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Abstract: The interpretation of optical spectra requires thorough comprehension of quantum me-
chanics, especially understanding the concept of angular momentum operators. Suppose now that a
transformation from laboratory-fixed to molecule-attached coordinates, by invoking the correspon-
dence principle, induces reversed angular momentum operator identities. However, the foundations
of quantum mechanics and the mathematical implementation of specific symmetries assert that
reversal of motion or time reversal includes complex conjugation as part of anti-unitary operation.
Quantum theory contraindicates sign changes of the fundamental angular momentum algebra. Re-
versed angular momentum sign changes are of a heuristic nature and are actually not needed in
analysis of diatomic spectra. This review addresses sustenance of usual angular momentum theory,
including presentation of straightforward proofs leading to falsification of the occurrence of reversed
angular momentum identities. This review also summarizes aspects of a consistent implementation
of quantum mechanics for spectroscopy with selected diatomic molecules of interest in astrophysics
and in engineering applications.

Keywords: foundations of quantum mechanics; molecular spectroscopy; diatomic molecules; symmetry
transformations; optical emission spectroscopy; astrophysics

1. Introduction

Identification of diatomic molecular spectra necessitates a clear description of an-
gular momentum (AM) in order to demarcate the various features that comprise optical
fingerprints. Quantum mechanics theory (QMT) asserts that not all three components of
AM can be measured simultaneously, usually the total AM and one projection of the total
AM describe upper and lower states of molecular transitions. The components of AM are
formally described by a set of operator equations.

Classical mechanics (CM) description and associated quantization of the asymmetric
top [1] suggests occurrence of commutator relations with different signs when computing
momenta with respect to the principal axes of inertia. In other words, a laboratory-fixed
system shows standard AM commutators, but with respect to the molecule-attached
coordinate system, there is a sign change that carries the name “reversed” internal AM [2].
The derivation by Klein in 1929 [1] is based on the correspondence principle that in essence
emphasizes that QMT reproduces classical physics in the limit of large quantum numbers.
From a CM point of view, reversal of motion occurs when transforming from a lab-fixed
to a molecule-attached coordinate system, akin to experience of motion reversal when
jumping onto a moving merry-go-around. However, reversal of motion in quantum
mechanics (QM) is described by an anti-unitary transformation, requiring sign change
and complex conjugation. The reversed internal AM concept [2] and applications actually
are communicated and applied in analysis of molecular spectra by Van Vleck in 1951 in
his review article on coupling angular momenta, i.e., AM, referring to axes mounted on
the molecule, adheres to opposite-sign commutator algebra. This evolved into so-called
reversed angular momentum (RAM) concepts for prediction of molecular spectra.
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However, orthodox or classic QM abides by strict mathematical rules associated
with the theory. Use of RAM techniques is contraindicated, especially since Nöther-type
symmetry transformation [3] sustains the standard commutator relations, viz., reversal of
motion is an anti-unitary transformation, just like in the Schrödinger wave equation that is
invariant with respect to motion-reversal or time-reversal due to anti-unitary operation,
as expected. It is important to recognize that a transformation from laboratory-fixed to
molecular-attached coordinates within standard QM does not condone anomalous AM
operator identities.

This review communicates proofs that the quantum-mechanic AM equations remain
the same in a transition from laboratory-fixed to molecular-attached coordinates. Methods
that invoke RAM for the prediction of molecular spectra are misleading. Application of
standard QM establishes within the concept of line strengths [4] consistent computation of
diatomic spectra [5]; examples include hydroxyl, cyanide, and diatomic carbon spectra [6].
First, Oscar Klein’s paper [1] is discussed showing his original argumentation. This is
followed by presenting proofs consistent with QMT opposing RAM concepts and occur-
rence of a minus sign in unitary and anti-unitary transformations. The “new” aspect of
this review is the emphasis of invoking mathematics consistent with QMT. Subsequently,
this review summarizes the approach for prediction of selected diatomic spectra including
presentation of computed diatomic spectra of OH and C2 molecules.

