Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Experiments
2.2. Total Soluble Protein Extraction
2.3. Immunoblotting
2.4. RNA Isolation
2.5. Polyadenylation and Stem–Loop Reverse Transcription
2.6. Relative microRNA Quantification
2.7. Bioinformatics microRNA Target Identification and Pathway Enrichment
2.8. Quantification and Statistics
3. Results
3.1. Protein Expression of miRNA Biogenesis and Processing Machinery
3.2. Differential miRNA Expression over the Freeze–Thaw Cycle
3.3. Bioinformatic Analyses of miRNA-Targeted Pathways
4. Discussion
4.1. Members of the miRNA Biogenesis Pathway Were Upregulated During Freezing and Remained High During Thaw
4.2. Differential Regulation of Cold-Associated miRNAs May Link to Cryoprotection and Suppression of Energy-Expensive Processes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Storey, K.B.; Storey, J.M. Metabolic Rate Depression in Animals: Transcriptional and Translational Controls. Biol. Rev. Camb. Philos. Soc. 2004, 79, 207–233. [Google Scholar] [CrossRef] [PubMed]
- Lee-Yaw, J.A.; Irwin, J.T.; Green, D.M. Postglacial Range Expansion from Northern Refugia by the Wood Frog, Rana sylvatica. Mol. Ecol. 2008, 17, 867–884. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B.; Storey, J.M. Molecular Physiology of Freeze Tolerance in Vertebrates. Physiol. Rev. 2017, 97, 623–665. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B. Life in a Frozen State: Adaptive Strategies for Natural Freeze Tolerance in Amphibians and Reptiles. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1990, 258, R559–R568. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.J.; Storey, K.B. A Hydrogen Peroxide Safety Valve: The Reversible Phosphorylation of Catalase from the Freeze-Tolerant North American Wood Frog, Rana sylvatica. Biochim. Biophys. Acta 2016, 1860, 476–485. [Google Scholar] [CrossRef]
- Storey, K.B. Regulation of Hypometabolism: Insights into Epigenetic Controls. J. Exp. Biol. 2015, 218, 150–159. [Google Scholar] [CrossRef]
- Biggar, K.K.; Storey, K.B. Functional Impact of MicroRNA Regulation in Models of Extreme Stress Adaptation. J. Mol. Cell Biol. 2018, 10, 93–101. [Google Scholar] [CrossRef]
- Ebert, M.S.; Sharp, P.A. Roles for MicroRNAs in Conferring Robustness to Biological Processes. Cell 2012, 149, 515–524. [Google Scholar] [CrossRef]
- Davis-Dusenbery, B.N.; Hata, A. Mechanisms of Control of MicroRNA Biogenesis. J. Biochem. 2010, 148, 381–392. [Google Scholar]
- Friedman, R.C.; Farh, K.K.H.; Burge, C.B.; Bartel, D.P. Most Mammalian MRNAs Are Conserved Targets of MicroRNAs. Genome Res. 2009, 19, 92. [Google Scholar] [CrossRef]
- Lui, P.-Y.; Jin, D.-Y.; Stevenson, N.J. MicroRNA: Master Controllers of Intracellular Signaling Pathways. Cell. Mol. Life Sci. 2015, 72, 3531–3542. [Google Scholar] [CrossRef] [PubMed]
- Bartel, D.P. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xu, R.; Li, N. MicroRNAs from Plants to Animals, Do They Define a New Messenger for Communication? Nutr. Metab. 2018, 15, 68. [Google Scholar] [CrossRef] [PubMed]
- Reinhart, B.J.; Weinstein, E.G.; Rhoades, M.W.; Bartel, B.; Bartel, D.P. MicroRNAs in Plants. Genes. Dev. 2002, 16, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Lee, Y.; Yeom, K.-H.; Nam, J.-W.; Heo, I.; Rhee, J.-K.; Sohn, S.Y.; Cho, Y.; Zhang, B.-T.; Kim, V.N. Molecular Basis for the Recognition of Primary MicroRNAs by the Drosha-DGCR8 Complex. Cell 2006, 125, 887–901. [Google Scholar] [CrossRef]
- Bohnsack, M.T.; Czaplinski, K.; Gorlich, D. Exportin 5 Is a RanGTP-Dependent DsRNA-Binding Protein That Mediates Nuclear Export of Pre-MiRNAs. RNA 2004, 10, 185–191. [Google Scholar] [CrossRef]
- MacFarlane, L.-A.; Murphy, P.R. MicroRNA: Biogenesis, Function and Role in Cancer. Curr. Genom. 2010, 11, 537–561. [Google Scholar] [CrossRef]
- Lee, H.Y.; Doudna, J.A. TRBP Alters Human Precursor MicroRNA Processing In Vitro. RNA 2012, 18, 2012–2019. [Google Scholar] [CrossRef]
- Fukunaga, R.; Han, B.W.; Hung, J.-H.; Xu, J.; Weng, Z.; Zamore, P.D. Dicer Partner Proteins Tune the Length of Mature MiRNAs in Flies and Mammals. Cell 2012, 151, 533–546. [Google Scholar] [CrossRef]
- Yoshida, T.; Asano, Y.; Ui-Tei, K. Modulation of MicroRNA Processing by Dicer via Its Associated DsRNA Binding Proteins. Noncoding RNA 2021, 7, 57. [Google Scholar] [CrossRef]
- Biggar, K.K.; Storey, K.B. Insight into Temperature-Dependent MicroRNA Function in Mammalian Hibernators. Temperature 2014, 1, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Nakano, S.; Sugimoto, N. Temperature Dependence of Thermodynamic Properties for DNA/DNA and RNA/DNA Duplex Formation. Eur. J. Biochem. 2002, 269, 2821–2830. [Google Scholar] [CrossRef]
- Biggar, K.K.; Storey, K.B. Low-Temperature MicroRNA Expression in the Painted Turtle, Chrysemys picta during Freezing Stress. FEBS Lett. 2015, 589, 3665–3670. [Google Scholar] [CrossRef] [PubMed]
- Hadj-Moussa, H.; Storey, K.B. Micromanaging Freeze Tolerance: The Biogenesis and Regulation of Neuroprotective MicroRNAs in Frozen Brains. Cell. Mol. Life Sci. 2018, 75, 3635–3647. [Google Scholar] [CrossRef] [PubMed]
- Khvorova, A.; Reynolds, A.; Jayasena, S.D. Functional SiRNAs and MiRNAs Exhibit Strand Bias. Cell 2003, 115, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Potla, R.; Singh, I.S.; Atamas, S.P.; Hasday, J.D. Shifts in Temperature within the Physiologic Range Modify Strand-Specific Expression of Select Human MicroRNAs. RNA 2015, 21, 1261–1273. [Google Scholar] [CrossRef]
- Rubinsky, B.; Wong, S.T.; Hong, J.S.; Gilbert, J.; Roos, M.; Storey, K.B. 1H Magnetic Resonance Imaging of Freezing and Thawing in Freeze-Tolerant Frogs. Am. J. Physiol. 1994, 266, R1771–R1777. [Google Scholar] [CrossRef]
- Biggar, K.K.; Kotani, E.; Furusawa, T.; Storey, K.B. Expression of Freeze-Responsive Proteins, Fr10 and Li16, from Freeze-Tolerant Frogs Enhances Freezing Survival of BmN Insect Cells. FASEB J. 2013, 27, 3376–3383. [Google Scholar] [CrossRef]
- Cai, Q.; Storey, K.B. Freezing-Induced Genes in Wood Frog (Rana sylvatica): Fibrinogen Upregulation by Freezing and Dehydration. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997, 272, R1480–R1492. [Google Scholar] [CrossRef]
- Sullivan, K.J.; Biggar, K.K.; Storey, K.B. Expression and Characterization of the Novel Gene Fr47 during Freezing in the Wood Frog, Rana sylvatica. Biochem. Res. Int. 2015, 2015, 363912. [Google Scholar] [CrossRef]
- Aguilar, O.A.; Hadj-Moussa, H.; Storey, K.B. Freeze-Responsive Regulation of MEF2 Proteins and Downstream Gene Networks in Muscles of the Wood Frog, Rana sylvatica. J. Therm. Biol. 2017, 67, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Biggar, K.K.; Dubuc, A.; Storey, K. MicroRNA Regulation below Zero: Differential Expression of MiRNA-21 and MiRNA-16 during Freezing in Wood Frogs. Cryobiology 2009, 59, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Storey, K.B. Akt Signaling and Freezing Survival in the Wood Frog, Rana sylvatica. Biochim. Biophys. Acta (BBA) General. Subj. 2013, 1830, 4828–4837. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Luu, B.E.; Storey, K.B. MicroRNA Regulation in Heart and Skeletal Muscle over the Freeze-Thaw Cycle in the Freeze Tolerant Wood Frog. J. Comp. Physiol. B 2016, 186, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Ingelson-Filpula, W.A.; Hadj-Moussa, H.; Storey, K.B. MicroRNA Transcriptomics in Liver of the Freeze-Tolerant Gray Tree Frog (Dryophytes versicolor) Indicates Suppression of Energy-Expensive Pathways. Cell Biochem. Funct. 2023, 41, 309–320. [Google Scholar] [CrossRef]
- Lyons, P.J.; Lang-Ouellette, D.; Morin, P.J. CryomiRs: Towards the Identification of a Cold-Associated Family of MicroRNAs. Comp. Biochem. Physiol. Part D Genom. Proteom. 2013, 8, 358–364. [Google Scholar] [CrossRef]
- Hadj-Moussa, H.; Moggridge, J.A.; Luu, B.E.; Quintero-Galvis, J.F.; Gaitán-Espitia, J.D.; Nespolo, R.F.; Storey, K.B. The Hibernating South American Marsupial, Dromiciops gliroides, Displays Torpor-Sensitive MicroRNA Expression Patterns. Sci. Rep. 2016, 6, 24627. [Google Scholar] [CrossRef]
- Biggar, K.K.; Wu, C.-W.; Storey, K.B. High-Throughput Amplification of Mature MicroRNAs in Uncharacterized Animal Models Using Polyadenylated RNA and Stem–Loop Reverse Transcription Polymerase Chain Reaction. Anal. Biochem. 2014, 462, 32–34. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef]
- Fisher, M.; James-Zorn, C.; Ponferrada, V.; Bell, A.J.; Sundararaj, N.; Segerdell, E.; Chaturvedi, P.; Bayyari, N.; Chu, S.; Pells, T.; et al. Xenbase: Key Features and Resources of the Xenopus Model Organism Knowledgebase. Genetics 2023, 224, iyad018. [Google Scholar] [CrossRef]
- Pellissier, F.; Glogowski, C.M.; Heinemann, S.F.; Ballivet, M.; Ossipow, V. Lab Assembly of a Low-Cost, Robust SYBR Green Buffer System for Quantitative Real-Time Polymerase Chain Reaction. Anal. Biochem. 2006, 350, 310–312. [Google Scholar] [CrossRef] [PubMed]
- Bustin, S.; Benes, V.; Garson, J.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.; Shipley, G.L.; et al. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Lv, Q.; Wong, C.-K.A.; Hu, S.; Fu, C.; Hua, Z.; Cai, G.; Li, G.; Yang, B.B.; Zhang, Y. The Effect of Central Loops in MiRNA:MRE Duplexes on the Efficiency of MiRNA-Mediated Gene Regulation. PLoS ONE 2008, 3, e1719. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING V10: Protein-Protein Interaction Networks, Integrated over the Tree of Life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Eaton, S.L.; Roche, S.L.; Llavero Hurtado, M.; Oldknow, K.J.; Farquharson, C.; Gillingwater, T.H.; Wishart, T.M. Total Protein Analysis as a Reliable Loading Control for Quantitative Fluorescent Western Blotting. PLoS ONE 2013, 8, e72457. [Google Scholar] [CrossRef]
- Zhang, J.; Storey, K.B. RBioplot: An Easy-to-Use R Pipeline for Automated Statistical Analysis and Data Visualization in Molecular Biology and Biochemistry. PeerJ 2016, 4, e2436. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing Real-Time PCR Data by the Comparative CT Method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Williamson, S.M.; Ingelson-Filpula, W.A.; Hadj-Moussa, H.; Storey, K.B. Epigenetic Underpinnings of Freeze Avoidance in the Goldenrod Gall Moth, Epiblema Scudderiana. J. Insect Physiol. 2021, 134, 104298. [Google Scholar] [CrossRef]
- Lyons, P.J.; Govaere, L.; Crapoulet, N.; Storey, K.B.; Morin, P.J. Characterization of Cold-Associated MicroRNAs in the Freeze-Tolerant Gall Fly Eurosta solidaginis Using High-Throughput Sequencing. Comp. Biochem. Physiol. Part. D Genom. Proteom. 2016, 20, 95–100. [Google Scholar] [CrossRef]
- Wu, C.W.; Biggar, K.K.; Storey, K.B. Dehydration Mediated MicroRNA Response in the African Clawed Frog Xenopus laevis. Gene 2013, 529, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Jafari, N.; Dogaheh, H.P.; Bohlooli, S.; Oyong, G.G.; Shirzad, Z.; Alibeiki, F.; Asl, S.H.; Zargar, S.J. Expression Levels of MicroRNA Machinery Components Drosha, Dicer and DGCR8 in Human (AGS, HepG2, and KEYSE-30) Cancer Cell Lines. Int. J. Clin. Exp. Med. 2013, 6, 269–274. [Google Scholar] [PubMed]
- Sperber, H.; Beem, A.; Shannon, S.; Jones, R.; Banik, P.; Chen, Y.; Ku, S.; Varani, G.; Yao, S.; Ruohola-Baker, H. MiRNA Sensitivity to Drosha Levels Correlates with Pre-MiRNA Secondary Structure. RNA 2014, 20, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Muggenhumer, D.; Vesely, C.; Nimpf, S.; Tian, N.; Yongfeng, J.; Jantsch, M.F. Drosha Protein Levels Are Translationally Regulated during Xenopus Oocyte Maturation. Mol. Biol. Cell 2014, 25, 2094–2104. [Google Scholar] [CrossRef] [PubMed]
- Köhler, A.; Hurt, E. Exporting RNA from the Nucleus to the Cytoplasm. Nat. Rev. Mol. Cell Biol. 2007, 8, 761–773. [Google Scholar] [CrossRef]
- Yi, R.; Doehle, B.P.; Qin, Y.; Macara, I.G.; Cullen, B.R. Overexpression of Exportin 5 Enhances RNA Interference Mediated by Short Hairpin RNAs and MicroRNAs. RNA 2005, 11, 220–226. [Google Scholar] [CrossRef]
- Ha, M.; Kim, V.N. Regulation of MicroRNA Biogenesis. Nat. Rev. Mol. Cell Biol. 2014, 15, 509–524. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Z.; O’Loughlin, E.; Lee, T.; Houel, S.; O’Carroll, D.; Tarakhovsky, A.; Ahn, N.G.; Yi, R. Quantitative Functions of Argonaute Proteins in Mammalian Development. Genes. Dev. 2012, 26, 693–704. [Google Scholar] [CrossRef]
- Shen, J.; Xia, W.; Khotskaya, Y.B.; Huo, L.; Nakanishi, K.; Lim, S.-O.; Du, Y.; Wang, Y.; Chang, W.-C.; Chen, C.-H.; et al. EGFR Modulates MicroRNA Maturation in Response to Hypoxia through Phosphorylation of AGO2. Nature 2013, 497, 383–387. [Google Scholar] [CrossRef]
- Zeng, Y.; Sankala, H.; Zhang, X.; Graves, P. Phosphorylation of Argonaute 2 at Serine-387 Facilitates Its Localization to Processing Bodies. Biochem. J. 2008, 413, 429–436. [Google Scholar] [CrossRef]
- Zhang, J.; Storey, K.B. Cell Cycle Regulation in the Freeze Tolerant Wood Frog, Rana sylvatica. Cell Cycle 2012, 11, 1727–1742. [Google Scholar] [CrossRef] [PubMed]
- Rolfe, D.F.; Brown, G.C. Cellular Energy Utilization and Molecular Origin of Standard Metabolic Rate in Mammals. Physiol. Rev. 1997, 77, 731–758. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Storey, K.B. Up-Regulation of Acidic Ribosomal Phosphoprotein P0 in Response to Freezing or Anoxia in the Freeze Tolerant Wood Frog, Rana sylvatica. Cryobiology 2005, 50, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Storey, K.B.; Storey, J.M. Freeze Tolerant Frogs: Cryoprotectants and Tissue Metabolism during Freeze-Thaw Cycles. Can. J. Zool. 1986, 64, 49–56. [Google Scholar] [CrossRef]
- Cowan, K.J.; Storey, K.B. Freeze-Thaw Effects on Metabolic Enzymes in Wood Frog Organs. Cryobiology 2001, 43, 32–45. [Google Scholar] [CrossRef]
- Yan, C.; Chen, J.; Li, M.; Xuan, W.; Su, D.; You, H.; Huang, Y.; Chen, N.; Liang, X. A Decrease in Hepatic MicroRNA-9 Expression Impairs Gluconeogenesis by Targeting FOXO1 in Obese Mice. Diabetologia 2016, 59, 1524–1532. [Google Scholar] [CrossRef]
- Hemmings, S.J.; Storey, K.B. Alterations in Hepatic Adrenergic Receptor Status in Rana sylvatica in Response to Freezing and Thawing: Implications to the Freeze-Induced Glycemic Response. Can. J. Physiol. Pharmacol. 1994, 72, 1552–1560. [Google Scholar] [CrossRef]
- Bajaj, M.; Blundell, T.L.; Horuk, R.; Pitts, J.E.; Wood, S.P.; Gowan, L.K.; Schwabe, C.; Wollmer, A.; Gliemann, J.; Gammeltoft, S. Coypu Insulin. Primary Structure, Conformation and Biological Properties of a Hystricomorph Rodent Insulin. Biochem. J. 1986, 238, 345–351. [Google Scholar] [CrossRef]
- Conlon, J.M.; Yano, K.; Chartrel, N.; Vaudry, H.; Storey, K.B. Freeze Tolerance in the Wood Frog Rana sylvatica Is Associated with Unusual Structural Features in Insulin but Not in Glucagon. J. Mol. Endocrinol. 1998, 21, 153–159. [Google Scholar] [CrossRef]
- Wu, C.-W.; Biggar, K.K.; Luu, B.E.; Szereszewski, K.E.; Storey, K.B. Analysis of MicroRNA Expression during the Torpor-Arousal Cycle of a Mammalian Hibernator, the 13-Lined Ground Squirrel. Physiol. Genom. 2016, 48, 388–396. [Google Scholar] [CrossRef]
- Buck, M.J.; Squire, T.L.; Andrews, M.T. Coordinate Expression of the PDK4 Gene: A Means of Regulating Fuel Selection in a Hibernating Mammal. Physiol. Genom. 2002, 8, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Florant, G.L.; Lawrence, A.K.; Williams, K.; Bauman, W.A. Seasonal Changes in Pancreatic B-Cell Function in Euthermic Yellow-Bellied Marmots. Am. J. Physiol. 1985, 249, R159–R165. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.V.; Chernov, N.N.; Saprin, A.N. Involvement of Thio-, Peroxi-, and Glutaredoxins in Cellular Redox-Dependent Processes. Biochemistry 2008, 73, 1493–1510. [Google Scholar] [CrossRef] [PubMed]
- Dawson, N.J.; Katzenback, B.A.; Storey, K.B. Free-Radical First Responders: The Characterization of CuZnSOD and MnSOD Regulation during Freezing of the Freeze-Tolerant North American Wood Frog, Rana sylvatica. Biochim. Biophys. Acta (BBA) General. Subj. 2015, 1850, 97–106. [Google Scholar] [CrossRef]
- Storey, K.B. Organ-Specific Metabolism during Freezing and Thawing in a Freeze-Tolerant Frog. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1987, 253, R292–R297. [Google Scholar] [CrossRef]
- Ingelson-Filpula, W.A.; Storey, K.B. MicroRNA Biogenesis Proteins Follow Tissue-Dependent Expression during Freezing in Dryophytes Versicolor. J. Comp. Physiol. B 2022, 192, 611–622. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadj-Moussa, H.; Ingelson-Filpula, W.A.; Storey, K.B. Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica. DNA 2024, 4, 380-396. https://doi.org/10.3390/dna4040027
Hadj-Moussa H, Ingelson-Filpula WA, Storey KB. Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica. DNA. 2024; 4(4):380-396. https://doi.org/10.3390/dna4040027
Chicago/Turabian StyleHadj-Moussa, Hanane, W. Aline Ingelson-Filpula, and Kenneth B. Storey. 2024. "Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica" DNA 4, no. 4: 380-396. https://doi.org/10.3390/dna4040027
APA StyleHadj-Moussa, H., Ingelson-Filpula, W. A., & Storey, K. B. (2024). Biogenesis and Regulation of the Freeze–Thaw Responsive microRNA Fingerprint in Hepatic Tissue of Rana sylvatica. DNA, 4(4), 380-396. https://doi.org/10.3390/dna4040027