# Fundamentals of Diatomic Molecular Spectroscopy

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Angular Momentum Commutators

#### 3.1.1. Invariance for Unitary Transformations

#### 3.1.2. Invariance for Time Reversal or Reversal of Motion

#### 3.2. Diatomic Wave Function

#### 3.3. Selected Diatomic Spectra

## 4. Discussion and Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

AM | Angular Momentum |

BESP | Boltzmann Equilibrium Spectrum Program |

CM | Classical Mechanics |

NMT | Nelder–Mead Temperature |

PGOPHER | Program for simulating rotational, vibrational, and electronic spectra, or |

“Program Gopher” | |

QM | Quantum Mechanics |

QMT | Quantum Mechanics Theory |

RAM | Reversed Angular Momentum |

WWE | Wigner–Witmer Eigenfunction |

## References

- Klein, O. Zur Frage der Quantelung des asymmetrischen Kreisels. Z. Phys.
**1929**, 58, 730–734. [Google Scholar] [CrossRef] - Van Vleck, J.H. The Coupling of Angular Momentum Vectors in Molecules. Rev. Mod. Phys.
**1951**, 23, 213–227. [Google Scholar] [CrossRef] - Nöther, E. Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Göttingen
**1918**, 918, 235–257, Invariant variation problems. Transp. Theory Statist. Phys.**1971**, 1, 183–207. [Google Scholar] - Condon, E.U.; Shortley, G. The Theory of Atomic Spectra; Cambridge University Press: Cambridge, UK, 1953. [Google Scholar]
- Parigger, C.G.; Hornkohl, J.O. Quantum Mechanics of the Diatomic Molecule with Applications; IOP Publishing: Bristol, UK, 2020. [Google Scholar]
- Parigger, C.G.; Hornkohl, J.O. Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators. Int. Rev. At. Mol. Phys.
**2010**, 1, 25–43. [Google Scholar] - Dirac, P.A.M. The Elimination of Nodes in Quantum Mechanics. Proc. Roy. Soc. Lond. A
**1926**, 111, 281–305. [Google Scholar] - Heisenberg, W.; Born, M.; Jordan, P. Zur Quantenmechanik II. Z. Phys.
**1926**, 35, 557–615. [Google Scholar] - Popper, K. The Logic and Evolution of Scientific Theory. In All Life is Problem Solving; Routledge: London, UK, 1999; Chapter 1; pp. 3–22. [Google Scholar]
- Brown, J.; Carrington, A. Rotational Spectroscopy of Diatomic Molecules; Cambridge University Press: Cambridge, UK, 2003. [Google Scholar]
- Lefebvre-Brion, H.; Field, R.W. The Spectra and Dynamics of Diatomic Molecules; Elsevier: Amsterdam, NL, USA, 2004. [Google Scholar]
- Bunker, P.R.; Jensen, P. Fundamentals of Molecular Spectroscopy; IOP Publishing: Bristol, UK, 2005. [Google Scholar]
- Gottfried, K. Quantum Mechanics; Addison-Wesley: Reading, UK, 1989. [Google Scholar]
- Baym, G. Lectures on Quantum Mechanics; Benjamin/Cummings: Reading, UK, 1969. [Google Scholar]
- Shore, B.W.; Menzel, D.H. Principles of Atomic Spectra; Addison-Wesley: Reading, UK, 1968. [Google Scholar]
- Judd, B.R. Angular Momentum Theory for Diatomic Molecules; Academic Press: New York, NY, USA, 1975. [Google Scholar]
- Mizushima, M. The Theory of Rotating Diatomic Molecules; John Wiley & Sons: New York, NY, USA, 1975. [Google Scholar]
- Kovacs, I. Rotational Structure in the Spectra of Diatomic Molecules; Elsevier: New York, NY, USA, 1969. [Google Scholar]
- Hougen, J.T. The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules; NBS Monograph 115; U.S. Government Printing Office: Washington, DC, USA, 1970.
- Kroto, H.W. Molecular Rotation Spectra; Dover: New York, NY, USA, 1992. [Google Scholar]
- Carrington, A.; Levy, D.H.; Miller, T.A. Electron Resonance of Gaseous Diatomic Molecules. Adv. Chem. Phys.
**1970**, 18, 149–248. [Google Scholar] - Freed, K.F. Theory of the Hyperfine Structure of Molecules: Application to
^{3}Π States of Diatomic Molecules Intermediate between Hund’s Cases (a) and (b). J. Chem. Phys.**1966**, 45, 4214–4241. [Google Scholar] [CrossRef] - Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Application, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, Volume 2: Angular Momentum, Spin, and Approximation Methds, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2019. [Google Scholar]
- Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists, A Comprehensive Guide, 7th ed.; Academic Press: New York, NY, USA, 2012. [Google Scholar]
- Western, C.M. PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat. Transf.
**2017**, 186, 221–242. [Google Scholar] [CrossRef] [Green Version] - Kunze, H.-J. Introduction to Plasma Spectroscopy; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Demtröder, W. Laser Spectroscopy 1: Basic Principles, 5th ed.; Springer: Heidelberg, Germany, 2014. [Google Scholar]
- Demtröder, W. Laser Spectroscopy 2: Experimental Techniques, 5th ed.; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 1, Atoms and Spectroscopy; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 2, Molecules and Photons—Spectroscopy and Collisions; Springer: Heidelberg, Germany, 2015. [Google Scholar]
- Cremers, D.E.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: New York, NY, USA, 2006. [Google Scholar]
- Miziolek, A.W.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: New York, NY, USA, 2020. [Google Scholar]
- Tennyson, J.; Lodi, L.; McKemmish, L.K.; Yurchenko, S.N. The ab initio calculation of spectra of open shell diatomic molecules. arXiv
**2016**, arXiv:1605.02301v1. [Google Scholar] - Davydov, A.S. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Wigner, E.; Witmer, E.E. Über die Struktur der zweiatomigen Molekelspectren nach der Quantenmechanik. Z. Physik
**1928**, 51, 859–886. [Google Scholar] [CrossRef] - Hettema, H. (Ed.) On the Structure of the Spectra of Two-Atomic Molecules According to Quantum Mechanics. In Quantum Chemistry: Classic Scientific Papers; World Scientific: Singapore, 2000; pp. 287–311. [Google Scholar]
- Bransden, B.H.; Joachain, C.J. Physics of Atoms and Molecules, 2nd ed.; Prentice Hall: Essex, UK, 2003. [Google Scholar]
- Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diatomic molecular spectra for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta Part B At. Spectrosc.
**2015**, 107, 132–138. [Google Scholar] [CrossRef] - Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spectroscopy of Hydroxyl with Applications. Molecules
**2020**, 25, 988. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Parigger, C.G.; Surmick, D.M.; Helstern, C.M.; Gautam, G.; Bol’shakov, A.A.; Russo, R.E. Molecular laser-induced breakdown spectroscopy. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; Chapter 7; pp. 167–209. [Google Scholar]
- Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spatiotemporal Cyanide Spectroscopy and Applications. Molecules
**2020**, 25, 615. [Google Scholar] [CrossRef] [PubMed] [Green Version]