2. Materials and Methods

The premise of this article is Oscar Klein’s work [1] “Zur Frage der Quantelung des
asymmetrischen Kreisels” or “On the question of the quantization of the asymmetric top.”
This particular work is in German without an available translation; the essential contents
are in the Einleitung, viz., the introduction, and on the page following the introduction.
Klein’s paper reflects the initial argumentation of the RAM method, and essential aspects
of this paper are discussed below, up to Equation (6).

The purpose of the 1929 work is, as O. Klein writes, to reduce quantization of the
asymmetric top to simple algebra for the components of the angular momentum “... that
were developed by Dirac [7] and as well by Born, Heisenberg and Jordan [8].” For a solid
body, the main moments of inertia are labeled as A, B, and C, the angular momenta are
labeled P, Q, R, and one finds the CM energy of rotation, E,

E =
1
2

(
P2

A
+

Q2

B
+

R2

C

)
, (1)

or perhaps with convenient notation, using for operators J̃1 = P, J̃2 = Q, J̃3 = R, where
the tilde-symbol indicates that angular momenta (that would be AM operators in QM) are
referred to the main axis of the ellipse of inertia (or in molecules, referred to molecular-fixed
coordinates), and for moments of inertia I1 = A, I2 = B, I3 = C,

E =
1
2

k=3

∑
k=1

1
Ik

J̃k. (2)

Subsequently, O. Klein writes that P, Q, R can be understood to describe matrices
satisfying QM equations of motion, with i =

√
−1 and using the standard h̄ for Planck’s

constant divided by 2π,

dP
dt

=
i
h̄
(EP− PE),

dQ
dt

=
i
h̄
(EQ−QE),

dR
dt

=
i
h̄
(ER− RE). (3)

In terms of operators, using the Hamilton operator H instead of E and writing the
equation in the Heisenberg-picture for an abstract observable (operator), O, without

explicit time-dependence of the observable, i.e.,
∂O
∂t

= 0, and using the commutator

[H,O] = HO−OH, gives
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dO
dt

=
i
h̄
[H,O] + ∂O

∂t
. (4)

The hypothesis of O. Klein comprises the requirement of utilizing Equation (3) in
Equation (1). Consequently, O. Klein assumes commutator relations for P, Q, R,

ih̄P = RQ−QR, ih̄Q = PR− RP, ih̄R = QP− PQ, (5)

or using abbreviated nomenclature and the Levi-Civita symbol, with εklm = 1 for even
permutations, and εklm = −1 for odd ones, otherwise εklm = 0 for identical indices,
k, l, m = 1, 2, 3, [

J̃k, J̃l
]
= −ih̄εklm J̃m. (6)

With the commutator relations in Equation (5), the correspondence principle leads
to the equations of motion, and as O. Klein writes, “... as we overlook occurrence of the
action-quant ...,” viz. overlook h̄. Further, O. Klein remarks that Equation (5) differs only by
the sign of i from the well-known quantum-mechanical commutators for a laboratory-fixed
system. In summary, O. Klein’s work concludes that a minus sign is required for consistency
with classical mechanics and a result of the application of the correspondence principle.

Clearly, writing Equation (5) in the compact form of Equation (6) highlights the minus
sign that differs from the standard equations of AM operators Jk, k = 1, 2, 3,

[Jk, Jl ] = ih̄εklm Jm. (7)

The minus sign in Equation (6) is labeled “anomalous” by some authors, e.g., J. Van
Vleck [2], but there is no justification for the anomalous minus sign to occur within QMT.
Usually, one considers right-hand systems, so Equation (7) is termed as the standard
quantum-mechanic AM operator identity. Sustenance of RAM concepts may appear conve-
nient, even calling the negative sign an “anomaly” but without QMT support. In scientific
approach and in spite of the initial success in explaining spectra within various approxima-
tions, one usually avoids starting with an “anomaly” and/or inaccurate presuppositions
that are readily falsified [9]. However, several textbooks and works continue support of
RAM in the theory of molecular spectra [10–22], in spite of obvious falsification by QMT.
This work emphasizes that there is no need to resort to RAM “cook book” [22] methods.

