Next Issue
Volume 2, June
Previous Issue
Volume 1, December
 
 

Microplastics, Volume 2, Issue 1 (March 2023) – 12 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
10 pages, 2459 KiB  
Article
Promotion of DNA Adsorption onto Microplastics by Transition Metal Ions
by Lyuyuan Wu, Kshiti Patel, Mohamad Zandieh and Juewen Liu
Microplastics 2023, 2(1), 158-167; https://doi.org/10.3390/microplastics2010012 - 06 Mar 2023
Cited by 3 | Viewed by 2653
Abstract
Microplastics can adsorb and spread a variety of pollutants in the ecosystem posing a threat to human health. One of the common pollution sources of environmental waters is metal ions, which not only adsorb on microplastics but can also promote the adsorption of [...] Read more.
Microplastics can adsorb and spread a variety of pollutants in the ecosystem posing a threat to human health. One of the common pollution sources of environmental waters is metal ions, which not only adsorb on microplastics but can also promote the adsorption of other invasive species such as environmental DNA. Recently, we showed that environmentally abundant metal ions (Na+, Mg2+ and Ca2+) can promote the adsorption of single-stranded DNA (ssDNA) onto microplastics. Herein, we investigated the effect of transition metal ions including Zn2+ and Mn2+ and compared them with Mg2+ for promoting DNA adsorption. To better mimic environmental DNA, we also used a salmon sperm double-stranded DNA (dsDNA) (~2000 bp). For both ssDNA and dsDNA, the transition metals induced a higher adsorption capacity compared to Mg2+, and that correlated with the higher binding affinity of transition metals to DNA. Although metal-mediated interactions were vital for ssDNA adsorption, the dsDNA adsorbed on the microplastics even in the absence of metal ions, likely due to the abundance of binding sites of the 100-times longer dsDNA. Finally, desorption studies revealed that hydrophobic interactions were responsible for dsDNA adsorption in the absence of metal ions. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

11 pages, 1423 KiB  
Article
Characterization of Large Microplastic Debris in Beach Sediments in the Po Delta Area
by Luca Cozzarini, Joana Buoninsegni, Corinne Corbau and Vanni Lughi
Microplastics 2023, 2(1), 147-157; https://doi.org/10.3390/microplastics2010011 - 03 Mar 2023
Cited by 1 | Viewed by 1715
Abstract
The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about [...] Read more.
The use of single-use or disposable plastic objects has massively increased during the last few decades, and plastic has become the main type of litter found in marine environments. The Adriatic Sea is seriously prone to marine litter pollution, and it collects about one-third of all the freshwater flowing into the Mediterranean, mainly via the river Po. This study investigated the type and composition of large microplastic debris collected in different sites in the Po Delta area. Visual classification was performed by relevant criteria, while chemical composition was assessed by infrared spectroscopy. The main plastic fraction is composed of polyolefin (76%), followed by polystyrene (19%). This proportion roughly matches global plastic production, rescaled after excluding plastics with negative buoyancy: all the identified compounds have a specific gravity lower than that of the seawater. Fragments (irregularly shaped debris) represent the most abundant category fraction (85%), followed by pellets, which represent roughly 10% of the total. Overall, the results provided an insight into large microplastic pollution in beach sediments in the Po delta area. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

15 pages, 2259 KiB  
Article
A Public Database for Microplastics in the Environment
by Natalja Čerkasova, Kristina Enders, Robin Lenz, Sonja Oberbeckmann, Josef Brandt, Dieter Fischer, Franziska Fischer, Matthias Labrenz and Gerald Schernewski
Microplastics 2023, 2(1), 132-146; https://doi.org/10.3390/microplastics2010010 - 15 Feb 2023
Cited by 4 | Viewed by 3815
Abstract
During recent years plastics became one of the focuses of EU policy. A harmonisation and comparability of microplastics monitoring results across Europe is needed. The complexity of microplastic data makes it necessary to develop a specific, tailor-made database rather than adapting and modifying [...] Read more.
During recent years plastics became one of the focuses of EU policy. A harmonisation and comparability of microplastics monitoring results across Europe is needed. The complexity of microplastic data makes it necessary to develop a specific, tailor-made database rather than adapting and modifying one of the existing databases. To meet this demand, we present a publicly accessible, flexible, and extendable structured relational database for particle-based microplastic data. The developed relational database is adaptive and meets the specific demands of microplastics, e.g., a large variety of sampling, processing and analytical methods, many types of plastics, and a very wide size spectrum ranging from micrometres to millimetres. In this paper we discuss the development of the database, data entry specifics, sample analysis methods, microplastics data manipulation and quality assurance, and database integration and accessibility. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

