Changes in the Fatty Acid Composition of Vegetable Oils Affect the Feeding Behavior, Feed Preference, and Thermoregulatory Responses of Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Experimental Design, Diets, and Facilities
2.2. Determination of Chemical Composition of Diets and Ingredients
2.3. Determination of Fatty Acid Composition in the Oils of the Diets
2.4. Intake and Ingestive Behavior
2.5. Diet Selectivity
2.6. Environmental Variables
2.7. Physiological Variables of the Sheep
2.8. Serum Metabolites
2.9. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- National Research Council-NRC. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar] [CrossRef]
- Oliveira, F.d.S.; Fernandes Neto, V.d.P.; Nascimento e Silva, M.N.d.; Cardoso, F.S.; Costa, A.P.R. Effect of heat stress on physiological and biochemical parameters of sheep raised in tropical climate. Pubvet 2012, 6, 1359. [Google Scholar] [CrossRef]
- Maia, A.S.C.; Nascimento, S.T.; Nascimento, C.C.N.; Gebremedhin, K.G. Thermal equilibrium of goats. J. Therm. Biol. 2016, 58, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Sejian, V.; Bagath, M.; Krishnan, G.; Rashamol, V.P.; Pragna, P.; Devaraj, C.; Bhatta, R. Genes for resilience to heat stress in small ruminants: A review. Small Rum. Res. 2019, 173, 42–53. [Google Scholar] [CrossRef]
- Santos, M.L.P.; Dada, J.M.V.; Muniz, P.C.; Nunes-Zotti, M.L.A.; Barros, F.R.O.d.; Vieira, F.M.C. Physiological responses of Santa Inês x Dorper ewes and lambs to thermal environment of silvopasture and open pasture systems. Small Rum. Res. 2021, 205, 106–565. [Google Scholar] [CrossRef]
- Mascarenhas, N.M.H.; Furtado, D.A.; Fonsêca, V.F.C.; Souza, B.B.d.; Oliveira, A.G.; Morais, F.T.L.; Silva, R.d.S.; Silva, M.R.d.; Batista, L.F.; Dornelas, K.C.; et al. Thermal stress index for native sheep. J. Therm. Biol. 2023, 115, 103607. [Google Scholar] [CrossRef] [PubMed]
- Nobre, I.S.; Souza, B.B.; Marques BA, A.; Azevedo, A.M.; Araújo, R.P.; Gomes TL, S.; Batista, L.F.; Silva, G.A. Evaluation of Levels of fat protected and concentrate on productive performance and sheep thermoregulation. Rev. Bras. de Saúde e Produção Anim. 2016, 17, 116–126. [Google Scholar] [CrossRef]
- Baldwin, R.L.; Smith, N.E.; Taylor, J.; Sharp, M. Manipulating metabolic parameters to improve growth rate and milk secretion. J. Anim. Sci. 1980, 51, 1416–1428. [Google Scholar] [CrossRef]
- Jin, Y.; Jiang, B.; Wang, H. Growth performance, meat quality and lipid metabolism in finishing lambs fed diets containing rumen-unprotected and rumen-protected betaine. Italian. J. Anim. Sci. 2021, 20, 2041–2050. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Cannas, A.; Fox, D.G. A nutrition mathematical model to account for dietary supply and requirements of energy and other nutrients for domesticated small ruminants: The development and evaluation of the Small Ruminant Nutrition System. Small Rum. Res. 2010, 89, 174–184. [Google Scholar] [CrossRef]