The methods in this work utilize standard QMT [23,24] and standard mathematical
methods [25], showing that there is no sign change of the standard commutator relations
when transforming from a laboratory-fixed to a molecule-attached coordinate system.
Consistent application of standard AM algebra in the establishment of computed spectra
yield nice agreement with laboratory experimental results [5] and agreement in analysis
of astrophysical C2 Swan data from the white dwarf Procyon B [5], including agreement
in comparisons with computed spectra that are obtained with other molecular fitting
programs such as PGOPHER [26].

Methods for measurement of optical emission signals from diatomic molecules are
comprised of standard molecular spectroscopy experimental arrangements such as in laser-
induced plasma or breakdown spectroscopy [27–34], encountered as well in stellar plasma
physics or astrophysics to name other areas of interest. Particular interests in astrophysics
include “cool” stars, brown dwarfs, and extra-solar planets, and the associated need for
accurate theoretical models for ab initio calculations of diatomic molecular spectra, nicely
reviewed recently [35].

3. Results
3.1. Angular Momentum Commutators

The invariance of standard QMT commutator relations (see Equation (7)) is communi-
cated in this section.
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3.1.1. Invariance for Unitary Transformations

Application of unitary transformation, viz., transforming from one coordinate system
to another, leaves the AM commutator relations invariant [36]. A unitary transformation
operator, U, acting on an operator O −→ O′, with U† = U−1, is defined by

O′ = UOU† or O = U†O′U. (8)

The invariance of the AM commutators with respect to a unitary transformation,
Equation (8),

[Jk, Jl ] = iεklm Jm −→ [J′k, J′l ] = iεklm J′m, (9)

can be derived by inserting Jk = U† J′kU and Jl = U† J′l U in Equation (9) to obtain the
intermediate step,

U† J′kUU† J′l U −U† J′l UU† J′kU = U† J′k J′l U −U† J′l J′kU = iεklmU† J′mU. (10)

Multiplying from left with U and from right with U−1 yields the transformed identity
in Equation (9). In other words, a unitary transformation preserves the quantum-mechanic
AM commutators. For example, the Euler rotation matrix is easily demonstrated to be
unitary [6]. In other words, there is no anomaly when going from a laboratory-fixed to a
molecule-attached coordinate system.

3.1.2. Invariance for Time Reversal or Reversal of Motion

Time reversal or reversal of motion in QMT requires sign changes of the operators
and complex conjugation, leaving the QMT commutators invariant,

[Jk, Jl ] = iεklm Jm ←→ [(−Jk), (−Jl)] = (−i)εklm(−Jm). (11)

CM would indicate a reversal of motion when going from a laboratory-fixed to a
molecular-fixed coordinate system; however, reversal of motion requires complex conju-
gation due to the anti-unitary requirement. In other words, the sign is preserved. QMT
so-to-speak opposes the hypothesis by O. Klein.

The invariance regarding time reversal or reversal of motion of course also would
apply to the abstract form of the time-dependent Schrödinger equation,

ih̄
∂

∂t
ψ = Hψ ←→ (−i)h̄

∂

∂(−t)
ψ = Hψ, (12)

where ψ describes an abstract vector in Hilbert space, andH is a Hamiltonian. Changing
time t −→ −t and applying conjugate complex of i preserves the left-hand side of the
equation. For example, for a free particle of mass m and momentum P , the Hamiltonian is
H = P2/2m, and the form of Schrödinger’s equation is preserved.

Equally, the operator equation in the Heisenberg picture, see Equation (4), preserves
form under time reversal or reversal of motion,

dO
dt

=
i
h̄
[H,O] + ∂O

∂t
←→ d(−O)

d(−t)
=

(−i)
h̄

[H, (−O)] + ∂(−O)
∂(−t)

. (13)

A change of sign for the operators and complex conjugation leaves the equation invari-
ant. The mentioned symmetry can also be associated with usual Nöther symmetries [3].