10 pages, 1550 KiB  
Article
An In Vitro Assay to Quantify Effects of Micro- and Nano-Plastics on Human Gene Transcription
by Antonio Pellegrino, Denise Danne, Christoph Weigel and Harald Seitz
Microplastics 2023, 2(1), 122-131; https://doi.org/10.3390/microplastics2010009 - 15 Feb 2023
Cited by 4 | Viewed by 2482
Abstract
In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus [...] Read more.
In today’s age, plastic waste is a major problem for our environment. The decomposition of plastic waste causes widespread contamination in all types of ecosystems worldwide. Micro-plastics in the lower micrometer size range and especially nano-plastics can become internalized by cells and thus become a threat to human health. To investigate the effects of internalized micro- and nano-plastics on human gene transcription, we used an in vitro assay to quantify CREB (cAMP response element binding protein) mediated transcription. Here we show that CREB mediated gene expression was mainly but not exclusively induced by phosphorylation. In addition, the amount of CREB affected transcription was also studied. We were also able to show that the strong CREB mediated stimulation of transcription was diminished by micro- and nano-plastics in any chosen setting. This indicates a threat to human health via the deregulation of transcription induced by internalized micro- and nano-plastics. However, this established quantifiable in vitro transcription test system could help to screen for toxic substances and non-toxic alternatives. Full article
Show Figures

Graphical abstract

15 pages, 4907 KiB  
Article
Influx of Near-Infrared Technology in Microplastic Community: A Bibliometric Analysis
by Monika Rani, Serena Ducoli, Stefania Federici and Laura Eleonora Depero
Microplastics 2023, 2(1), 107-121; https://doi.org/10.3390/microplastics2010008 - 13 Feb 2023
Cited by 4 | Viewed by 1763
Abstract
The abundance of microplastics in the environment poses a constant threat to all parts of the ecosystem, and the scientific community is called upon to help solve the problem. Numerous studies have been published for microplastic analysis, especially in the last decade, with [...] Read more.
The abundance of microplastics in the environment poses a constant threat to all parts of the ecosystem, and the scientific community is called upon to help solve the problem. Numerous studies have been published for microplastic analysis, especially in the last decade, with vibrational spectroscopy being the preferred method. According to recent literature, portable spectrometers operating in the near-infrared (NIR) range are being used for the analysis of different types of polymers, and this technique has recently found its way into the analysis of microplastics as a good alternative to expensive and complicated benchtop instruments, such as Fourier-transform infrared (FTIR) spectrometers. The aim of this study is to investigate and evaluate research trends, leading publications, authors, countries, and limitations of the use of NIR spectroscopy in microplastics research, with a comparison to the established FTIR technique. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

14 pages, 3589 KiB  
Article
May a Former Municipal Landfill Contaminate Groundwater in Microplastics? First Investigations from the “Prairie de Mauves Site” (Nantes, France)
by Lauriane Ledieu, Ngoc-Nam Phuong, Bernard Flahaut, Pauline Radigois, Julya Papin, Cécile Le Guern, Batrice Béchet and Johnny Gasperi
Microplastics 2023, 2(1), 93-106; https://doi.org/10.3390/microplastics2010007 - 06 Feb 2023
Cited by 4 | Viewed by 2675
Abstract
Municipal landfills receive a high amount of plastic waste and due to the occurring physical and biochemical degradation processes, could be significant sources of microplastics (MP). Evaluating the threat to groundwater through the transfer of MP via landfill leachates require more research. The [...] Read more.
Municipal landfills receive a high amount of plastic waste and due to the occurring physical and biochemical degradation processes, could be significant sources of microplastics (MP). Evaluating the threat to groundwater through the transfer of MP via landfill leachates require more research. The former “Prairie de Mauves” landfill, operated from 1963 to 1987 by the municipality of Nantes (France), and located above the alluvial groundwater of the Loire River, represents a good candidate for such investigations. Leachates and groundwater were sampled along a transect line from upstream to downstream of the landfill, in March and June 2022. MP (>25 µm) were quantified and characterized using µFTIR imaging in transmission mode. MP were observed in every sample with concentrations ranging from 0.71 to 106.7 MP/L. Concentrations in the leachates and the alluvial groundwater illustrate a migration of MP. Twelve polymers were identified and polyethylene (PE) and polypropylene (PP) were predominant. After a conventional rainfall event (14.3 mm), higher concentrations, diversity, and size ranges of MP were observed. Water infiltration through the heterogeneous geological substratum therefore enhanced the migration of larger MP towards the alluvial groundwater of the Loire River. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

