A Dual-Labeled Multiplex Absolute Telomere Length Method to Measure Average Telomere Length
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Supplies Needed
2.2. qPCR Setup
2.2.1. Establishing the Standard Curves
2.2.2. DNA Concentration
2.2.3. qPCR Master Mix
2.2.4. qPCR Amplification Conditions
3. Results
4. Discussion
Limitation of This Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfeiffer, V.; Lingner, J. Replication of telomeres and the regulation of telomerase. Cold Spring Harb. Perspect. Biol. 2013, 5, a010405. [Google Scholar] [CrossRef] [PubMed]
- Vaiserman, A.; Krasnienkov, D. Telomere Length as a Marker of Biological Age: State-of-the-Art, Open Issues, and Future Perspectives. Front. Genet. 2021, 11, 630186. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, N.; Dhillon, V.; Thomas, P.; Fenech, M.A. A quantitative real-time PCR method for absolute telomere length. Biotechniques 2008, 44, 807–809. [Google Scholar] [CrossRef] [PubMed]
- O’Callaghan, N.J.; Fenech, M.A. quantitative PCR method for measuring absolute telomere length. Biol. Proced. Online 2011, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Lindrose, A.R.; McLester-Davis, L.W.Y.; Tristano, R.I.; Kataria, L.; Gadalla, S.M.; Eisenberg, D.T.A.; Verhulst, S.; Drury, S. Method comparison studies of telomere length measurement using qPCR approaches: A critical appraisal of the literature. PLoS ONE 2021, 16, e0245582. [Google Scholar] [CrossRef] [PubMed]
- Telomere Research Network TRN Recommendations. Available online: https://trn.tulane.edu/resources/study-design-analysis/ (accessed on 21 September 2024).
- Sethi, I.; Bhat, G.R.; Kumar, R.; Rai, E.; Sharma, S. Dual labeled fluorescence probe based qPCR assay to measure the telomere length. Gene 2021, 767, 145178. [Google Scholar] [CrossRef] [PubMed]
- Arya, M.; Shergill, I.S.; Williamson, M.; Gommersall, L.; Arya, N.; Patel, H.R. Basic principles of real-time quantitative PCR. Expert Rev. Mol. Diagn. 2005, 5, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Siegel, S.R.; Ulrich, M.; Logue, S.F. Comparison qPCR study for selecting a valid single copy gene for measuring absolute telomere length. Gene 2023, 860, 147192. [Google Scholar] [CrossRef] [PubMed]
- Premier Biosoft Taqman Probes. Available online: https://www.premierbiosoft.com/tech_notes/TaqMan.html (accessed on 21 September 2024).
- Integrated DNA Technologies Double Quenched Probes Increase Signal to Noise Ratios by Decreasing Background Fluorescence. Available online: https://www.idtdna.com/pages/education/decoded/article/two-quenchers-are-better-than-one (accessed on 21 September 2024).
- Biosistemika. Understanding qPCR Efficiency and Why It Can Exceed 100%. Available online: https://biosistemika.com/blog/qpcr-efficiency-over-100/ (accessed on 21 September 2024).
- Huang, E.E.; Tedone, E.; O’Hara, R.; Cornelius, C.; Lai, T.P.; Ludlow, A.; Wright, W.E.; Shay, J.W. The Maintenance of Telomere Length in CD28+ T Cells During T Lymphocyte Stimulation. Sci. Rep. 2017, 7, 6785. [Google Scholar] [CrossRef] [PubMed]
- Liljequist, D.; Elfving, B.; Skavberg Roaldsen, K. Intraclass correlation—A discussion and demonstration of basic features. PLoS ONE 2019, 14, e0219854. [Google Scholar] [CrossRef] [PubMed]
- Jeyapalan, J.C.; Saretzki, G.; Leake, A.; Tilby, M.J.; von Zglinicki, T. Tumour-cell apoptosis after cisplatin treatment is not telomere dependent. Int. J. Cancer 2006, 118, 2727–2734. [Google Scholar] [CrossRef] [PubMed]
- Zhdanov, D.D.; Pokrovsky, V.S.; Pokrovskaya, M.V.; Alexandrova, S.S.; Eldarov, M.A.; Grishin, D.V.; Basharov, M.M.; Gladilina, Y.A.; Podobed, O.V.; Sokolov, N.N. Inhibition of telomerase activity and induction of apoptosis by Rhodospirillum rubrum L-asparaginase in cancer Jurkat cell line and normal human CD4+ T lymphocytes. Cancer Med. 2017, 6, 2697–2712. [Google Scholar] [CrossRef] [PubMed]
Assay | Oligo ID | Oligo Sequence * | |
---|---|---|---|
Telomeric Repeat Assay | TeloP1 | 5′-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT-3′ | |
TeloP2 | 5′-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT-3′ | ||
Telo Probe | 5′-6′FAM/CCCTTACCCTTACCCTTACCCTTAC/3IABkFQ-3′ | ||
Single Copy-Gene Assay | IFNB1P1 | 5′-TGGGACTGGACAATTGCTT-3′ | |
IFNB1P2 | 5′-CCTTTCATATGCAGTACATTAGCC-3′ | ||
IFNB1 Probe | 5′-HEX/AGCATCTGCTGGTTGAAGAATGCTTG/3IABkFQ-3′ | ||
Absolute Telomere Length Standards | Telomere Oligomer | Sense | 5′-CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA CCC TAA-3′ |
Antisense | 5′-TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG TTA GGG-3′ | ||
IFNB1 Oligomer | Sense | 5′-CCT TTC ATA TGC AGT ACA TTA GCC ATC AGT CAC TTA AAC AGC ATC TGC TGG TTG AAG AAT GCT TGA AGC AAT TGT CCA GTC CCA -3′ | |
Antisense | 5′-TGG GAC TGG ACA ATT GCT TCA AGC ATT CTT CAA CCA GCA GAT GCT GTT TAA GTG ACT GAT GGC TAA TGT ACT GCA TAT GAA AGG-3′ |
Material | Vendor | Catalog # |
---|---|---|
Quant-iT Picogreen dsDNA Assay kit | ThermoFisher, Waltham, MA, USA | P7589 |
TE Buffer, pH 7.4 (20×) | ThermoFisher, Waltham, MA, USA | J60234.EQE |
PrimeTime Gene Expression Master Mix (5 mL) | IDT, Coralville, IA, USA | 1055772 |
pBR322 circular plasmid | ThermoFisher, Waltham, MA, USA | S66763 |
Jurkat Genomic DNA (human acute T cell leukemia) | ThermoFisher, Waltham, MA, USA | SD1111 |
1301 Genomic DNA (human T cell leukemia) | Sigma Aldrich, St. Louis, MO, USA | 01051619 |
UltraPure Sterile Water | VWR, Radnor, PA, USA | RLMB-010-0100 |
Rainin Pipet-Lite LTS Pipettes (0.2–2 μL, 2–20 μL, 20–200 μL, and 100–1000 μL) | Mettler Toledo, Columbus, OH, USA | L-2XLS+; L-20XLS+ L-200XLS+; L-1000XLS+ |
QIAcuity HEPA/UV pipetting robot | Qiagen, Germantown, MD, USA | 9001903 |
Rotorgene Q 5 plex HRM qPCR machine | Qiagen, Germantown, MD, USA | 9001580 |
Rotor-disc 100 Rotor | Qiagen, Germantown, MD, USA | 9081195 |
Rotor-disc 100 locking ring | Qiagen, Germantown, MD, USA | 9018896 |
100 well rotor disk plate | Qiagen, Germantown, MD, USA | 981311 |
Rotor disk heat sealing film | Qiagen, Germantown, MD, USA | 981601 |
50 μL Conductive Filtered Tips (Qiagility) | Qiagen, Germantown, MD, USA | 990512 |
200 μL Conductive Filtered Tips (Qiagility) | Qiagen, Germantown, MD, USA | 990522 |
200 μL PCR tubes | Qiagen, Germantown, MD, USA | 981005 |
5 mL diluent tube | Qiagen, Germantown, MD, USA | 990552 |
Standard Oligomer ID | Telomere Oligomer [DNA] pg/μL | Total Telomere [DNA] pg | Telomeric Repeat Sequences (kb) | IFNB1 Oligmer [DNA] pg/μL | Total IFNB1 [DNA] pg | Diploid Copy Number |
---|---|---|---|---|---|---|
STD A1 * | 15 | 60 | 5.86 × 107 | 0.005 | 0.02 | 1.16 × 105 |
STD B2 | 1.5 | 6 | 5.86 × 106 | 0.0005 | 0.002 | 1.16 × 104 |
STD C3 | 0.15 | 0.6 | 5.86 × 105 | 0.00005 | 0.0002 | 1.16 × 103 |
STD D4 | 0.015 | 0.06 | 5.86 × 104 | 0.000005 | 0.00002 | 1.16 × 102 |
STD E5 | 0.0015 | 0.006 | 5.86 × 103 | 0.0000005 | 0.000002 | 1.16 × 101 |
Reagent | Volume in Each Sample (μL) | Final Concentration |
---|---|---|
40× Taqman Telomeric Repeat Assay mix | 0.5 | 1× |
40× Taqman Single-Copy Gene Assay (IFNB1) mix | 0.5 | 1× |
PrimeTime Gene Expression master mix (2×) | 10 | 1× |
UltraPure Water | 3 |
Cycle | Function |
---|---|
Hold | 50 °C for 2 min to activate the UDG |
Hold | 95 °C for 10 min releases and activates the Hot Start AmpliTaq Gold DNA Polymerase |
40 cycles | Denature at 92 °C for 15 s |
Anneal at 60 °C for 30 s | |
Extension at 72 °C for 30 s (FAM and HEX data acquisition at each cycle) | |
Hold | 40 °C for 10 min |
Tested Sample ID | Telomeric Repeat Sequences (kb) | Diploid Copy Number | Average aTL (kb) | Average aTL per Telomere (kb) |
---|---|---|---|---|
1301 | 2.59 × 106 | 3.63 × 102 | 7130 | 77.5 |
Jurkat | 5.82 × 104 | 1.39 × 102 | 418.6 | 4.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutherford Siegel, S.; Calcagni, E.A.; Draughon, K.M.; Logue, S.F. A Dual-Labeled Multiplex Absolute Telomere Length Method to Measure Average Telomere Length. DNA 2024, 4, 370-379. https://doi.org/10.3390/dna4040026
Rutherford Siegel S, Calcagni EA, Draughon KM, Logue SF. A Dual-Labeled Multiplex Absolute Telomere Length Method to Measure Average Telomere Length. DNA. 2024; 4(4):370-379. https://doi.org/10.3390/dna4040026
Chicago/Turabian StyleRutherford Siegel, Sue, E. Alex Calcagni, Kelsey M. Draughon, and Sheree F. Logue. 2024. "A Dual-Labeled Multiplex Absolute Telomere Length Method to Measure Average Telomere Length" DNA 4, no. 4: 370-379. https://doi.org/10.3390/dna4040026
APA StyleRutherford Siegel, S., Calcagni, E. A., Draughon, K. M., & Logue, S. F. (2024). A Dual-Labeled Multiplex Absolute Telomere Length Method to Measure Average Telomere Length. DNA, 4(4), 370-379. https://doi.org/10.3390/dna4040026