3.2. Diatomic Wave Function

For diatomic molecules, symmetry properties allow one to invoke simplifications
when evaluating the laboratory wave-function in terms of rotated coordinates [5]. For
internuclear geometry, the spherical polar coordinates are r, φ, and θ, and one (arbitrary)
electron is described by cylindrical coordinates ρ, χ, ζ. For coordinate rotation, one uses
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Euler angles α, β, γ, and without loss of generality, one can choose α = φ, β = θ, χ = γ [5].
The result is the Wigner–Witmer eigenfunction (WWE) for diatomic molecules [37,38],

〈ρ, ζ, χ, r2, . . . , rN , r, θ, φ |nvJM〉 =
J

∑
Ω=−J

〈ρ, ζ, r′2, . . . , r′N , r |nv〉D J∗
MΩ(φ, θ, χ). (14)

The usual total AM quantum numbers are J and M, and the electronic–vibrational
eigenfunction is explicitly written by extracting v from the collection of quantum numbers,
n. The WWE exactly separates φ, θ, χ. The quantum numbers J, M, Ω refer to the total AM.
The sum over Ω in Equation (14) originates from the usual abstract transformation,

|JM〉 =
J

∑
Ω=−J

|JΩ〉 〈JΩ |JM〉, (15)

where Ω is the magnetic quantum number along the rotated, or new, z′-axis. The sum in
Equation (15) ensures that the quantum numbers for total AM are J and M. In Hund’s
case a [39], Ω describes the projection of the total AM, within L-S coupling. Hund’s
case a eigenfunctions form a basis; therefore, from a computational point of view, these
eigenfunctions form a complete (sufficient) set. In various approximate descriptions and
for specific diatomic molecules, it may be desirable to use other Hund cases.

From the rotation operator R(α, β, γ), with the Euler angles α, β, γ, one finds for
D-matrix elements,

D J∗
MΩ(α, β, γ) = 〈JM| R(α, β, γ) |JΩ〉∗. (16)

D-matrices are the usual mathematical tool for transformation from one basis to an-
other, but the D-matrix cannot represent an eigenfunction due to presence of two magnetic
quantum numbers M and Ω, so the sum over Ω is needed in the transformed coordinates.

Diatomic spectra composed of line positions and line strengths are based on WWE [5]
instead of eigenfunctions used for the Born-Oppenheimer approximation. Extensive
experimental studies confirm agreement of computed spectra with measured emission
spectra from laser-induced optical plasma [5].

3.3. Selected Diatomic Spectra

Typical spectra of some diatomic molecules of general interest are presented. Figure 1
illustrates OH molecular spectra for different spectral resolutions. Figures 2 and 3 show
computed C2 Swan spectra for the vibrational sequences ∆ν = −1,+1. The OH spectra,
Figure 1, are a superposition of 0-0 (band head near 306 nm), 1-1 (band head near 312 nm),
and 2-2 (band head near 318 nm) vibrational transition along with rotational contributions.
Four C2 vibrational peaks, Figures 2 and 3, are clearly discernible. Rotational contributions
for the selected spectral resolution, ∆λ, appear to have beats (especially Figure 2) that,
however, are purely coincidental.

The details for the computation, line strength data for C2 Swan bands, and programs
are published [40]. Computation of diatomic spectra utilizes high-resolution data for
determination of molecular constants of selected molecular transitions from an upper
to a lower energy level. Numerical solution of the Schrödinger equation for potentials
yield r-centroids and transition-factors associated with vibrational transitions, viz. Franck–
Condon factors. Calculated rotational factors are interpreted as selection rules because
these factors are zero for forbidden transitions, viz. Hönl–London factors. Hönl–London
factors in traditional molecular spectroscopy involve selection rules that may require use
of anomalous commutators and use of two magnetic quantum numbers M and Ω for a
given total angular momentum J. Anomalous selection rules and two quantum numbers
for angular momentum J appear to be associated with approximations. The published
line strength data [40,41] are derived consistent with standard quantum mechanics, in
other words, without anomalous commutators and without states that have two magnetic
quantum numbers associated with angular momentum.
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Figure 1. Computed spectrum of the A2Σ → X2Π uv band of OH, T = 4 k K, (top) spectral reso-
lutions of ∆λ = 0.32 nm (∆ν̃ = 32 cm−1) and (bottom) idealized resolution for the stick spectrum
∆λ = 0.002 nm (∆ν̃ = 0.2 cm−1) of the ∆ν = 0 sequence (adapted from [6]).