- Palmquist, D.L. The role of dietary fats in efficiency of ruminants. J. Nutr. 1994, 124 (Suppl. S8), 1377S–1382S. [Google Scholar] [CrossRef]
- Behan, A.A.; Loh, T.C.; Fakurazi, S.; Kaka, U.; Kaka, A.; Samsudin, A.A. Effects of Supplementation of Rumen Protected Fats on Rumen Ecology and Digestibility of Nutrients in Sheep. Animals 2019, 9, 400. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Dai, C.; Li, J.; Huang, P.; Li, Y.; Ding, X.; Huang, J.; Hussain, T.; Yang, H. Effects of dietary energy on growth performance, carcass characteristics, serum biochemical index, and meat quality of female Hu lambs. Anim. Nutr. 2020, 6, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Himejima, M.; Kubo, I. Antibacterial agents from the cashew Anacardium occidentale (Anacardiaceae) nut shell oil. J. Agric. Food Chem. 1991, 39, 418–421. [Google Scholar] [CrossRef]
- Osmari, M.P.; Matos, L.F.d.; Salab, B.L.; Diaz, T.G.; Giotto, F.M. Cashew nut shell liquid: Characteristics and applicability in animal production. Pubvet 2015, 9, 143–149. [Google Scholar]
- Ramos, L.M.G.; Bezerra, L.R.; Oliveira, J.P.F.d.; Souza, M.P.d.; Silva, A.L.d.; Sales, E.P.; Mazzetto, S.E.; Pereira Filho, J.M.; Oliveira, R.L. Effects of feeding growing-finishing lambs with cashew nut shell liquid on the growth performance, physicochemical attributes, lipid peroxidation and sensorial parameters of burger. Small Ruminant Res. 2021, 202, 106–468. [Google Scholar] [CrossRef]
- Araújo, D.; Araújo, M.; Silva, S.; Pereira Filho, J.; Parente, M.; Oliveira, R.; Mazzetto, S.; Oliveira, J.; Edvan, R.; Bezerra, L. Effect of technical cashew nut shell liquid on growth, physicochemical and fatty acid composition of lamb meat. Small Rum. Res. 2023, 227, 107070. [Google Scholar] [CrossRef]
- Watanabe, Y.; Suzuki, R.; Koike, S.; Nagashima, K.; Mochizuki, M.; Forester, R.J.; Kobayashi, Y. In vitro evaluation of cashew nut shell liquid as a methane-enhancing agent for ruminants. J. Dairy Sci. 2010, 93, 5258–5267. [Google Scholar] [CrossRef]
- Shinkai, T.; Enishi, O.; Mitsumori, M.; Higuchi, K.; Kobayashi, Y.; Takenaka, A.; Nagashima, K.; Mochizuki, M.; Kobayashi, Y. Mitigation of methane production from cattle by feeding cashew nut shell liquid. J. Dairy Sci. 2012, 95, 5308–5316. [Google Scholar] [CrossRef]
- Compton, C.; Peña, O.M.; Hikita, C.; Watanabe, T.; Jenkins, T.C.; Lascano, G.J.; Aguerre, M.J. Effects of cashew nut shell extract on ruminal fermentation and nutrient digestibility under continuous culture. Ruminants 2023, 3, 92–99. [Google Scholar] [CrossRef]
- Lup, F.; Pop, I.M.; Simeanu, D.; Vicas, S.; Simeanu, C.; Mierlita, D. Research regarding fatty acid profile and health lipid indices in the lambs meat of employing feed supplemented with different vegetable oils. Rev. Chim. 2018, 69, 222–227. [Google Scholar] [CrossRef]
- Instituto Nacional de Meteorologia. Banco de Dados Meteorológicos para Ensino e Pesquisa; INMET/BDMEP: Brasília, DF, Brazil, 2023.
