting Chemical Body Composition Using Body Part Composition in Boer × Saanen Goats" Ruminants 4, no. 4: 543-555. https://doi.org/10.3390/ruminants4040038
APA StyleTeixeira, I. A. M. A., Ferreira, A. F. M., Pereira Filho, J. M., Tedeschi, L. O., & Resende, K. T. (2024). Predicting Chemical Body Composition Using Body Part Composition in Boer × Saanen Goats. Ruminants, 4(4), 543-555. https://doi.org/10.3390/ruminants4040038