Figure 2. C2 Swan d3Πg → a3Πu band ∆ν = −1 sequence, T = 8 kK, ∆λ = 0.13 nm
(∆ν̃ = 6 cm−1) (adapted from [6]).

Figure 3. C2 Swan d3Πg → a3Πu band ∆ν = +1 sequence, T = 8 kK, ∆λ = 0.18 nm (∆ν̃ = 6 cm−1)
(adapted from [6]).
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The published program package [40] also includes a worked high-temperature cyanide
example, the Boltzmann equilibrium spectrum program (BESP) for computation of equilib-
rium spectra, and the Nelder–Mead temperature (NMT) routine that utilizes a non-linear
fitting algorithm. The OH line strength data have been made available recently [41].

Various reported studies of plasma spectra, including astrophysics plasma, and of
molecular laser-induced breakdown spectroscopy (LIBS) [40–43] illustrate nice comparisons
of recorded and of computed diatomic spectra. In LIBS, plasma generated by focusing
coherent radiation is analyzed primarily in visible/optical or in near-uv to near-ir regions.
After initiation of optical breakdown with typically 10 nanoseconds, 100 mJ laser pulses
focused in standard ambient temperature and pressure (SATP) air or in gas mixtures [42],
molecule formation including, for example, OH in air, C2 in carbon monoxide, and CN
in 1:1 molar N2:CO2 mixture, leads to recombination radiation that is typically measured
using time-resolved optical emission laser spectroscopy. When using a metallic target,
other diatomic molecules can be investigated, e.g., TiO or AlO, and molecular spectra can
be computed from line strength data [40].

4. Discussion and Conclusions

Angular momentum operators are well defined in quantum mechanics theory, includ-
ing the fact that there is an inherent limit in measurement of its components. Another way
of formulating this could be: There are only two quantum numbers needed for description
of angular momentum, usually the total angular momentum and its projection onto a quan-
tization axis. The use of the correspondence principle to ensure compatibility with classical
mechanics equations of motion brings about an ad hoc hypothesis of a negative sign for the
commutators, as originally communicated by Oscar Klein in 1929. Subsequent application
of reversed angular momentum coupling continues to find support in analytic description
of molecules that also includes modeling of quantum mechanic vector-operators as vectors.

However, quantum mechanics theory already ensures how to mathematically describe
angular momentum, not supporting heuristic conclusions involving reversed angular mo-
mentum concepts, nor occurrence of more than two quantum numbers for the total angular
momentum of diatomic molecules. This review emphasizes that there is no mathematical
justification of reversed angular momentum algebra, and it also discusses applications in
diatomic molecular spectroscopy. Consistent application of standard quantum mechanics
theory is preferred, including avoidance of a priori use of separating electronic, vibrational,
rotational wave functions. Subsequent to implementation of diatomic molecular symme-
tries, line strengths for selected diatomic molecules that contain effects of spin splitting
and lambda-doubling as function of wavelength are in agreement with results from optical
emission spectroscopy. The computed and fitted diatomic spectra nicely match within
reasonable error bars, but without invoking heuristic selection rules that may be affected
by initial approximations or by spurious use of reversal of angular momentum.
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Abbreviations
The following abbreviations are used in this manuscript:

AM Angular Momentum
BESP Boltzmann Equilibrium Spectrum Program
CM Classical Mechanics
NMT Nelder–Mead Temperature
PGOPHER Program for simulating rotational, vibrational, and electronic spectra, or

“Program Gopher”
QM Quantum Mechanics
QMT Quantum Mechanics Theory
RAM Reversed Angular Momentum
WWE Wigner–Witmer Eigenfunction