15 pages, 3884 KiB  
Review
Microplastics Scoping Review of Environmental and Human Exposure Data
by Gaston Casillas, Brian Charles Hubbard, Jana Telfer, Max Zarate-Bermudez, Custodio Muianga, Gregory M. Zarus, Yulia Carroll, April Ellis and Candis M. Hunter
Microplastics 2023, 2(1), 78-92; https://doi.org/10.3390/microplastics2010006 - 23 Jan 2023
Cited by 10 | Viewed by 4579
Abstract
Scientific studies of microplastics have expanded since 2015, propelling the topic to the forefront of scientific inquiry. Microplastics are ubiquitous in the environment and pose a potential risk to human health. The purpose of this review is to organize microplastics literature into areas [...] Read more.
Scientific studies of microplastics have expanded since 2015, propelling the topic to the forefront of scientific inquiry. Microplastics are ubiquitous in the environment and pose a potential risk to human health. The purpose of this review is to organize microplastics literature into areas of scientific research, summarize the state of the literature and identify the current data gaps in knowledge to promote a better understanding of human exposure to microplastics and their potential health effects. We searched for published literature from eight databases. Our search focused on three categories: (1) microplastics in the environment, (2) adsorption and absorption of chemicals to microplastics, and (3) human exposure to microplastics in the environment. We screened all abstracts to select articles that focused on microplastics. We then screened the remaining articles using criteria outlined in a questionnaire to identify and assign articles to the three scoping review categories. After screening abstracts, we selected 1186 articles (19%) to thoroughly assess their appropriateness for inclusion in the final review. Of the 1186 articles, 903 (76.1%) belonged to the environmental category, 268 (22.6%) to the adsorption and absorption category, and 16 (1.3%) to the human exposure category. Water was the most frequently studied environmental medium (440 articles). Our assessment resulted in 572 articles selected for the final review. Of the 572 publications, 268 (48.2%) included a geographic component and 110 (19.2%) were the product of literature reviews. We also show that relatively few publications have investigated human health effects associated with exposures to microplastics. Full article
Show Figures

Figure 1

16 pages, 2399 KiB  
Review
The Complex Dynamics of Microplastic Migration through Different Aquatic Environments: Subsidies for a Better Understanding of Its Environmental Dispersion
by Marcelo Pompermayer de Almeida, Christine Gaylarde, Fabiana Cunha Pompermayer, Leonardo da Silva Lima, Jessica de Freitas Delgado, Danniela Scott, Charles Vieira Neves, Khauê Silva Vieira, José Antônio Baptista Neto and Estefan Monteiro Fonseca
Microplastics 2023, 2(1), 62-77; https://doi.org/10.3390/microplastics2010005 - 19 Jan 2023
Cited by 5 | Viewed by 3096
Abstract
Microplastic pollution in aquatic ecosystems has drawn attention not only because microplastics are likely to accumulate anywhere but also because they cause negative impacts both to aquatic biota and, indirectly, to public health, as a result of their presence. The understanding of the [...] Read more.
Microplastic pollution in aquatic ecosystems has drawn attention not only because microplastics are likely to accumulate anywhere but also because they cause negative impacts both to aquatic biota and, indirectly, to public health, as a result of their presence. The understanding of the distribution and accumulation patterns of this “new contaminant” is fundamental for the calibration of environmental risk studies. However, research on its migration pattern and consequent distribution is still limited. The present study has focused on the peculiar physical characteristics of plastic microparticles and the response to environmental factors such as hydrodynamics and physical chemistry of water on the diffusion dynamics of these pollutant agents. Therefore, we examined information about the vertical abundance distribution, the composition, and the sizes of microplastics, along with the varied aquatic environments existing on Earth. This study provides valuable evidence for the accumulation trend of microplastics across the environment and the peculiar particle characteristics that dictate their distribution patterns. The present study concluded that detailed studies should be carried out in order to add information about the behavior of plastic microparticles in aquatic environments and thus subsidize the calibration of existing information, thus increasing its accuracy in understanding the diffusion patterns of these polluting agents. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