- Lubi, M.C.; Thachil, E.T. Cashew nut shell liquid (CNSL)-a versatile monomer for polymer synthesis. Des. Monomers Polym. 2000, 3, 123–153. [Google Scholar] [CrossRef]
- Mazzetto, S.E.; Lomonaco, D.; Mele, G. Cashew nut oil: Opportunities and challenges in the context of sustainable industrial development. Quím. Nova 2009, 32, 732–741. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists—AOAC. Official Methods of Analysis, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Senger, C.C.D.; Kozloski, G.V.; Bonnecarrère Sanchez, L.M.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Mertens, D.R. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 1997, 80, 1463–1481. [Google Scholar] [CrossRef]
- Weiss, W.P. Energy Prediction Equations for Ruminant Feeds. In Cornell Nutrition Conference Feed Manufactures; Proceedings; Cornell University: Ithaca, NY, USA, 1999; pp. 176–185. [Google Scholar] [CrossRef]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. 1959, 37, 911–917. [Google Scholar] [CrossRef]
- Hartman, L.; Lago, R.C. Rapid preparation of fatty acid methyl esters from lipids. Lab. Pract. 1973, 22, 475–481. [Google Scholar]
- Martin, P.; Bateson, P. Measuring Behaviour, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 222. [Google Scholar]
- Bürger, P.J.; Pereira, J.C.; Queiroz, A.C.d.; Silva, J.F.C.d.; Valadares Filho, S.d.C.; Cecon, P.R.; Casali, A.D.P. Ingestive behavior in Holstein calves fed diets with different concentrate levels. Rev. Bras. Zootec. 2000, 29, 236–242. [Google Scholar] [CrossRef]
- Polli, V.A.; Restle, J.; Senna, D.B.; Almeida, S.R.S.d. Aspectos relativos à ruminação de bovinos e bubalinos em regime de confinamento. Rev. Bras. Zootec. 1996, 25, 987–993. [Google Scholar]
- Lammers, B.P.; Buckmaster, D.R.; Heinrichs, A.J. A simple method for the analysis of particle sizes of forage and total mixed rations. J. Dairy Sci. 1996, 79, 922–928. [Google Scholar] [CrossRef] [PubMed]
- Kononoff, P.J.; Heinrichs, A.J.; Buckmaster, D.R. Modification of Penn State forage and total mixed ration particle separator and the effects of moisture content on its measurements. J. Dairy Sci. 2003, 86, 1858–1863. [Google Scholar] [CrossRef]
- Buffington, D.E.; Collazo-Arocho, A.; Canton, G.H.; Pitt, D. Black Globe-humidity index (BGHI) as Comfort Equation for Dziry Cows. Trans. Asae 1981, 24, 0711–0714. [Google Scholar] [CrossRef]
- Statistical Analysis System, S.A.S. User’s Guide: Statistics; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Maia MR, G.; Chaudhary, L.C.; Figueres, L.; Wallace, R.J. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 2007, 91, 303–314. [Google Scholar] [CrossRef]
- Shingfield, K.J.; Bernard, L.; Leroux, C.; Chilliard, Y. Role of trans fatty acids in the nutritional regulation of mammary lipogenesis in ruminants. Animal 2010, 4, 1140–1166. [Google Scholar] [CrossRef] [PubMed]
- Francisco, A.; Dentinho, M.T.; Alves, S.P.; Portugal, P.V.; Fernandes, F.; Sengo, S.; Jerónimo, E.; Oliveira, M.A.; Costa, P.; Sequeira, A.; et al. Growth performance, carcass and meat quality of lambs supplemented with increasing levels of a tanniferous bush (Cistus ladanifer L.) and vegetable oils. Meat Sci. 2015, 100, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Diógenes, L.; Bezerra, L.; Pereira Filho, J.; Silva Junior, J.; Oliveira, J.; Moura, J.; Barbosa, A.; Souza, M.; Sousa, S.; Pereira, E.; et al. Effects of the dietary inclusion of buriti oil on lamb performance, carcass traits, digestibility, nitrogen balance, ingestive behavior and blood metabolites. Animals 2020, 10, 1973. [Google Scholar] [CrossRef]
- de Oliveira Maia Parente, M.; Rocha, K.S.; Bessa, R.J.B.; Parente, H.N.; de Moura Zanine, A.; Machado, N.A.F.; de Brito Lourenço Júnior, J.; Bezerra, L.R.; Landim, A.V.; Alves, S.P. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci. 2020, 160, 107971. [Google Scholar] [CrossRef]
- Ackermans, N.L.; Martin, L.F.; Hummel, J.; Müller, D.W.H.; Clauss, M.; Hatt, J.-M. Feeding selectivity for diet abrasiveness in sheep and goats. Small Rum. Res. 2019, 175, 160–164. [Google Scholar] [CrossRef]
- Nguyen, D.V.; Malau-Aduli, B.S.; Nichols, P.D.; Malau-Aduli, A.E. Growth performance and carcass characteristics of Australian prime lambs supplemented with pellets containing canola oil or flaxseed oil. Anim. Prod. Sci. 2017, 58, 2100–2108. [Google Scholar] [CrossRef]
- Lima, P.R.; Apdini, T.; Freire, A.S.; Santana, A.S.; Moura LM, L.; Nascimento JC, S.; Rodrigues RT, S.; Dijkstra, J.; Garcez Neto, A.F.; Queiroz, M.A.Á.; et al. Dietary supplementation with tannin and soybean oil on intake, digestibility, feeding behavior, ruminal protozoa and methane emission in sheep. Anim. Feed Sci. Technol. 2019, 249, 10–17. [Google Scholar] [CrossRef]
- Gomes, C.A.V.; Furtado, D.A.; Medeiros, A.N.; Silva, D.S.; Pimenta Filho, E.C.; Lima Junior, V. Effect of thermal ambient and feed supplementation levels on physiologic parameters of Moxotó goats. Rev. Bras. de Eng. Agrícola e Ambient. 2008, 12, 213–219. [Google Scholar] [CrossRef]
- Neiva, J.N.; Teixeira, M.; Turco, H.N.; Oliveira, S.M.; Moura, A.D. Effects of environmental stress on physiological parameters of feedlot sheep in the Northeast of Brazil. Rev. Bras. Zootec. 2004, 33, 668–678. [Google Scholar] [CrossRef]
- Kaneko, J.J.; Harve, J.W.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar] [CrossRef]
- Meyer, D.J.; Harvey, J.W. Veterinary Laboratory Medicine: Interpretation and Diagnosis; WB Saunders: St. Louis, MO, USA, 2004. [Google Scholar]
- Caldeira, R.M.; Belo, A.T.; Santos, C.C.; Vasquez, M.I.; Portugal, A.V. The effect of long-term feed restriction and over-nutrition on body condition score, blood metabolites and hormonal profiles in ewes. Small Rum. Res. 2007, 68, 233–241. [Google Scholar] [CrossRef]
- Brzozowska, A.M.; Oprządek, J. Metabolism of fatty acids in tissues and organs of the ruminants-a review. Anim. Sci. Pap. Rep. 2016, 34, 211–219. [Google Scholar]
Item | Oils Mixed with CNSL 1 | ||||
---|---|---|---|---|---|
Soybean | Cottonseed | Sunflower | Corn | Canola | |
Sorghum silage | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Ground corn | 40.0 | 40.0 | 40.0 | 40.0 | 40.0 |
Soybean meal | 16.5 | 16.5 | 16.5 | 16.5 | 16.5 |
CNSL 1 | 0.50 | 0.50 | 0.50 | 0.50 | 0.50 |
Oils | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Mineral mixture | 1.50 | 1.50 | 1.50 | 1.50 | 1.50 |
Chemical composition of the diet (g/kg) | |||||
Dry matter | 694 | 694 | 694 | 694 | 694 |
Ashes | 51.9 | 51.9 | 51.9 | 51.9 | 51.9 |
Crude protein | 135 | 135 | 135 | 135 | 135 |
Ether extract | 58.0 | 58.0 | 58.0 | 58.0 | 58.0 |
aNeutral detergent fiber 2 | 371 | 371 | 371 | 371 | 371 |
Acid detergent fiber | 165 | 165 | 165 | 165 | 165 |
Non-fiber carbohydrates | 384 | 384 | 384 | 384 | 384 |
Total digestible nutrients | 782 | 782 | 782 | 782 | 782 |
Fatty Acids (g/100 g FAME) | Vegetable Oils | ||||||
---|---|---|---|---|---|---|---|
Cottonseed | Canola | Sunflower | Corn | Soybean | CNSL 1 | ||
Myristic | C14:0 | 0.5 | nd | 0.33 | 0.13 | 0.09 | 1.77 |
Palmitic | C16:0 | 21.7 | 1.91 | 8.52 | 11.8 | 12.2 | 15.97 |
Stearic | C18:0 | 2.12 | 2.33 | 7.41 | 5. 18 | 3.27 | 5.76 |
Oleic | C18:1 | 17.2 | 63.7 | 25.7 | 20.7 | 29. 4 | 14.3 |
Linoleic | C18:2 | 50.3 | 23 | 54.2 | 54.0 | 45.8 | 10.8 |
Linolenic | C18:3 | 2.41 | 8.82 | 0.32 | 5.51 | 3.78 | 2.83 |
SFA | Total | 24.3 | 4.21 | 16.2 | 17.1 | 15.6 | 23.5 |
MUFA | Total | 17.2 | 63.7 | 25.7 | 20.7 | 29.4 | 14.3 |
PUFA | Total | 52.7 | 31.8 | 54.5 | 59.5 | 49.6 | 13.7 |
UFA | Total | 69.9 | 95.5 | 80.2 | 80.2 | 79.0 | 28.0 |
Item | Oils Mixed with CNSL1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Crude protein | 113.85 | 118.06 | 118.46 | 111.93 | 113.49 | 0.497 | 0.845 |
Ash | 49.82 | 52.81 | 50.50 | 54.26 | 51.96 | 0.255 | 0.746 |
aNeutral detergent fiber 4 | 362.49 | 378.55 | 391.67 | 389.80 | 392.44 | 1.795 | 0.732 |
Acid detergent fiber | 208.81 | 161.20 | 197.26 | 157.96 | 170.05 | 1.043 | 0.654 |
Ether extract | 44.74 | 47.73 | 45.05 | 47.45 | 41.98 | 0.216 | 0.341 |
Non-fibrous carbohydrates | 429.08 | 402.83 | 394.29 | 396.53 | 400.11 | 1.831 | 0.670 |
Total digestible nutrients | 768.2 | 766.87 | 764.49 | 764.59 | 760.38 | 37.26 | 0.635 |
Metabolizable energy | 3.797 | 3.954 | 4.016 | 4.00 | 3.799 | 0.151 | 0.728 |
Item 1 | Oils Mixed with CNSL 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Growing | |||||||
Initial weight (kg) | 23.1 | 23.9 | 23.4 | 24.3 | 24.4 | 0.89 | 0.812 |
Final weight (kg) | 35.8 | 36.8 | 36.5 | 37.0 | 37.2 | 1.33 | 0.959 |
Intake (g/day) | |||||||
SFA | 0.057 d | 0.346 a | 0.235 bc | 0.248 b | 0.215 c | 0.008 | <0.0001 |
UFA | 1.307 a | 0.997 c | 1.165 b | 1.162 b | 1.091 bc | 0.476 | 0.0012 |
MUFA | 0.872 a | 0.2453 d | 0.3735 bc | 0.299 cd | 0.406 b | 0.024 | <0.0001 |
PUFA | 0.435 d | 0.751 bc | 0.792 ab | 0.862 a | 0.685 c | 0.026 | <0.0001 |
Dry matter | 1376 | 1433 | 1460 | 1456 | 1388 | 60.6 | 0.440 |