References
1. Klein, O. Zur Frage der Quantelung des asymmetrischen Kreisels. Z. Phys. 1929, 58, 730–734. [CrossRef]
2. Van Vleck, J.H. The Coupling of Angular Momentum Vectors in Molecules. Rev. Mod. Phys. 1951, 23, 213–227. [CrossRef]
3. Nöther, E. Invariante Variationsprobleme. Nachr. D. König. Gesellsch. D. Wiss. Göttingen 1918, 918, 235–257; Invariant variation

problems. Transp. Theory Statist. Phys. 1971, 1, 183–207.
4. Condon, E.U.; Shortley, G. The Theory of Atomic Spectra; Cambridge University Press: Cambridge, UK, 1953.
5. Parigger, C.G.; Hornkohl, J.O. Quantum Mechanics of the Diatomic Molecule with Applications; IOP Publishing: Bristol, UK, 2020.
6. Parigger, C.G.; Hornkohl, J.O. Diatomic Molecular Spectroscopy with Standard and Anomalous Commutators. Int. Rev. At. Mol.

Phys. 2010, 1, 25–43.
7. Dirac, P.A.M. The Elimination of Nodes in Quantum Mechanics. Proc. Roy. Soc. Lond. A 1926, 111, 281–305.
8. Heisenberg, W.; Born, M.; Jordan, P. Zur Quantenmechanik II. Z. Phys. 1926, 35, 557–615.
9. Popper, K. The Logic and Evolution of Scientific Theory. In All Life is Problem Solving; Routledge: London, UK, 1999; Chapter 1,

pp. 3–22.
10. Brown, J.; Carrington, A. Rotational Spectroscopy of Diatomic Molecules; Cambridge University Press: Cambridge, UK, 2003.
11. Lefebvre-Brion, H.; Field, R.W. The Spectra and Dynamics of Diatomic Molecules; Elsevier: Amsterdam, NL, USA, 2004.
12. Bunker, P.R.; Jensen, P. Fundamentals of Molecular Spectroscopy; IOP Publishing: Bristol, UK, 2005.
13. Gottfried, K. Quantum Mechanics; Addison-Wesley: Reading, UK, 1989.
14. Baym, G. Lectures on Quantum Mechanics; Benjamin/Cummings: Reading, UK, 1969.
15. Shore, B.W.; Menzel, D.H. Principles of Atomic Spectra; Addison-Wesley: Reading, UK, 1968.
16. Judd, B.R. Angular Momentum Theory for Diatomic Molecules; Academic Press: New York, NY, USA, 1975.
17. Mizushima, M. The Theory of Rotating Diatomic Molecules; John Wiley & Sons: New York, NY, USA, 1975.
18. Kovacs, I. Rotational Structure in the Spectra of Diatomic Molecules; Elsevier: New York, NY, USA, 1969.
19. Hougen, J.T. The Calculation of Rotational Energy Levels and Rotational Line Intensities in Diatomic Molecules; NBS Monograph 115;

U.S. Government Printing Office: Washington, DC, USA, 1970.
20. Kroto, H.W. Molecular Rotation Spectra; Dover: New York, NY, USA, 1992.
21. Carrington, A.; Levy, D.H.; Miller, T.A. Electron Resonance of Gaseous Diatomic Molecules. Adv. Chem. Phys. 1970, 18, 149–248.
22. Freed, K.F. Theory of the Hyperfine Structure of Molecules: Application to 3Π States of Diatomic Molecules Intermediate between

Hund’s Cases (a) and (b). J. Chem. Phys. 1966, 45, 4214–4241. [CrossRef]
23. Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, Volume 1: Basic Concepts, Tools, and Application, 2nd ed.; Wiley-VCH:

Weinheim, Germany, 2019.
24. Cohen-Tannoudji, C.; Diu, B.; Laloe, F. Quantum Mechanics, Volume 2: Angular Momentum, Spin, and Approximation Methds, 2nd ed.;

Wiley-VCH: Weinheim, Germany, 2019.
25. Arfken, G.B.; Weber, H.J.; Harris, F.E. Mathematical Methods for Physicists, A Comprehensive Guide, 7th ed.; Academic Press: New

York, NY, USA, 2012.
26. Western, C.M. PGOPHER: A program for simulating rotational, vibrational and electronic spectra. J. Quant. Spectrosc. Radiat.