**Figure 1.**Computed spectrum of the ${A}^{2}\Sigma \to {X}^{2}\mathsf{\Pi}$ uv band of OH, T = 4 k K, (top) spectral resolutions of $\Delta \lambda =0.32$ nm ($\Delta \tilde{\nu}=$ 32 cm${}^{-1}$) and (bottom) idealized resolution for the stick spectrum $\Delta \lambda =0.002$ nm ($\Delta \tilde{\nu}=$ 0.2 cm${}^{-1}$) of the $\Delta \nu =0$ sequence (adapted from [6]).

**Figure 2.**C${}_{2}$ Swan ${d}^{3}{\mathsf{\Pi}}_{g}\to {a}^{3}{\mathsf{\Pi}}_{u}$ band $\Delta \nu =-1$ sequence, T = 8 kK, $\Delta \lambda =0.13$ nm ($\Delta \tilde{\nu}=$ 6 cm${}^{-1}$) (adapted from [6]).

**Figure 3.**C${}_{2}$ Swan ${d}^{3}{\mathsf{\Pi}}_{g}\to {a}^{3}{\mathsf{\Pi}}_{u}$ band $\Delta \nu =+1$ sequence, T = 8 kK, $\Delta \lambda =0.18$ nm ($\Delta \tilde{\nu}=$ 6 cm${}^{-1}$) (adapted from [6]).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Parigger, C.G.
Fundamentals of Diatomic Molecular Spectroscopy. *Foundations* **2021**, *1*, 208-216.
https://doi.org/10.3390/foundations1020016

**AMA Style**

Parigger CG.
Fundamentals of Diatomic Molecular Spectroscopy. *Foundations*. 2021; 1(2):208-216.
https://doi.org/10.3390/foundations1020016

**Chicago/Turabian Style**

Parigger, Christian G.
2021. "Fundamentals of Diatomic Molecular Spectroscopy" *Foundations* 1, no. 2: 208-216.
https://doi.org/10.3390/foundations1020016