Dry matter (as %BW) | 4.01 | 4.07 | 4.24 | 4.25 | 3.93 | 0.15 | 0.503 |
Organic matter | 131 | 135 | 138 | 137 | 130 | 11.65 | 0.521 |
aNDF | 515 | 543 | 572 | 558 | 544 | 29.1 | 0.405 |
aNDF (as %BW) | 1.58 | 1.54 | 1.65 | 1.66 | 1.45 | 0.08 | 0.848 |
Acid detergent fiber | 289 | 231 | 288 | 230 | 234 | 13.42 | 0.632 |
Behavioral events (min/day) | |||||||
Feeding | 183 | 193 | 203 | 198 | 206 | 11.7 | 0.675 |
Rumination | 502 | 497 | 481 | 477 | 476 | 17.8 | 0.762 |
Idleness | 754 | 748 | 756 | 764 | 757 | 21.2 | 0.990 |
Efficiency rates (g/h) | |||||||
DM intake | 495 | 443 | 457 | 455 | 401 | 15.2 | 0.626 |
aNDF intake | 175 | 181 | 185 | 181 | 166 | 10.7 | 0.842 |
DM rumination | 160 | 165 | 170 | 175 | 161 | 9.74 | 0.882 |
aNDF rumination | 62.3 | 68.2 | 68.6 | 71.3 | 66.4 | 5.39 | 0.822 |
Chewing rates | |||||||
Quantity (g DM/bolus) | 2.19 | 2.12 | 1.96 | 2.20 | 1.94 | 0.16 | 0.700 |
Boluses ruminated (No./day) | 613 b | 644 ab | 745 a | 660 ab | 741 a | 14.4 | 0.044 |
TCT (min/day) | 686 | 691 | 683 | 675 | 682 | 19.2 | 0.990 |
Variables | Oils Mixed with CNSL 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Distribution of particles 12 h after feeding 4 | |||||||
19 mm | 12.5 b | 19.3 ab | 24.7 a | 18.1 ab | 19.9 ab | 2.59 | 0.043 |
8 mm | 23.3 b | 25.6 ab | 25.3 ab | 28.5 a | 28.7 a | 1.13 | 0.012 |
1.18 mm | 25.0 a | 20.8 b | 21.2 ab | 23.0 ab | 22.6 ab | 0.93 | 0.035 |
Bottom | 39.0 | 34.1 | 28.5 | 30.3 | 28.6 | 2.73 | 0.055 |
5 pef8 | 35.8 b | 45.0 ab | 50.1 a | 46.6 ab | 48.7 ab | 3.20 | 0.034 |
6 pef1.18 | 60.9 | 65.8 | 71.4 | 69.6 | 71.3 | 2.73 | 0.055 |
7 NDFpe8 | 13.3 b | 16.7 ab | 18.6 a | 17.3 ab | 18.1 ab | 1.19 | 0.035 |
8 NDFpe1.18 | 22.6 | 24.5 | 26.5 | 25.9 | 26.5 | 1.01 | 0.055 |
Distribution of particles 24 h after feeding | |||||||
19 mm | 20.8 | 28.5 | 27.7 | 24.5 | 26.7 | 2.88 | 0.356 |
8 mm | 24.7 b | 27.3 ab | 25.9 ab | 27.9 ab | 29.6 a | 1.07 | 0.036 |
1.8 mm | 23.6 | 19.6 | 21.5 | 19.7 | 22.0 | 1.24 | 0.144 |
Bottom | 30.7 a | 24.3 ab | 24.7 ab | 27.8 ab | 21.5 b | 2.20 | 0.006 |
pef8 | 45.5 | 56.0 | 53.6 | 52.4 | 56.3 | 3.19 | 0.149 |
pef1.18 | 69.2 b | 75.5 ab | 75.2 ab | 72.1 ab | 78.4 a | 2.20 | 0.044 |
NDFfe8 | 16.9 | 20.8 | 19.9 | 19.5 | 20.9 | 1.18 | 0.149 |
NDFfe1.18 | 25.7 b | 28.1 ab | 27.9 ab | 26.8 ab | 29.1 a | 0.82 | 0.045 |
Hour | Oils Mixed with CNSL 1 | SEM 2 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|
MUFA | PUFA | |||||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | Oil 3 | Time 4 | Oil × Time 5 | |||
Respiratory rate | ||||||||||
0 | 52.0 Aa | 44.5 Aa | 58.2 Aa | 55.2 Aa | 58.7 Aa | 7.36 | 0.5363 | 0.0099 | 0.5043 | |
3 | 76.0 Ab | 63.7 Ab | 60.2 Aa | 59.0 Aa | 71.5 Ab | |||||
Rectal temperature | ||||||||||
0 | 38.8 Aa | 38.6 Aa | 38.7 Aa | 38.9 Aa | 39.0 Aa | 0.17 | 0.0737 | 0.0748 | 0.6004 | |
3 | 39.1 Aa | 39.0 Aa | 38.6 Aa | 39.2 Aa | 39.1 Aa | |||||
Left flank surface temperature | ||||||||||
0 | 38.5 Aa | 38.4 Aa | 38.3 Aa | 38.4 Aa | 37.6 Aa | 0.25 | 0.1665 | <0.0001 | 0.4974 | |
3 | 40.0 Ab | 39.8 Ab | 39.9 Ab | 39.5 Ab | 39.7 Ab | |||||
Right flank surface temperature | ||||||||||
0 | 38.2 Aa | 38.4 Aa | 38.3 Aa | 38.2 Aa | 37.6 Aa | 0.25 | 0.2114 | <0.0001 | 0.2839 | |
3 | 39.9 Ab | 39.8 Ab | 39.8 Ab | 39.2 Ab | 39.7 Ab |
Serum Metabolites | Oils Mixed with CNSL 1 | SEM 2 | p-Value 3 | ||||
---|---|---|---|---|---|---|---|
MUFA | PUFA | ||||||
Canola | Cottonseed | Sunflower | Corn | Soybean | |||
Albumin (g/dL) | 2.59 | 2.59 | 2.61 | 2.68 | 2.62 | 0.07 | 0.892 |
Total proteins (g/dL) | 5.64 | 5.42 | 5.38 | 5.63 | 5.52 | 0.14 | 0.621 |
Urea (mg/dL) | 25.7 | 24.8 | 20.4 | 24.3 | 24.8 | 1.59 | 0.169 |
Creatinine (mg/dL) | 0.83 a | 0.80 ab | 0.70 b | 0.87 a | 0.78 ab | 0.03 | 0.007 |
Cholesterol (mg/dL) | 53.5 a | 46.5 ab | 43.5 b | 49.1 ab | 45.9 ab | 2.35 | 0.050 |
Triglycerides (mg/dL) | 13.5 | 11.7 | 13.1 | 14.2 | 14.5 | 1.03 | 0.345 |
AST 4 (mg/dL) | 91.4 | 97.6 | 87.7 | 95.5 | 86.5 | 6.51 | 0.704 |
GGT 5(mg/dL) | 34.3 | 33.6 | 38.2 | 39.1 | 34.1 | 1.92 | 0.155 |
Calcium (mg/dL) | 8.43 b | 8.84 ab | 11.1 a | 11.1 a | 8.53 b | 0.59 | 0.001 |
Phosphorus (mg/dL) | 8.56 | 9.15 | 9.01 | 8.84 | 9.17 | 0.47 | 0.891 |
Magnesium (mmol/L) | 1.86 | 1.71 | 2.08 | 1.59 | 1.57 | 0.31 | 0.761 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, É.L.G.; Pereira Filho, J.M.; Lucena, K.H.d.O.S.d.; Barreto, Y.C.S.; Oliveira, R.L.; Sousa, B.B.d.; Vaz, A.F.d.M.; de Oliveira, J.P.F.; Fonseca, M.A.; Bezerra, L.R. Changes in the Fatty Acid Composition of Vegetable Oils Affect the Feeding Behavior, Feed Preference, and Thermoregulatory Responses of Sheep. Ruminants 2024, 4, 433-447. https://doi.org/10.3390/ruminants4030031
Andrade ÉLG, Pereira Filho JM, Lucena KHdOSd, Barreto YCS, Oliveira RL, Sousa BBd, Vaz AFdM, de Oliveira JPF, Fonseca MA, Bezerra LR. Changes in the Fatty Acid Composition of Vegetable Oils Affect the Feeding Behavior, Feed Preference, and Thermoregulatory Responses of Sheep. Ruminants. 2024; 4(3):433-447. https://doi.org/10.3390/ruminants4030031
Chicago/Turabian StyleAndrade, Évyla Layssa G., José M. Pereira Filho, Kevily Henrique de O. S. de Lucena, Yuri C. S. Barreto, Ronaldo L. Oliveira, Bonifácio B. de Sousa, Antônio Fernando de M. Vaz, Juliana Paula F. de Oliveira, Mozart A. Fonseca, and Leilson R. Bezerra. 2024. "Changes in the Fatty Acid Composition of Vegetable Oils Affect the Feeding Behavior, Feed Preference, and Thermoregulatory Responses of Sheep" Ruminants 4, no. 3: 433-447. https://doi.org/10.3390/ruminants4030031
APA StyleAndrade, É. L. G., Pereira Filho, J. M., Lucena, K. H. d. O. S. d., Barreto, Y. C. S., Oliveira, R. L., Sousa, B. B. d., Vaz, A. F. d. M., de Oliveira, J. P. F., Fonseca, M. A., & Bezerra, L. R. (2024). Changes in the Fatty Acid Composition of Vegetable Oils Affect the Feeding Behavior, Feed Preference, and Thermoregulatory Responses of Sheep. Ruminants, 4(3), 433-447. https://doi.org/10.3390/ruminants4030031