Transf. 2017, 186, 221–242. [CrossRef]
27. Kunze, H.-J. Introduction to Plasma Spectroscopy; Springer: Heidelberg, Germany, 2009.
28. Demtröder, W. Laser Spectroscopy 1: Basic Principles, 5th ed.; Springer: Heidelberg, Germany, 2014.
29. Demtröder, W. Laser Spectroscopy 2: Experimental Techniques, 5th ed.; Springer: Heidelberg, Germany, 2015.
30. Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 1, Atoms and Spectroscopy; Springer: Heidelberg, Germany, 2015.
31. Hertel, I.V.; Schulz, C.-P. Atoms, Molecules and Optical Physics 2, Molecules and Photons—Spectroscopy and Collisions; Springer:

Heidelberg, Germany, 2015.
32. Cremers, D.E.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; Wiley: New York, NY, USA, 2006.
33. Miziolek, A.W.; Palleschi, V.; Schechter, I. (Eds.) Laser Induced Breakdown Spectroscopy; Cambridge University Press: New York, NY,

USA, 2006.

http://doi.org/10.1007/BF01339735
http://dx.doi.org/10.1103/RevModPhys.23.213
http://dx.doi.org/10.1063/1.1727481
http://dx.doi.org/10.1016/j.jqsrt.2016.04.010


Foundations 2021, 1 216

34. Singh, J.P.; Thakur, S.N. (Eds.) Laser-Induced Breakdown Spectroscopy, 2nd ed.; Elsevier: New York, NY, USA, 2020.
35. Tennyson, J.; Lodi, L.; McKemmish, L.K.; Yurchenko, S.N. The ab initio calculation of spectra of open shell diatomic molecules.

arXiv 2016, arXiv:1605.02301v1.
36. Davydov, A.S. Quantum Mechanics; Pergamon Press: Oxford, UK, 1965.
37. Wigner, E.; Witmer, E.E. Über die Struktur der zweiatomigen Molekelspectren nach der Quantenmechanik. Z. Physik 1928, 51,

859–886 [CrossRef]
38. Hettema, H., Ed. On the Structure of the Spectra of Two-Atomic Molecules According to Quantum Mechanics. In Quantum

Chemistry: Classic Scientific Papers; World Scientific: Singapore, 2000; pp. 287–311.
39. Bransden, B.H.; Joachain, C.J. Physics of Atoms and Molecules, 2nd ed.; Prentice Hall: Essex, UK, 2003.
40. Parigger, C.G.; Woods, A.C.; Surmick, D.M.; Gautam, G.; Witte, M.J.; Hornkohl, J.O. Computation of diatomic molecular spectra

for selected transitions of aluminum monoxide, cyanide, diatomic carbon, and titanium monoxide. Spectrochim. Acta Part B At.
Spectrosc. 2015, 107, 132–138. [CrossRef]

41. Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spectroscopy of Hydroxyl with Applications.
Molecules 2020, 25, 988. [CrossRef] [PubMed]

42. Parigger, C.G.; Surmick, D.M.; Helstern, C.M.; Gautam G.; Bol’shakov, A.A.; Russo, R.E. Molecular laser-induced breakdown
spectroscopy. In Laser-Induced Breakdown Spectroscopy, 2nd ed.; Singh, J.P., Thakur, S.N., Eds.; Elsevier: Amsterdam, The
Netherlands, 2020; Chapter 7, pp. 167–209.

43. Parigger, C.G.; Helstern, C.M.; Jordan, B.S.; Surmick, D.M.; Splinter, R. Laser-Plasma Spatiotemporal Cyanide Spectroscopy and
Applications. Molecules 2020, 25, 615. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/BF01400247
http://dx.doi.org/10.1016/j.sab.2015.02.018
http://dx.doi.org/10.3390/molecules25040988
http://www.ncbi.nlm.nih.gov/pubmed/32098440
http://dx.doi.org/10.3390/molecules25030615
http://www.ncbi.nlm.nih.gov/pubmed/32023810

	Introduction
	Materials and Methods
	Results
	Angular Momentum Commutators
	Invariance for Unitary Transformations
	Invariance for Time Reversal or Reversal of Motion

	Diatomic Wave Function
	Selected Diatomic Spectra

	Discussion and Conclusions
	References