2 pages, 160 KiB  
Editorial
Acknowledgment to the Reviewers of Microplastics in 2022
by Microplastics Editorial Office
Microplastics 2023, 2(1), 60-61; https://doi.org/10.3390/microplastics2010004 - 18 Jan 2023
Viewed by 756
Abstract
High-quality academic publishing is built on rigorous peer review [...] Full article
21 pages, 1777 KiB  
Review
Microplastics in Freshwaters: Implications for Aquatic Autotrophic Organisms and Fauna Health
by Madalina Andreea Badea, Mihaela Balas and Anca Dinischiotu
Microplastics 2023, 2(1), 39-59; https://doi.org/10.3390/microplastics2010003 - 11 Jan 2023
Cited by 6 | Viewed by 3310
Abstract
Microplastics (MPs) represent small plastic particles with sizes between 1 μm and 5 mm, are insoluble in water, andclassified as primary (these are originally produced in small sizes) or secondary (the result of the degradation of plastic) types. MPs accumulate in all ecosystems, [...] Read more.
Microplastics (MPs) represent small plastic particles with sizes between 1 μm and 5 mm, are insoluble in water, andclassified as primary (these are originally produced in small sizes) or secondary (the result of the degradation of plastic) types. MPs accumulate in all ecosystems, including freshwater environments, where they are subjected to degradation processes. Due to their ubiquitous nature, freshwater ecosystems, which have a vital importance in human life, are permanently subjected to these small plastic particles. In this context, MPs pollution is considered to be a global issue, and it is associated with toxic effects on all the elements of the freshwater environment. In this review, we present, in detail, the main physical (density, size, color, shape, and crystallinity) and chemical (chemical composition and modification of the MPs’ surface) properties of MPs, the mechanism of biodegradation, and the consequences of autotrophic organisms and fauna exposure by focusing on the freshwater environment. The toxicity mechanisms triggered by MPs are related to the critical parameters of the particles: size, concentration, type, and form, but they are also dependent on species exposed to MPs and the exposure route. Full article
Show Figures

Figure 1

12 pages, 12939 KiB  
Article
Effect of Polystyrene Microplastics in Different Diet Combinations on Survival, Growth and Reproduction Rates of the Water Flea (Daphnia magna)
by Melek Isinibilir, Kamil Mert Eryalçın and Ahmet Erkan Kideys
Microplastics 2023, 2(1), 27-38; https://doi.org/10.3390/microplastics2010002 - 23 Dec 2022
Cited by 3 | Viewed by 2390
Abstract
Microplastic pollution is a problem not only in the marine environment but also in freshwater ecosystems. Water flea (Daphnia magna) is one of the most common omnivorous cladocerans in freshwater ecosystems. In this study, the potential effects of microplastics (fluorescent polystyrene [...] Read more.
Microplastic pollution is a problem not only in the marine environment but also in freshwater ecosystems. Water flea (Daphnia magna) is one of the most common omnivorous cladocerans in freshwater ecosystems. In this study, the potential effects of microplastics (fluorescent polystyrene beads with dimensions of 6 microns) on the survival, growth and reproduction of Daphnia magna were examined during 21 days of laboratory experiments. Microplastics (MPs) were observed to be ingested alone or along with either the microalgae Chlorella vulgaris (Cv) or baker’s yeast (By). D. magna fed exclusively with microplastics showed a drastic decline in survival similar to that in the starving group. The least growth in total length or width was observed in Daphnia specimens fed only MPs and the starved groups. Daphia fed with a mixture of MPs/Cv or MPs/By produced a significantly (p < 0.05) lower number of ephippia. Our results show that high concentrations of microplastics adversely affect Daphnia magna populations. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Graphical abstract

26 pages, 1904 KiB  
Review
Microplastics: A Review of Policies and Responses
by Davi R. Munhoz, Paula Harkes, Nicolas Beriot, Joana Larreta and Oihane C. Basurko
Microplastics 2023, 2(1), 1-26; https://doi.org/10.3390/microplastics2010001 - 23 Dec 2022
Cited by 7 | Viewed by 7492
Abstract
Although (micro)plastic contamination is a worldwide concern, most scientific literature only restates that issue rather than presenting strategies to cope with it. This critical review assembles the current knowledge on policies and responses to tackle plastic pollution, including peer-reviewed scientific literature, gray literature [...] Read more.
Although (micro)plastic contamination is a worldwide concern, most scientific literature only restates that issue rather than presenting strategies to cope with it. This critical review assembles the current knowledge on policies and responses to tackle plastic pollution, including peer-reviewed scientific literature, gray literature and relevant reports to provide: (1) a timeline of policies directly or indirectly addressing microplastics; (2) the most up-to-date upstream responses to prevent microplastics pollution, such as circular economy, behavioral change, development of bio-based polymers and market-based instruments as well as source-specific strategies, focusing on the clothing industry, tire and road wear particles, antifouling paints and recreational activities; (3) a set of downstream responses tackling microplastics, such as waste to energy, degradation, water treatment plants and litter clean-up strategies; and examples of (4) multifaceted responses focused on both mitigating and preventing microplastics pollution, e.g., approaches implemented in fisheries and aquaculture facilities. Preventive strategies and multifaceted responses are postulated as pivotal to handling the exacerbated release of microplastics in the environment, while downstream responses stand out as auxiliary strategies to the chief upstream responses. The information gathered here bridges the knowledge gaps on (micro)plastic pollution by providing a synthesized baseline material for further studies addressing this environmental issue. Full article
(This article belongs to the Collection Current Opinion in Microplastics)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop