Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric
Abstract
:1. Introduction
2. Nonwoven Production
3. Natural Fibres and Cellulose-Based Fibres
4. Agriculture Waste Fibres for Nonwovens
4.1. Bast Fibres
4.1.1. Flax
4.1.2. Jute
4.1.3. Hemp
4.1.4. Ramie
4.1.5. Kenaf
4.1.6. Roselle
4.1.7. Lotus
4.1.8. Bamboo
4.2. Leaf Fibres
4.2.1. Abacae
4.2.2. Sisal
4.2.3. Banana
4.2.4. Pineapple
4.2.5. Curaua
4.2.6. Henequen
4.2.7. Tea Leaf
4.2.8. Cantala
4.2.9. Fique
4.3. Fruit and Seed Fibre
4.3.1. Husk
4.3.2. Kapok
4.3.3. Biduri
4.3.4. Oil Palm
4.3.5. Okra
4.3.6. Luffa
4.3.7. Waste Cotton
4.4. Straw Fibre
4.5. Grass Fibre
Bagasse
4.6. Noncommon Fibre
5. Application of Agriculture Waste for Nonwoven Applications
5.1. Thermal Insulation
5.2. Acoustic Insulation
5.3. Oil–Water Separation
5.4. Ballistic
5.5. Agri-Textile Applications
5.6. Hygiene Applications
5.7. Apparel Textile
5.8. Filtration
6. Conclusions
7. Future Work
Author Contributions
Funding
Conflicts of Interest
References
- Wilson, A. Development of the nonwovens industry. In Handbook of Nonwovens, 2nd ed.; Russell, S.J., Ed.; Woodhead Publishing Limited: Sawston, UK; CRC Press LLC: Abingdon-on-Thames, UK, 2007; pp. 1–15. ISBN 9781855736030. [Google Scholar]
- Kalebek, N.A.; Babaarslan, O. Fiber selection for the production of nonwovens. In Non-Woven Fabrics, 1st ed.; Jeon, H.Y., Ed.; InTech: Rijeka, Croatia, 2016; pp. 1–32. [Google Scholar] [CrossRef]
- Chapman, R.A. Application of Nonwovens in Technical Textiles, 1st ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 1–224. ISBN 9781845699741. [Google Scholar]
- Wilson, A. The formation of dry, wet, spun-laid and other types of nonwovens. In Applications of Nonwovens in Technical Textiles, 2nd ed.; Chapman, R.A., Ed.; Woodhead Publishing Limited: Sawston, UK, 2010; pp. 3–17. [Google Scholar] [CrossRef]
- Mao, N.; Russell, S.J. Fibre to fabric: Nonwoven fabrics. In Textiles and Fashion, 2nd ed.; Sinclair, R., Ed.; Woodhead Publishing Limited: Sawston, UK, 2015; pp. 307–335. [Google Scholar] [CrossRef]
- Debnath, S. Sustainable production and application of natural fibre-based nonwoven. In Sustainable Fibres and Textiles, 1st ed.; Muthu, S.S., Ed.; Woodhead Publishing: New Delhi, India, 2017; pp. 367–391. [Google Scholar] [CrossRef]
- IHS Markit. Nonwoven Fabrics—Chemical Economics Handbook (CEH); S&G Global: New York, NY, USA, 2020. [Google Scholar]
- Santos, A.S.; Ferreira, P.J.T.; Maloney, T. Bio-based materials for nonwovens. Cellulose 2021, 28, 8939–8969. [Google Scholar] [CrossRef]
- Rapp, M.; Wiertz, P. EDANA Sustainability Report 2019. Available online: https://www.edana.org/docs/default-source/sustainability/sustainability-report.pdf?sfvrsn=4a926b0_18 (accessed on 26 January 2024).
- Blackburn, R.S. Biodegradable and Sustainable Fibres, 1st ed.; Woodhead Publishing in Textiles: Sawston, UK, 2005; pp. 1–456. ISBN 978-1-85573-916-1. [Google Scholar]
- Bhat, G.S.; Rong, H. Biodegradable nonwovens. In Biodegradable and Sustainable Fibre, 1st ed.; Blackburn, R.S., Ed.; Woodhead Publishing Series in Textiles; Elsevier Ltd.: Exeter Devon, UK, 2005; pp. 310–342. [Google Scholar] [CrossRef]
- Wool, R.P.; Sun, X.S. Bio-Based Polymers and Composites, 1st ed.; Elsevier: Philadelphia, PA, USA, 2011; pp. 1–620. ISBN 9780127639529. [Google Scholar]
- Bhat, G.; Parikh, D.V. Biodegradable materials for nonwovens. In Applications of Nonwovens in Technical Textiles, 1st ed.; Chapman, R.A., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 46–62. [Google Scholar] [CrossRef]
- Kumar, P.S.; Suganya, S. Introduction to sustainable fibres and textiles. In Sustainable Fibres and Textiles, 1st ed.; Muthu, S.S., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 1–18. [Google Scholar] [CrossRef]
- Rani, K.; Jajpura, L.; Behera, B.K. Comfort behavior of unconventional natural fiber-based union fabrics. J. Text. Sci. Technol. 2013, 28, 423–444. [Google Scholar] [CrossRef]
- Kamalha, E.; Zeng, Y.; Mwasiagi, J.I.; Kyatuheire, S. The comfort dimension; a review of perception in clothing. J. Sens. Stud. 2013, 28, 423–444. [Google Scholar] [CrossRef]
- Hurley, J.S. Natural fiber-based lightweight sound absorber materials. SAE Technical Paper 2007-01-2197. In Proceedings of the SAE 2007 Noise and Vibration Conference and Exhibition, St. Charles, IL, USA, 15–17 May 2007. [Google Scholar] [CrossRef]
- Bhuvaneshwari, M.; Sangeetha, K. Development of natural fiber nonwovens for thermal insulation. Int. J. Appl. Eng. Res. 2018, 13, 14903–14907. [Google Scholar]
- Berardi, U.; Iannace, G. Acoustic characterization of natural fibers for sound absorption applications. Build. Environ. 2015, 94, 840–852. [Google Scholar] [CrossRef]
- Bharath, K.N.; Basavarajappa, S. Applications of biocomposite materials based on natural fibers from renewable resources: A review. Sci. Eng. Compos. Mater. 2016, 23, 123–133. [Google Scholar] [CrossRef]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482. [Google Scholar] [CrossRef]
- Gopal, M.; Mathew, M.D. The scope for utilizing jute wastes as raw materials in various industries: A review. Agric. Wastes 1986, 15, 149–158. [Google Scholar] [CrossRef]
- Väisänen, T.; Haapala, A.; Lappalainen, R.; Tomppo, L. Utilization of agricultural and forest industry waste and residues in natural fibre-polymer composites: A review. Waste Manag. 2016, 54, 62–73. [Google Scholar] [CrossRef]
- Beluns, S.; Gaidukovs, S.; Platnieks, O.; Gaidukova, G.; Mierina, I.; Grase, L.; Starkova, O.; Brazdausks, P.; Thakur, V.K. From wood and hemp biomass wastes to sustainable nanocellulose foams. Ind. Crops Prod. 2021, 170, 113780. [Google Scholar] [CrossRef]
- Gutierrez-Moscardo, O.; Canet, M.; Gomez-Caturla, J.; Lascano, D.; Fages, E.; Sanchez-Nacher, L. Sustainable materials with high insulation capacity obtained from wastes from hemp industry processed by wet-laid. Text. Res. J. 2022, 92, 1098–1112. [Google Scholar] [CrossRef]
- Fuqua, M.A.; Huo, S.; Ulven, C.A. Natural fiber reinforced composites. Polym. Rev. 2012, 52, 259–320. [Google Scholar] [CrossRef]
- Hemamalini, T.; Giri Dev Dev, V.R. Wet laying nonwoven using natural cellulosic fibers and their blends: Process and technical applications. J. Nat. Fibers 2021, 18, 1823–1833. [Google Scholar] [CrossRef]
- Koukoulas, A.A. Wet-laid web formation. In Handbook of Nonwovens, 1st ed.; Russell, S.J., Ed.; Woodhead Publishing: Sawston, UK, 2007; pp. 181–216. ISBN 9780128189122. [Google Scholar]
- Hubbe, M.A.; Koukoulas, A.A. Wet-laid nonwovens manufacture-Chemical approaches using synthetic and cellulosic fibers. BioResources 2016, 11, 5500–5552. [Google Scholar] [CrossRef]
- Willberg-Keyriläinen, P.; Rokkonen, T.; Malm, T.; Harlin, A.; Ropponen, J. Melt spinnability of long chain cellulose esters. J. Appl. Polym. Sci. 2020, 137, 49588. [Google Scholar] [CrossRef]
- Gibson, P.W.; Lee, C.; Ko, F.; Reneker, D. Application of nanofiber technology to nonwoven thermal insulation. J. Eng. Fibers Fabr. 2007, 2, 155892500700200204. [Google Scholar] [CrossRef]
- Kakonke, G.; Tesfaye, T.; Sithole, B.B.; Ntunka, M. Review on the manufacturing and properties of nonwoven superabsorbent core fabrics used in disposable diapers. Int. J. Chem. Sci. 2019, 17, 21. Available online: http://hdl.handle.net/10204/11128 (accessed on 27 January 2024).
- Gong, H.; Ozgen, B. Fabric structures: Woven, knitted, or nonwoven. In Engineering of High-Performance Textiles, 2nd ed.; Miao, M., Xin, J.H., Eds.; Woodhead Publishing: Sawston, UK, 2018; pp. 107–131. [Google Scholar] [CrossRef]
- Yan, Y. Developments in fibers for technical nonwovens. In Advances in Technical Nonwovens, 2nd ed.; Kellie, G., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 19–96. [Google Scholar]
- Pourmohammadi, A. Nonwoven materials and joining techniques. In Joining Textiles: Principles and Applications, 1st ed.; Jones, I., Stylios, G.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 565–581. [Google Scholar] [CrossRef]
- Byrd, L. Bonding of air-laid webs: The critical amount of moisture necessary. In Proceedings of the TAPPI 1981 Annual Meeting, Chicago, IL, USA, 2–4 March 1981; pp. 77–81. [Google Scholar]
- Chapman, R.A.; Molinari, M.; Rana, S.; Goswami, P. Chemical bonding. In Handbook of Nonwovens, 2nd ed.; Russell, S.J., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 395–440. [Google Scholar] [CrossRef]
- Anand, S.C.; Brunnschweiler, D.; Swarbrick, G.; Russell, S.J. Mechanical bonding. In Handbook of Nonwovens, 2nd ed.; Russell, S.J., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 201–297. [Google Scholar] [CrossRef]
- Savitha, K.; Annapoorani, G.S.; Sampath, V.R. Development of needle-punched nonwoven fabrics from natural fibers for sound absorption behavior. Res. J. Text. Leather 2021, 2, 88–96. [Google Scholar] [CrossRef]
- Maity, S.; Singha, K.; Gon, D.P.; Paul, P.; Singha, M. A review on jute nonwovens: Manufacturing, properties and applications. Int. J. Text. Sci. 2012, 1, 36–43. [Google Scholar]
- Knowlson, R.; Mariani, E.; Petersen, K.D. Method for Production of a Hydroentangled Air-Laid Web and Products Obtained Therefrom. U.S. Patent 9,394,637, 19 July 2016. [Google Scholar]
- EDANA. Nonwovens Industry Pledges Uptake in Use of Recycled PET. 2018. Available online: https://www.edana.org/newsroom/news-announcements (accessed on 27 May 2019).
- Nabaneeta, G.; Mintiand, G.; Swapna, C. Utilization of agro waste-okra and its potentiality. Asian J. Home Sci. 2017, 12, 250–256. [Google Scholar]
- Hýsek, Š.; Böhm, M.; Wimmwe, R. Optimization process of natural-fibre nonwovens. In Proceedings of the Wood 2015, Innovations in Wood Materials and Process, Czech Republic, Brno, 19–22 March 2015; pp. 142–143. [Google Scholar]
- Ramamoorthy, S.K.; Skrifvars, M.; Persson, A. A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. Poly Rev. 2015, 55, 107–162. [Google Scholar] [CrossRef]
- Karimah, A.; Ridho, M.R.; Munawar, S.S.; Adi, D.S.; Damayanti, R.; Subiyanto, B.; Fatriasari, W.; Fudholi, A. A review on natural fibers for development of eco-friendly bio-composite: Characteristics, and utilizations. J. Mater. Res. Technol. 2021, 13, 2442–2458. [Google Scholar] [CrossRef]
- Jacob, M.; Joseph, S.; Pothan, L.A.; Thomas, S. A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites. Compos. Interfaces 2005, 12, 95–124. [Google Scholar] [CrossRef]
- Latif, R.; Wakeel, S.; Zaman Khan, N.; Noor Siddiquee, A.; Lal Verma, S.; Akhtar Khan, Z. Surface treatments of plant fibers and their effects on mechanical properties of fiber-reinforced composites: A review. J. Reinf. Plast. Compos. 2019, 38, 15–30. [Google Scholar] [CrossRef]
- Lyu, P.; Zhang, Y.; Wang, X.; Hurren, C. Degumming methods for bast fibers—A mini-review. Ind. Crops Prod. 2021, 174, 114158. [Google Scholar] [CrossRef]
- Maity, S.; Gon, D.P.; Paul, P. A review of flax nonwovens: Manufacturing, properties, and applications. J. Nat. Fibers 2014, 11, 365–390. [Google Scholar] [CrossRef]
- Martin, N.; Davies, P.; Baley, C. Evaluation of the potential of three non-woven flax fiber reinforcements: Spunlaced, needlepunched and paper process mats. Ind. Crops Prod. 2016, 83, 194–205. [Google Scholar] [CrossRef]
- Anandjiwala, R.D.; Boguslavsky, L. Development of needle-punched nonwoven fabrics from flax fibers for air filtration applications. Text. Res. J. 2008, 78, 614–624. [Google Scholar] [CrossRef]
- Pallesen, B.E.; Andersen, T.L.G. Reinforced biocomposites from flax and hemp. J. Ind. Hemp 2002, 7, 61–81. [Google Scholar] [CrossRef]
- Hýsek, Š.; Wimmer, R.; Böhm, M. Optimal processing of flax and hemp fibre nonwovens. BioResources 2016, 11, 8522–8534. [Google Scholar] [CrossRef]
- Miao, M.; Shan, M. Highly aligned flax/polypropylene nonwoven preforms for thermoplastic composites. Compos. Sci. Technol. 2011, 71, 1713–1718. [Google Scholar] [CrossRef]
- Merotte, J.; Le Duigou, A.; Kervoelen, A.; Bourmaud, A.; Behlouli, K.; Sire, O.; Baley, C. Flax and hemp nonwoven composites: The contribution of interfacial bonding to improving tensile properties. Polym. Test. 2018, 66, 303–311. [Google Scholar] [CrossRef]
- Chen, Y.; Mueller, D.H.; Niessen, K.; Muessig, J. Spunlaced flax/polypropylene nonwoven as auto interior material: Mechanical performance. J. Ind. Text. 2008, 38, 69–85. [Google Scholar] [CrossRef]
- Fages, E.; Gironés, S.; Sánchez-Nacher, L.; García-Sanoguera, D.; Balart, R. Use of wet-laid techniques to form flax-polypropylene nonwovens as base substrates for eco-Friendly composites by using hot-press molding. Polym. Compos. 2012, 33, 253–261. [Google Scholar] [CrossRef]
- Fortea-verdejo, M.; Lee, K.Y.; Zimmermann, T.; Bismarck, A. Upgrading flax nonwovens: Nanocellulose as binder to produce rigid and robust flax fibre preforms. Compos. A Appl. Sci. 2016, 83, 63–71. [Google Scholar] [CrossRef]
- Pantaloni, D.; Melelli, A.; Shah, D.U.; Baley, C.; Bourmaud, A. Influence of water ageing on the mechanical properties of flax/PLA non-woven composites. Polym. Degrad. Stab. 2022, 200, 109957. [Google Scholar] [CrossRef]
- Fages, E.; Cano, M.A.; Girones, S.; Boronat, T.; Fenollar, O.; Balart, R. The use of wet-laid techniques to obtain flax nonwovens with different thermoplastic binding fibers for technical insulation applications. Text. Res. J. 2013, 83, 426–437. [Google Scholar] [CrossRef]
- Yachmenev, V.G.; Parikh, D.V.; Calamari Jr, T.A. Thermal insulation properties of biodegradable, cellulosic-based nonwoven composites for automotive application. J. Ind. Text. 2002, 31, 283–296. [Google Scholar] [CrossRef]
- Kozłowski, R.; Mieleniak, B.; Muzyczek, M.; Mańkowski, J. Development of insulation composite based on FR bast fibers and wool. In Proceedings of the International Conference on Flax and Other Bast Plants, Saskatoon, SK, Canada, 21–23 July 2008; Saskatchewan Flax Development Commission: Saskatoon, SK, Canada, 2008; Volume 68, pp. 353–363. [Google Scholar]
- Ganguly, P.K.; Samajpati, S. A versatile and cost effective route of jute diversification. In Proceedings of the Seminar on Technology Today-Transfer Tomorrow, Calcutta, India, 2 February 1996. [Google Scholar]
- Maity, S. Jute needle-punched nonwovens: Manufacturing, properties, and applications. J. Nat. Fibers 2016, 13, 383–396. [Google Scholar] [CrossRef]
- Mosharof Hossain, S.M.; Newaz, S.; Ferdausi, J. Physical and mechanical properties of jute needle-punched nonwovens. Int. Res. J. Multidiscip. Sci. Technol. 2016, 1, 218–221. [Google Scholar]
- Premkumar, S.; Thangamani, K. Study of woven and non-woven fabric on water retention property for effective curing of concrete. J. Tex. Inst. 2017, 108, 962–970. [Google Scholar] [CrossRef]
- Sinha, M.K.; Debnath, C.R.; Bandyopadhyay, S.B. The use of jute mill waste in making nonwoven fabric by an air-laying system. Tex. Res. J. 1975, 45, 54–60. [Google Scholar] [CrossRef]
- Khan, B.A.; Warner, P.; Wang, H. Antibacterial properties of hemp and other natural fibre plants: A review. BioResources 2014, 9, 3642–3659. [Google Scholar] [CrossRef]
- Liao, J.; Zhang, S.; Tang, X. Sound absorption of hemp fibers (Cannabis sativa L.) based nonwoven fabrics and composites: A review. J. Nat. Fiber 2022, 19, 1297–1309. [Google Scholar] [CrossRef]
- Ramaratnam, K.; Sealey, I.J.E.; Byrd Tyler Miller, I.V.; Andrukh, T.Z.; Elgin, R.H. Cannabis Fiber, Absorbent Cellulosic Structures Containing Cannabis Fiber and Methods of Making the Same. U.S. Patent 9,988,763, 5 June 2018. [Google Scholar]
- Hargitai, H.; Racz, I.; Anandjiwala, R. Development of hemp fibre–PP nonwoven composites. In Proceedings of the 8th Polymers for Advanced Technologies International Symposium, Budapest, Hungary, 13–16 September 2005; pp. 13–16. [Google Scholar]
- Nick, A.; Becker, U.; Thoma, W. Improved acoustic behavior of interior parts of renewable resources in the automotive industry. J. Polym. Environ. 2002, 10, 115–118. [Google Scholar] [CrossRef]
- Yilmaz, N.D.; Powell, N.B.; Banks-Lee, P.; Michielsen, S. Hemp-fiber based nonwoven composites: Effects of alkalization on sound absorption performance. Fibers Polym. 2012, 13, 915–922. [Google Scholar] [CrossRef]
- Yilmaz, N.D.; Powell, N.B.; Banks-Lee, P.; Michielsen, S. Multi-fiber needle-punched nonwoven composites: Effects of heat treatment on sound absorption performance. J. Ind. Text. 2013, 43, 231–246. [Google Scholar] [CrossRef]
- Baysal, A.; Turkmen, H.S.; Yayla, P. High-velocity impact behavior of nonwoven mats and unidirectional prepreg hemp and flax fibers reinforced hybrid biocomposites. Polym. Compos. 2024, 45, 5399–5415. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.A.; Richardson, M.O. Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos. Sci. Technol. 2007, 67, 1674–1683. [Google Scholar] [CrossRef]
- Freivalde, L.; Kukle, S.; Russell, S. Thermal properties of hemp fibre non-woven materials. IOP Conf. Ser. Mater. Sci. Eng. 2013, 49, 012030. [Google Scholar] [CrossRef]
- Freivalde, L.; Kukle, S.; Strazds, G. Hemp fibres for nonwoven insulation materials. Mater. Sci. 2011, 6, 1691–3132. [Google Scholar]
- Jianyong, F.; Jianchun, Z. Preparation and filtration property of hemp-based composite nonwoven. J. Ind. Text. 2015, 45, 265–297. [Google Scholar] [CrossRef]
- Peng, Z.; Yoshida, Y.; Sukigara, S. Morphology and physical properties of a novel ramie-PU blended nonwoven by electrospinning: The effect of cosolvent ratio. J. Polym. Sci. B Polym. Phys. 2010, 48, 1–14. [Google Scholar] [CrossRef]
- Choi, S.H.; Kim, H.C. Studies on the optimum pulping condition of ramie and the mechanical properties of ramie/cotton non-woven fabric as hygienic uses. J. Korea TAPPI 2014, 46, 16–25. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Negulescu, I.; Wu, Q.; Henderson, G. Comparative study of hemp fiber for nonwoven composites. J. Ind. Hemp 2007, 12, 27–45. [Google Scholar] [CrossRef]
- Yang, Q.; Morisawa, J.; Ohtani, Y.; Sameshima, K. Kenaf bast fiber treatment for nonwoven fabrics. J. Fiber Sci. Technol. 2001, 57, 88–93. [Google Scholar] [CrossRef]
- Gu, H.R.; Kim, S.J.; Kim, H.A. Physical properties of eco-friendly kenaf fiber imbedded nonwoven for automotive pillar trim. Procedia Eng. 2017, 200, 45–52. [Google Scholar] [CrossRef]
- Anuar, N.I.S.; Zakaria, S.; Gan, S.; Chia, C.H.; Wang, C.; Harun, J. Comparison of the morphological and mechanical properties of oil Palm EFB fibres and kenaf fibres in nonwoven reinforced composites. Ind. Crops Prod. 2019, 127, 55–65. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, L.; Chiparus, O.; Negulescu, I.; Yachmenev, V.; Warnock, M. Kenaf/Ramie composite for automotive headliner. J. Polym. Environ. 2005, 13, 107–114. [Google Scholar] [CrossRef]
- Kazi, A.M.; Ramasastry, D.V.A. Effect of fibre content on physical properties of short roselle fibre epoxy composites. Mater. Today Proc. 2022, 54, 814–817. [Google Scholar] [CrossRef]
- Wang, H.; Guo, J.; Xie, L. Preparation of lotus fibre nonwoven composite fabrics by spunlacing process. Mater. Lett. 2022, 326, 132940. [Google Scholar] [CrossRef]
- Panpan, C. Lotus Fiber Non-Woven Fabric. CN104420073A, 28 August 2015. [Google Scholar]
- Scurlock, J.M.; Dayton, D.C.; Hames, B. Bamboo: An overlooked biomass resource? Biomass Bioenergy 2000, 19, 229–244. [Google Scholar] [CrossRef]
- Devaki, E.; Indumathi, T.; Sangeetha, K. Natural antibacterial finished wet wipes. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 710–713. [Google Scholar] [CrossRef]
- Manjula, S.; Shanmugasundaram, O.L.; Ponappa, K. Optimization of plasma process parameters for surface modification of bamboo spunlace nonwoven fabric using glow discharge oxygen plasma. J. Ind. Text. 2021, 51, 225–245. [Google Scholar] [CrossRef]
- Le Phuong, H.A.; Izzati Ayob, N.A.; Blanford, C.F.; Mohammad Rawi, N.F.; Szekely, G. Nonwoven membrane supports from renewable resources: Bamboo fiber reinforced poly(lactic acid) composites. ACS Sustain. Chem. Eng. 2019, 7, 11885–11893. [Google Scholar] [CrossRef]
- Guzman, D.; Zenaida, I. Abaca, kenaf and pineapple fibers. NSTA Tech. J. 1982, 2, 77–87. [Google Scholar]
- Madrid, J.F.; Ueki, Y.; Seko, N. Abaca/polyester nonwoven fabric functionalization for metal ion adsorbent synthesis via electron beam-induced emulsion grafting. Radiat. Phys. Chem. 2013, 90, 104–110. [Google Scholar] [CrossRef]
- Kellie, G. Developments in the use of nonwovens in packaging. In Advances in Technical Nonwovens, 1st ed.; Kellie, G., Ed.; Woodhead Publishing: Sawston, UK, 2016; pp. 423–442. [Google Scholar] [CrossRef]
- Neira, D.S.M.; Marinho, G.S. Nonwoven sisal fiber as a thermal insulator material. J. Nat. Fibers 2009, 6, 115–126. [Google Scholar] [CrossRef]
- Ouhaibi, S.; Mrajji, O.; El Wazna, M.; Gounni, A.; Belouaggadia, N.; Ezzine, M.; Lbibb, R.; El Bouari, A.; Cherkaoui, O. Sisal-fibre based thermal insulation for use in buildings. Adv. Build. Energy Res. 2022, 16, 489–513. [Google Scholar] [CrossRef]
- Indu, G.K. Study of characteristics of sisal and coir blended nonwoven fabrics. Int. J. Creat. Res. Thoughts 2021, 9, 2320–2882. [Google Scholar]
- Motaleb, K.A.; Mizan, R.A.; Milašius, R. Development and characterization of eco-sustainable banana fiber nonwoven material: Surface treatment, water absorbency and mechanical properties. Cellulose 2020, 27, 7889–7900. [Google Scholar] [CrossRef]
- Kenned, J.J.; Sankaranarayanasamy, K.; Binoj, J.S.; Chelliah, S.K. Thermo-mechanical and morphological characterization of needle punched non-woven banana fiber reinforced polymer composites. Compos. Sci. Technol. 2020, 185, 107890. [Google Scholar] [CrossRef]
- Shroff, A.; Karolia, A.; Shah, J. Bio-softening of banana fiber for nonwoven application. Int. J. Sci. Res. 2015, 4, 1524–1527. [Google Scholar]
- Mansora, A.M.; Lima, J.S.; Anib, F.N.; Hashima, H.; Hoa, W.S. Characteristics of cellulose, hemicellulose and lignin of MD2 pineapple biomass. Chem. Eng. 2019, 7, 79–84. [Google Scholar]
- Thilagavathi, G.; Muthukumar, N.; Neela Krishnanan, S.; Senthilram, T. Development and characterization of pineapple fibre nonwovens for thermal and sound insulation applications. J. Nat. Fibers 2020, 17, 1391–1400. [Google Scholar] [CrossRef]
- Saini, R.; Singhania, R.R.; Chen, C.W.; Patel, A.K.; Saini, J.K.; Chauhan, A.S.; Dong, C.D. Pineapple leaves waste-a potential feedstock for production of value-added products in biorefinery: Pineapple leaves waste biorefinery. IJEB Indian J. Exp. Biol. 2023, 61, 729–738. [Google Scholar]
- Hanifah, S.; Giarto. A study of making nonwoven fabric as an air filter based on pineapple leaf fiber by thermal bonding method. In Proceedings of the Indonesian Textile Conference (International Conference), Jakarta, Indonesia, 27 July 2019; Volume 1, pp. 1–22. [Google Scholar]
- Spinacé, M.A.; Lambert, C.S.; Fermoselli, K.K.; De Paoli, M.A. Characterization of lignocellulosic curaua fibres. Carbohydr. Polym. 2009, 77, 47–53. [Google Scholar] [CrossRef]
- de Oliveira Braga, F.; Cabral, A.C.; Lima, E.P.; Monteiro, S.N.; de Assis, F.S. Curaua non-woven fabric composite for ceramic multilayered armors: A lightweight, natural, and low-cost alternative for KevlarTM. In Proceedings of the 3rd Pan American Materials Congress; Springer International Publishing: Cham, Switzerland, 2017; pp. 339–346. [Google Scholar]
- Cazauranc -Martinez, M.N.; Herrera Franco, P.J.; Gonzalez-Chi, P.I.; Aguilar-Vega, M. Physical and mechanical properties of henequen fibers. J. Appl. Polym. Sci. 1991, 43, 749–756. [Google Scholar] [CrossRef]
- Rodríguez Soto, A.A.; Valín Rivera, J.L.; Alves Borges, L.M.S.; Palomares Ruiz, J.E. Tensile, impact, and thermal properties of an epoxynovolac matrix composites with cuban henequen fibers. Mech. Compos. Mater. 2018, 54, 341–348. [Google Scholar] [CrossRef]
- Takahashi, T.; Kasai, W.; Kondo, T. Preparation of functional nonwoven fabric ‘KAMIKO’ utilizing wasted tea leaves. J. Fiber Sci. Technol. 2009, 65, 197–204. [Google Scholar] [CrossRef]
- Ersoy, S.; Kucuk, H. Investigation of industrial tea-leaf-fibre waste material for its sound absorption properties. Appl. Acoust. 2009, 70, 215–220. [Google Scholar] [CrossRef]
- Bellairu, P.K.; Bhat, S.; Gijo, E.V. Modelling and optimisation of natural fibre reinforced polymer nanocomposite: Application of mixture-design technique. Multidiscip. Model. Mater. Struct. 2021, 17, 507–521. [Google Scholar] [CrossRef]
- Gomez, T.S.; Navacerrada, M.A.; Díaz, C.; Fernández-Morales, P. Fique fibres as a sustainable material for thermoacoustic conditioning. Appl. Acoust. 2020, 164, 107240. [Google Scholar] [CrossRef]
- Navacerrada Saturio, M.D.; Díaz Sanchidrián, C.; Fernández, P. Characterization of a material based on short natural fique fibers. BioResources 2014, 9, 3480–3496. [Google Scholar] [CrossRef]
- Hidalgo-salazar, M.A.; Correa, J.P. Mechanical and thermal properties of biocomposites from nonwoven industrial fique fiber mats with poxy resin and linear lowdensity polyethylene. Results Phys. 2018, 8, 461–467. [Google Scholar] [CrossRef]
- Sunny, G.; Rajan, T.P. Review on areca nut fiber and its implementation in sustainable products development. J. Nat. Fibers 2022, 19, 4747–4760. [Google Scholar] [CrossRef]
- Yusriah, L.; Sapuan, S.M.; Zainudin, E.S.; Mariatti, M.; Jawaid, M. Thermo-physical, thermal degradation, and flexural properties of betel nut husk fiber-reinforced vinyl ester composites. Polym. Compos. 2016, 37, 2008–2017. [Google Scholar] [CrossRef]
- Tulos, N.; Azmi, A.S.; Musa, A.; Zainuddin, N.I.; Nasir, E. Extracted corn husk and banana fibre waste for nonwoven sheets: Fabrication and physical characterisation. AIP Conf. Proc. 2023, 2614, 050013. [Google Scholar]
- Chun, K.S.; Maimunah, T.; Yeng, C.M.; Yeow, T.K.; Kiat, O.T. Properties of corn husk fiber reinforced epoxy composites fabricated using vacuum-assisted resin infusion. J. Physic Sci. 2020, 31, 17–31. [Google Scholar] [CrossRef]
- Liu, X.; Yan, X.; Zhang, H. Effects of pore structure on sound absorption of kapok-based fiber nonwoven fabrics at low frequency. Text. Res. J. 2016, 86, 755–764. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Das, D. Oil sorption and retention capacities of thermally-bonded hybrid nonwovens prepared from cotton, kapok, milkweed and polypropylene fibers. J. Environ. Manag. 2018, 219, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Karthik, T. Development of acoustic nonwoven materials from kapok and milkweed fibres. J. Text. Inst. 2016, 107, 477–482. [Google Scholar] [CrossRef]
- Liu, X.T.; Yan, X.; Hong, J.; Zhang, H.P. The comparison of sound absorption of kapok-based fiber nonwoven fabrics. Adv. Mater. Res. 2014, 1004, 562–565. [Google Scholar] [CrossRef]
- Thilagavathi, G.; Praba Karan, C. Investigations on oil sorption capacity of nettle fibrous assembly and 100% nettle and nettle/kapok blended needle-punched nonwovens. J. Ind. Text. 2019, 49, 415–430. [Google Scholar] [CrossRef]
- Rengasamy, R.S.; Das, D.; Karan, C.P. Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. J. Hazard. Mater. 2011, 186, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.H.; Kim, J.S.; Kim, D.H.; Shin, M.S.; Jung, Y.J.; Lee, D.J.; Kim, H.D. Effect of blend ratio of PP/kapok blend nonwoven fabrics on oil sorption capacity. Environ. Technol. 2013, 34, 3169–3175. [Google Scholar] [CrossRef] [PubMed]
- Sukmawati, A.; Septiani, W. Oils and water absorption behavior of Biduri (Calotropis gigantea) fibers. IOP Conf. Ser. Mater. Sci. Eng. 2012, 1173, 012047. [Google Scholar] [CrossRef]
- Ventura, H.; Morón, M.; Ardanuy, M. Characterization and treatments of oil Palm frond fibers and its suitability for technical applications. J. Nat. Fibers 2015, 12, 84–95. [Google Scholar] [CrossRef]
- Chen, C.; Zhang, Y.; Sun, G.; Wang, J.; Wang, G. Windmill palm fiber/polyvinyl alcohol coated nonwoven mats with sound absorption characteristics. BioResources 2016, 11, 4212–4225. [Google Scholar] [CrossRef]
- Gupta, P.K.; Patra, S.; Samanta, K.K. Potential of Okra for Application in Textiles: A Review. J. Nat. Fiber 2021, 18, 1788–1800. [Google Scholar] [CrossRef]
- Duman, M.N.; Kocak, E.D.; Merdan, N.; Mistik, I. Nonwoven production from agricultural okra wastes and investigation of their thermal conductivities. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 192007. [Google Scholar]
- Boynard, C.A.; d’Almeida, J.R.M. Morphological characterization and mechanical behavior of sponge gourd (Luffa cylindrica)-polyester composite materials. Polym. Plast. Technol. Eng. 2000, 39, 489–499. [Google Scholar] [CrossRef]
- Thangavel, K.; Ganesan, P. Characterization and analysis of ridge gourd (Luffa acutangula) fibres and its potential application in sound insulation. J. Text. Inst. 2015, 107, 1412–1425. [Google Scholar] [CrossRef]
- Madara, D.S.; Wetaka, S.N.C. Characterization of nonwoven structures made from luffa cylindrica fibres. Chem. Process Eng. Res. 2017, 50, 1–13. [Google Scholar]
- Latifi, F.; Talebi, Z.; Khalili, H. Mechanical properties evaluation of nonwoven industrial cotton waste produced by needle punching method. IOP Conf. Ser. Mater. Sci. Eng. 2019, 670, 012035. [Google Scholar]
- Prasad, A.V.; Rao, K. Tensile and impact behavior of rice straw-polyester composites. Indian J. Fibre Text. Res. 2007, 32, 399–403. [Google Scholar]
- Agirgan, M.; Taskin, V. Nonwoven production from waste rice straw by using enzymatic method nonwoven production from waste rice straw by using enzymatic method. J. Nat. Fibers 2020, 17, 979–985. [Google Scholar] [CrossRef]
- Chaliewsak, J. Fried Oil Absorption Property of Nonwoven from Rice Straw Cellulose Fiber; Rajamangala University of Technology Phra Nakhon: Bangkok, Thailand, 2022; Available online: http://repository.rmutp.ac.th/handle/123456789/3810 (accessed on 26 January 2024).
- Chiparus, O.I. Bagasse Fiber for Production of Nonwoven Materials. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2004. [Google Scholar]
- Chen, Y. Producing Nonwoven Materials from Sugarcane; Louisiana State University AgCenter: Baton Rouge, LA, USA, 2005; Available online: https://www.lsuagcenter.com/portals/communications/publications/agmag/archive/2002/fall/producing-nonwoven-materials-from-sugarcane (accessed on 26 January 2024).
- Stephen, W.F.; Jean-Marie, T. Use of Polylactic Acid Powders in the Manufacturing of Beverage Filter Fibers. U.S. Patent 9,988,205, 7 March 2018. [Google Scholar]
- Zhang, X. Investigation of Biodegradable Nonwoven Composites Based on Cotton, Bagasse and Other Annual Plants. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2004. [Google Scholar]
- Suni, S.; Kosunen, A.L.; Hautala, M.; Pasila, A.; Romantschuk, M.S. Use of a by-product of peat excavation, cotton grass fibre, as a sorbent for oil-spills. Mar. Pollut. Bull. 2004, 49, 916–921. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Fu, F.; Wang, F.F.; Li, Y.; Wang, P.; Zhang, D. The mechanical and ultraviolet aging properties of needle-punched nonwoven geotextiles made with recycled fibers. J. Ind. Text. 2022, 51, 8668S–8689S. [Google Scholar] [CrossRef]
- Kane, F.; Brorens, P.; Guen, M.J.L.; Kilford, A. Exploring a Place-Based Approach to Materials Design: Harakeke Nonwovens in Aotearoa New Zealand; Loughborough University: Loughborough, UK, 2020; Conference contribution. [Google Scholar] [CrossRef]
- Samaei, S.E.; Berardi, U.; Soltani, P.; Taban, E. Experimental and modeling investigation of the acoustic behavior of sustainable kenaf/yucca composites. Appl. Acoust. 2021, 183, 108332. [Google Scholar] [CrossRef]
- Zannen, S.; Halimi, M.T.; Hassen, M.B.; Abualsauod, E.H.; Othman, A.M. Development of a multifunctional wet-laid nonwoven from marine waste Posidonia oceanica technical fiber and CMC binder. Polymer 2022, 14, 865. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Benson, R.S.; Kit, K.M.; Dever, M. Kudzu fiber-reinforced polypropylene composite. J. Appl. Polym. Sci. 2002, 85, 1961–1969. [Google Scholar] [CrossRef]
- Raj, M.; Fatima, S.; Tandon, N. A study of areca nut leaf sheath fibers as a green sound-absorbing material. Appl. Acoust. 2020, 169, 107490. [Google Scholar] [CrossRef]
- Gutierrez, O.; Balart, R.; Lascano, D.; Quiles-Carrillo, L.; Fages, E.; Sanchez-Nacher, L. Development and characterization of environmentally friendly insulation materials for the building industry from olive pomace waste. Fibers Polym. 2020, 21, 1142–1151. [Google Scholar] [CrossRef]
- Singh, N.; Rani, A. Extraction and processing of fiber from Sesbania aculeata (Dhaincha) for preparation of needle punched nonwoven fabric. Natl. Acad. Sci. Lett. 2013, 36, 489–492. [Google Scholar] [CrossRef]
- Xia, Z.; Li, J.; Lu, H.; Zhang, J.; Mi, Q.; Wu, J.; Zheng, X.; Zhang, J. Natural grass to all-biomass biodegradable tape and superior oil-water separation fabric. Resour. Conserv. Recycl. 2022, 182, 106320. [Google Scholar] [CrossRef]
- Martin, J.R.; Lamb, G.E. Measurement of thermal conductivity of nonwovens using a dynamic method. Text. Res. J. 1987, 57, 721–727. [Google Scholar] [CrossRef]
- Huang, C.H.; Lin, J.H.; Lou, C.W.; Tsai, Y.T. The efficacy of coconut fibers on the sound-absorbing and thermal-insulating nonwoven composite board. Fibers Polym. 2013, 14, 1378–1385. [Google Scholar] [CrossRef]
- Gnanauthayan, G.; Rengasamy, R.S.; Kothari, V.K. Heat insulation characteristics of high bulk nonwovens. J. Text. Inst. 2017, 108, 2173–2179. [Google Scholar] [CrossRef]
- Zakriya, M.; Ramakrishnan, G.; Gobi, N.; Palaniswamy, N.K.; Srinivasan, J. Jute-reinforced non-woven composites as a thermal insulator and sound absorber-A review. J. Reinf. Plast. Compos. 2017, 36, 206–213. [Google Scholar] [CrossRef]
- Dulgheriu, I.; Ionescu, I.; Ionesi, D.; Dragomir, A. Evaluation and calculation model for heat transfer equilibrium through clothing articles. Ind. Textila 2015, 66, 59–66. [Google Scholar]
- Benzait, Z.; Trabzon, L. A review of recent research on materials used in polymer-matrix composites for body armor application. J. Compos. Mater. 2018, 52, 3241–3263. [Google Scholar] [CrossRef]
- Sakthivel, J.C.; Brindha, S.; Gowthamraj, G.; Sabna, J. Studies on the properties of sugarcane bagasse fibre for sustainable textile applications. In Proceedings of the First International Conference on Combinatorial and Optimization, Chennai, India, 7–8 December 2021. [Google Scholar]
- Thilagavathi, G.; Pradeep, E.; Kannaian, T.; and Sasikala, L. Development of natural fiber nonwovens for application as car interiors for noise control. J. Ind. Text. 2012, 39, 267–278. [Google Scholar] [CrossRef]
- Hao, A.; Zhao, H.; Chen, J.Y. Kenaf/polypropylene nonwoven composites: The influence of manufacturing conditions on mechanical, thermal, and acoustical performance. Compos. B Eng. 2013, 54, 44–51. [Google Scholar] [CrossRef]
- Chaudhary, V.; Bajpai, P.K.; Maheshwari, S. An investigation on wear and dynamic mechanical behavior of jute/hemp/flax reinforced composites and its hybrids for tribological applications. Fibers Polym. 2018, 19, 403–415. [Google Scholar] [CrossRef]
- Viju, S.; Thilagavathi, G. Comfort characteristics of nettle nonwoven fabrics. J. Nat. Fibers 2022, 19, 1490–1497. [Google Scholar] [CrossRef]
- Gomez Mendez, T.S. Natural Fibers-Based Nonwovens Obtained by Chemical Bonding for Potencial Sound Absorption Applications; Universidad Pontificia Bolivariana: Medellin, Colombie, 2020; Available online: https://www.researchgate.net/publication/339474561 (accessed on 27 January 2024).
- Taban, E.; Soltani, P.; Berardi, U.; Putra, A.; Mousavi, S.M.; Faridan, M.; Samaei, S.E.; Khavanin, A. Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Build. Environ. 2020, 180, 107087. [Google Scholar] [CrossRef]
- Sengupta, S. Sound reduction by needle-punched nonwoven fabrics. Indian J. Fibre Text. Res. 2010, 35, 237–242. [Google Scholar]
- Sambu, M.; Nizamyahya, M.; Latif, H.A.; Hatta, M.N.M.; Ghazali, M.I.B. Acoustical performance and physical properties of nonwoven fibre; Arenga pinnata (Ijuk) and natural rubber composite. ARPN J. Eng. Appl. Sci. 2016, 11, 13292–13299. [Google Scholar]
- Tang, X.; Zhang, X.; Zhang, H.; Zhuang, X.; Yan, X. Corn husk for noise reduction: Robust acoustic absorption and reduced thickness. Appl. Acoust. 2018, 134, 60–68. [Google Scholar] [CrossRef]
- Fan, Q.; Lu, T.; Deng, Y.; Zhang, Y.; Ma, W.; Xiong, R.; Huang, C. Bio-based materials with special wettability for oil-water separation. Sep. Purif. Technol. 2022, 297, 121445. [Google Scholar] [CrossRef]
- Yuan, Z.; Ke, Z.; Qiu, Y.; Zheng, L.; Yang, Y.; Gu, Q.; Wang, C. Prewetting polypropylene-wood pulp fiber composite nonwoven fabric for oil-water separation. ACS Appl. Mater. Interfaces 2020, 12, 46923–46932. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.M.; Kwon, H.J.; Moreau, J.P. Cotton nonwoven as oil spill cleanup sorbents. Text. Res. J. 1993, 63, 211–218. [Google Scholar] [CrossRef]
- Brindha, R.; Thilagavathi, G.; Viju, S. Development of nettle -polypropylene blended needle-punched nonwoven fabrics for oil spill cleanup applications. J. Nat. Fibers 2020, 17, 1439–1453. [Google Scholar] [CrossRef]
- Kim, J.Y.; Choi, Y.O. Preparation and their application of nonwoven fabrics using natural hollow fibers. Text. Sci. Eng. 2020, 57, 332–339. [Google Scholar]
- Choi, H.M.; Cloud, R.M. Natural sorbents in oil spill cleanup. Environ. Sci. Technol. 1992, 26, 772–776. [Google Scholar] [CrossRef]
- Sakthivel, K.; Periyasamy, S.; Prakash, C. Study on oil holding capacity of Calotropis Gigantea fiber. J. Nat. Fibers 2022, 19, 11314–11331. [Google Scholar] [CrossRef]
- Renuka, S.; Rengasamy, R.S.; Das, D. Studies on needle- punched natural and polypropylene fiber nonwovens as oil sorbents. J Ind. Text. 2016, 46, 1121–1143. [Google Scholar] [CrossRef]
- Dan, Y.; Popowski, Y.; Buzhor, M.; Menashe, E.; Rachmani, O.; Amir, E. Covalent Surface Modification of Cellulose-Based Textiles for Oil-Water Separation Applications. Ind. Eng. Chem. Res. 2020, 59, 5456–5465. [Google Scholar] [CrossRef]
- Doh, D.Y.; Choi, S.J.; Yoon, Y.O.; Lim, Y.H. Application of kapok nonwoven and electrospun Pvdf nanofiber web to oil/water separation. In Proceedings of the 11th World Filtration Congress, Graz, Austria, 16–20 April 2012. [Google Scholar]
- de Oliveira Braga, F.; Bolzan, L.T.; da Luz, F.S.; Lopes, P.H.L.M.; Lima, É.P., Jr.; Monteiro, S.N. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates. J. Mater. Res. Technol. 2017, 6, 417–422. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S. Quasi-static penetration and ballistic properties of kenaf- aramid hybrid composites. Mater. Des. 2014, 63, 775–782. [Google Scholar] [CrossRef]
- Yahaya, R.; Sapuan, S.M.; Jawaid, M.; Leman, Z.; Zainudin, E.S. Effects of kenaf contents and fiber orientation on physical, mechanical, and morphological properties of hybrid laminated composites for vehicle spall liners. Polym. Compos. 2015, 36, 1469–1476. [Google Scholar] [CrossRef]
- Marasovic, P.; Kopitar, D. Overview and perspective of nonwoven agrotextile. Text. Leather Rev. 2019, 2, 32–45. [Google Scholar] [CrossRef]
- Miao, M.; Pierlot, A.P.; Millington, K.; Gordon, S.G.; Best, A.; Clarke, M. Biodegradable mulch fabric by surface fibrillation and entanglement of plant fibers. Text. Res. J. 2013, 83, 1906–1917. [Google Scholar] [CrossRef]
- Mańkowski, J.; Kubacki, A.; Kołodziej, J.; Mackiewicz-Talarczyk, M.; Baraniecki, P.; Pniewska, I. Hemp fibre from crops grown on reclaimed land for the production of sanitary mats. In Natural Fibres: Advances in Science and Technology Towards Industrial Applications: From Science to Market; Fangueiro, R., Rana, S., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 371–377. [Google Scholar]
- Zhou, W.; Niu, Y.; Wang, C.; Yang, Y.; Tan, Z.; Yi, Y.; Yu, W.; Wang, H. A biodegradable ramie fibre-based nonwoven film used for increasing oxygen supply to cultivated soil. Appl. Sci. 2018, 8, 1813. [Google Scholar] [CrossRef]
- Van Roekel, D.J.E.; De Jong, E. Elementary flax fibres for disposable nonwovens. In Proceedings of the TAPPI Pulping Conference Proceedings, Orlando, FL, USA, 31 October–4 November 1999; pp. 677–682. [Google Scholar]
- Sheasley, S. Bamboo Fiber Baby Wipes. US Patent US20110017631A1, 27 January 2011. [Google Scholar]
- Manjula, S.; Shanmugasundaram, O.L. Effect of oxygen plasma treatment on wicking behavior of bamboo non- woven fabric. Int. J. Sci. Res. Sci. Technol. 2017, 3, 205–209. [Google Scholar]
- Kathirvel, K.P.; Ramachandran, T. Development of antimicrobial feminine hygiene products using bamboo and aloevera fibers. J. Nat. Fibers 2014, 11, 242–255. [Google Scholar] [CrossRef]
- Asabuwa Ngwabebhoh, F.; Saha, N.; Saha, T.; Saha, P. Bio-innovation of new-generation nonwoven natural fibrous materials for the footwear industry: Current state-of-the-art and sustainability panorama. J. Nat. Fibers 2022, 19, 4897–4907. [Google Scholar] [CrossRef]
- Bratchenya, L.A.; Tolochkova, O.N.; Lebedeva, M.V. Creation of nonwoven shoe materials with improved hygienic properties. Fibre Chem. 2012, 43, 369–371. [Google Scholar] [CrossRef]
- Borojeni, I.A.; Gajewski, G.; Riahi, R.A. Application of electrospun nonwoven fibers in air filters. Fibers 2022, 10, 15. [Google Scholar] [CrossRef]
Fibre Source | Species | Origin |
---|---|---|
Abaca | Musa textilis | Leaf |
Bagasse | Sugar cane | Grass |
Bamboo | (>1250 species) | Grass |
Banana | Musa indica | Leaf |
Cantala | Agave cantala | Leaf |
Caroa | Neoglaziovia variegate | Leaf |
China jute | Abutilon theophrasti | Stem |
Coir | Cocos nucifera | Fruit |
Cotton | Gossypium sp. | Seed |
Curaua | Ananas erectifolius | Leaf |
Date palm | Phoenix dactylifera | Leaf |
Flax | Linum usitatissimum | Stem |
Hemp | Cannabis sativa | Stem |
Henequen | Agave foourcrocydes | Leaf |
Isora | Helicteres isora | Stem |
Istle | Samuela carnerosana | Leaf |
Jute | Corchorus capsularis | Stem |
Kapok | Ceiba pentranda | Fruit |
Kenaf | Hibiscus cannabinus | Stem |
Kudzu | Pueraria thunbergiana | Stem |
Mauritius hemp | Furcraea gigantean | Leaf |
Nettle | Urtica dioica | Stem |
Oil palm | Elaeis guineensis | Fruit |
Piassava | Attalea funifera | Leaf |
Pinneapple | Ananus comosus | Leaf |
Phormium | Phormium tenas | Leaf |
Roselle | Hibiscus sabdariffa | Stem |
Ramie | Boehmeria nivea | Stem |
Sansevieria | Sansevieria | Leaf |
Sisal | Agave sisilana | Leaf |
Sponge gourd | Luffa cylinderica | Fruit |
Straw (cereal) | – | Stalk |
Sun hemp | Crorolaria juncea | Stem |
Cadillo/urena | Urena lobate | Stem |
Wood | (>10,000 species) | Stem |
Physical Properties | Major Chemical Components (%) | Mechanical Properties | Moisture Uptake % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Fibres | Diameter µm | Length mm | Cellulose (%) | Hemicellulose (%) | Lignin (%) | Pectin (%) | Tensile Strength MPa | Elastic Modulus GPa | Elongation % | |
Jute | 18–20 | 0.8–6 | 67 | 16 | 9 | 0.2 | 325 | 37.5 | 2.5 | 10–13 |
Hemp | 16–50 | 10–15 | 81 | 20 | 4 | 0.9 | 530 | 45 | 3 | 6–12 |
Kenaf | 12–36 | 1.4–11 | 53.5 | 21 | 17 | 2 | 743 | 41 | / | 16–18 |
Flax | 12–37 | 15–20 | 70.5 | 16.5 | 2.5 | 0.9 | 700 | 60 | 2.3 | 7–12 |
Ramie | 50 | 60–250 | 72 | 14 | 0.8 | 1.95 | 925 | 23 | 3.7 | 7.5–17 |
Bamboo | 25–88 | 1.5–4.0 | 34.5 | 20.5 | 26 | / | 575 | 27 | / | 10–12 |
Banana | 12–30 | 0.4–0.9 | 62.4 | 12.5 | 7.5 | / | 721.5 | 2–4 | 2–3 | 2–3 |
Alfa | / | / | 45.4 | 38.5 | 14.9 | / | 350 | 22 | 5.8 | 7–10 |
Coir | 7–30 | 0.3–3 | 46 | 0.3 | 45 | 4 | 140.5 | 6 | 27.5 | 12–14 |
Pineapple | 8–41 | 3–8 | 80.5 | 17.5 | 8.3 | 4 | 1020 | 71 | 0.8 | / |
Sisal | 10–300 | 600–1500 | 60 | 11.5 | 8 | 1.2 | 460 | 15.5 | / | 10–12 |
Henequen | / | / | 60 | 28 | 8 | / | / | / | / | / |
Abaca | 10–30 | 4.6–5.2 | 62.5 | 21 | 12 | 0.8 | 12 | 41 | 3.4 | 5–10 |
Bagasse | / | / | 37 | 21 | 22 | 10 | 290 | 17 | / | / |
Kapok | 20–43 | 10–35 | 13.16 | / | / | / | 93.3 | 4 | 1.2 | 9–11 |
Cotton | 12–35 | 15–36 | 89 | 4 | 0.75 | 6 | 500 | 8 | 7 | 7–20 |
Curaua | / | / | 73.6 | 5 | 7.5 | / | 825 | 9 | 7.5 | / |
Jute | 18–20 | 0.8–6 | 45–72 | 12–21 | 0.2–26 | 0.2–12 | 325 | 37.5 | 2.5 | 10–13 |
Hemp | 16–50 | 10–15 | 55–80 | 12–22 | 3–13 | 1–3 | 530 | 45 | 3 | 6–12 |
Kenaf | 12–36 | 1.4–11 | 30–55 | 18–24 | 8–21 | 3–9 | 743 | 41 | / | 16–18 |
Flax | 12–37 | 15–20 | 43–71 | 16–21 | 2–23 | 1.8–3 | 700 | 60 | 2.3 | 7–12 |
Ramie | 50 | 60–250 | 68–91 | 5–17 | 0.5–1 | 1.5–2.5 | 925 | 23 | 3.7 | 7.5–17 |
Bamboo | 25–88 | 1.5–4.0 | 26–75 | 13–73 | 10–31 | 0.3–1 | 575 | 27 | / | 10–12 |
Banana | 12–30 | 0.4–0.9 | 48–60 | 10–16 | 14–22 | 2–4 | 721.5 | 29 | 27.5 | 2–3 |
Coir | 7–30 | 0.3–3 | 40–50 | 0.2–0.5 | 43–47 | 3–5 | 140.5 | 6 | 12–14 | 12–14 |
Pineapple | 8–41 | 3–8 | 55–75 | 78–85 | 4–10 | 0.8–1.5 | 1020 | 71 | 0.8 | / |
Sisal | 10–300 | 600–1500 | 45–80 | 10–25 | 7–15 | 0.8–10 | 460 | 15.5 | / | 10–12 |
Palm | / | / | 43–65 | 17–34 | 13–25 | / | 50–400 | 4–18 | / | / |
Abaca | 10–30 | 4.6–5.2 | 56–63 | 15–17 | 7–13 | 0.3–1 | 90–95 | 1.2–1.5 | 5–10 | 5–10 |
Kapok | 20–43 | 10–35 | 13–20 | / | / | / | 200–800 | 1–2 | 9–11 | 9–11 |
Cotton | 12–35 | 15–36 | 83–90 | 1–6 | 0.7–29 | 0–6 | / | 12–12 | 7–20 | 7–20 |
Type of Material | Nonwoven Process | Type of Fibre | Fibre Ratio | Ref. |
---|---|---|---|---|
Nonwoven | Needle-punch | Flax: PVA 1 Flax: bicomponent 2 | Flax in the 10–30 wt.% | [52] |
Bio-composite | Needle-punch, Hot press | Semi-rettedd Flax: PP/PE 3 Retted Flax: PP 4 Flax: T-255 5 | 50:50 | [53] |
Nonwoven | Air-laid and needle-punch | Flax | 100 | [54] |
Nonwoven | Parallel-laid of carded web Needle-punching Hot rolling | Flax/PP | 40:60 | [55] |
Composite | Carding/overlapping/needle-punching, hot press | Flax/PP Flax/MAPP 6 | 50:50 | [56] |
Nonwoven | Spun-lace, thermal bonding by panel presses and stamp-forming press | Flax/PP | 50:50 | [57] |
Nonwoven | Wet laid, hot press | Flax/PP | 90:10 80:20 70/30 | [58] |
Nonwoven | Layer-by-layer filtration process | Flax Nanofibrillated cellulose | 10, 20, 30 wt.% | [59] |
Nonwoven | Needle-punch | Flax/Polylactic | 40 wt.% | [60] |
Nonwoven | Wet-laid | Flax/binder fibre 7 | 90:10 80:20 70:30 | [61] |
Nonwoven | Wet-laid | Flax/PP | 90:10 80:20 70:30 | [58] |
Nonwoven | Needle-punch | Flax/PP | 50:50 | [62] |
Nonwoven | Needle-punch | Flax/wool | 50:50 | [63] |
Nonwoven | Air-laid | Wool/flax/bicomponent | 42.5% 42.5% 15% | [63] |
Type of Material | Nonwoven Process | Type of Fibre | Fibre Ratio | Ref. |
---|---|---|---|---|
Nonwoven | Needle-punch | Hemp/PP | 30, 40, 50 and 70% hemp by weight | [72] |
Nonwoven | - | Hemp/PP | 50:50 | [73] |
Three-layered nonwoven composite | Needle-punch | PP/Hemp/PP | Every layer with 330 gsm (g·m−2) | [74] |
Three-layered nonwoven composite | Needle-punch | PLA/Hemp/PLA 1 | Every layer with 330 gsm (g·m−2) | [75] |
Nonwoven | Needle-punch | Hemp/PP | 50:50 | [76] |
Nonwoven reinforced polyester composites | Needle-punch | Hemp | 100% | [77] |
Nonwoven | Needle-punching hydro-entanglement | Hemp | 100% | [78] |
Nonwoven | Carding-thermal bonding | Hemp/PP | 90:10 | [78] |
Nonwoven | Carding and needle-punching | Hemp | 100% | [79] |
Nonwoven | Air-laid and needle-punching | Hemp | 100% | [54] |
Nonwoven | Spun-lace | Hemp/cotton Hemp/viscose | 60:40 60:40 | [80] |
Nonwoven composite | carding/overlapping/needle-Punching, Hot-press | Hemp/pp Hemp/MAPP 2 Maleic Anhydride-grafted PP | 50:50 | [56] |
Biocomposite | Needle-punch, Hot-press | Unretted hemp: PE/PP Retted hemp: PP Unretted hemp: PP Retted hemp: PP Flax: T-255 | 50:50 | [53] |
No. | Materials | Thickness, mm | Bulk Density, kg/m3 | Key Findings | Thermal Conductivity, W/mK | Ref. |
---|---|---|---|---|---|---|
1 | Bassage | 5.69 | 83.025 | Thermal insulation of nonwoven fabric is 0.726 clo. | 0.0505 | [161] |
2 | Cotton/milkweed | 13.50 | 67.000 | The thermal conductivity of samples decreases with increase in the thickness of nonwoven fabric. | 0.0310 | [124] |
3 | Cotton/kapok | 8.90 | 78.000 | 0.0040 | ||
4 | Coconut/2D-PET | 10.00 | 20.000 | The thermal conductivity coefficient of the composite increases with the increased amount of coconut fibres of less than 15 wt.%. | 0.0279 | [156] |
5 | Betel Nut Husk (BNH) | 10.00 | - | The incorporation of BNH random nonwoven fabric decreased the thermal conductivity and thermal diffusivity of the composite. | 0.1800 | [119] |
6 | Fique | 1.50 | 66.67 | Fique nonwoven fabric has good thermal insulator material with the reference of mineral wool. | 0.0360 | [116] |
7 | Fique | 3.50 | 197 | Thermal conductivity increases by increasing the weight of nonwoven fabrics. | 0.0434 | [115] |
8 | Fique | - | - | Fique fibre incorporation affects the thermal stability of the composites. | - | [117] |
9 | Pineapple | 1.03, 3.48 | 194, 201 | By increasing the thickness of the nonwoven fabric, thermal conductivity decreased. | 0.0039, 0.0021 | [105] |
10 | Pineapple/PET | 0.83 | 241 | The addition of low-melt PET decreased the thermal conductivity of the nonwovens. | 0.0197 | [105] |
11 | Bamboo/PP | 4.93 | 194 | Banana/PP nonwoven fabric has better thermal insulation properties than the other two nonwovens. | 0.2660 | [162] |
Banana/PP | 6.43 | 151 | 0.0178 | |||
Jute/pp | 4.28 | 154 | 0.0360 | |||
12 | Sesbania Grandiflora | 6.40 | 108 | Areal density, thickness, and bulk density influence thermal conductivity. | 0.0472 | [39] |
Mutingia Calabura | 5.49 | 107 | - | 0.0353 | ||
Bauhinia Purpurea | 5.40 | 110 | - | 0.0129 | ||
13 | Kapok/cotton | 2–12 | 75–130 | The thermal conductivity of fabric decreased with an increase in the blend proportion of kapok and milkweed. | 0.0310 | [124] |
Milkweed/cotton | 3–13.5 | 60–100 | 0.0040 | |||
14 | Cotton/Luffa | 0.73 | 98 | The thermal conductivity decreased with an increase in luffa blend proportion. | 0.0430 | [135] |
Polyester/Luffa | 0.72 | 91 | 0.0800 | |||
15 | Banana fibre | 6 | 105 | Composites showed thermal stability up to 260 °C. | - | [102] |
16 | Okra fibre | 3.5 | 197 | The nonwoven fabric produced from alkaline-treated fibres showed better heat transfer coefficient. | 0.4500 | [133] |
17 | Kenaf/PP | 6 | - | Nonwoven composites containing kenaf were more thermally stable than raw PP plastics. | - | [163] |
18 | Kenaf/Ramie Binder: PVA | 0.791 | 150 | There is an insignificant difference of the thermal conductivity between the acrylic copolymer-bonded composite and the PVA-bonded composite. | 0.0210 | [87] |
Kenaf/Ramie Binder: Acrylic copolymer | 0.689 | 172 | 0.0230 | |||
19 | FR flax | 5 | 100 | Air-laid nonwoven fabric showed excellent insulation performance. | - | [63] |
FR flax/wool | 5.5 | 93 | - | |||
FR flax/wool/Bicomponent | 35 | 20 | 0.0430 | |||
20 | Flax: PVA | 1.5–2 | 263 | PVA in flax: PVA nonwoven fabric does not melt; the nonwoven fabric has high porosity and poor matrix continuity and lower thermal conductivity. | 0.0200 | [58] |
21 | Jute/epoxy Hemp/epoxy Flax/epoxy Jute/Hemp/epoxy Hemp/Flax/epoxy Jute/Hemp/Flax/epoxy | - | - | Reinforcement of natural fibres improved the thermal stability of neat epoxy under dynamic loading conditions. | - | [164] |
22 | Posidonia oceanica | - | - | Posidonia fibre nonwovens have good insulation properties due to porosity and the amorphous structure. | 0.0240 | [149] |
23 | Kenaf, jute, flax, and waste cotton: recycled polyester: PP | 0.5–2 | 50–100 | The cotton-based composite showed the highest specific thermal conductivity while the jute-based composite was the least conductive to heat. | 0.0300–0.0400 | [62] |
24 | Olive Pomace/Lyocell/PES/PE | 0.5–1 | 300 | The thermo-bonding fibre has very low effect on thermal insulation properties of the obtained composites. | 0.0870 | [152] |
25 | Olive/Lyocell/PLA | 0.5–1.5 | 300 | Hemp fibre content or binding fibre content and areal density of the nonwoven fabric do not affect nonwoven thermal insulating properties. | 0.0880 | [25] |
Waste hemp/PLA/V | 3.5–4.5 | 100–300 | 0.0270 | |||
Waste Hemp/PLA | 3–4 | 100–300 | 0.0280 | |||
26 | Sisal | 10 | - | There were no significant differences between natural and treated nonwoven fabrics in terms on thermal conductivity. | 0.0420 | [98] |
27 | Sisal: wool | 7.9 | 134 | Nonwoven sisal fibre material provides 76% reduction in annual heating needs. | 0.0380 | [99] |
28 | Sansevieria stuckyi | 6.19 | 89 | The thermal conductivity of the nonwoven fabrics showed that the fabric is suitable for insulation materials. | 0.044 | [18] |
29 | Banana | 6.22 | 88 | - - Thermal conductivity depends on the fabric thickness for both nonwovens, but the trends are not consistent. | 0.0410 | [79] |
Hemp | 6.14 | 91 | 0.0490 | |||
Hemp (Purini) | 6–45 | 25 | 0.0280 | |||
Hemp (Bialobrzeskie) | 31–30 | 25 | 0.0280 | |||
Nettle | 2–3 | 75 | From the Box–Behnken experimental design, minimum thermal conductivity was achieved at needle-punch density of 75 punches/cm2, 8 mm needle penetration depth and fabric areal weight of 150 g/m2. | 0.0251 | [165] |
No. | Materials | Thickness, mm | Bulk Density, (kg/m3) | Key Findings | Frequency Range (Hz) | Ref. |
---|---|---|---|---|---|---|
1 | Kenaf | 33.00 | 150 | Bulk density, thickness, and airgap behind samples affect acoustic absorption. | 100–6000 | [167] |
2 | Kenaf/PP/low melting PET fibres | 0.60 | 500 | Nonwovens with high thickness, high weight and low pore size have high sound absorption coefficient. | 500–6300 | [85] |
3 | Coconut fibre/polyester | 10.00 | 20 | The acoustic absorption coefficient of composite board dramatically increases when the amount of CF is 25 wt.% | 128–4000 | [156] |
4 | Bamboo/PP | 4.93 | 194 | Bamboo/polypropylene nonwoven has the highest absorption coefficient in all frequency levels. | 100–3200 | [162] |
Banana/PP | 6.43 | 151 | ||||
Jute/pp | 4.28 | 154 | ||||
5 | Pineapple | 1.30 3.48 | 194 201 | Blending of the low-melt PET with PALF shows a slight increase in the Noise Reduction Coefficient value. | 100–6300 | [105] |
Pineapple/PET | 0.83 | 241 | 100–6300 | |||
6 | Kapok/PP | 6.34–9.36 | 185.02 | Maximum absorption of sound is obtained from the uncompressed kapok/PP nonwoven composite of a 30:70 blend ratio. | 250–2000 | [106] |
7 | Areca nut leaf sheath | 6.00 | 105 | Increasing thickness has good effect on sound absorption coefficients, especially at higher frequencies (3000–5000 Hz). | 100–5000 | [151] |
8 | Fique | 3.50 | 197 | Fique fibre’s acoustic performance could improve when reducing its fibre diameter. | 60–6300 | [115] |
9 | Fique | 15.00 | 80 | Acoustical properties are comparable to mineral wools, and also thickness and grammage are effective for nonwoven fabric acoustic performance. | 100–5000 | [116] |
10 | Jute | 14.00 | 45 | Area density, number of layers, and distance of fabric from sound have effects on sound absorption. | - | [168] |
11 | Arenga pinnata | 50.00 | 300–900 | Sound absorption coefficients of Arenga piñata samples mixed with natural rubber are better than those of the sample without natural rubber as a binder. | 90–7000 | [169] |
12 | Windmill fibres | 4.00–12.00 | 200 | The addition of PVA significantly improves the sound absorption ability. | 60–6300 | [131] |
13 | Kenaf/PP | 6.00 | - | Nonwoven composites with panel-felt-panel sandwich structures are good noise absorbers in the high-frequency range. | 100–6400 | [163] |
14 | Sesbania grandiflora | 6.40 | 108 | Increasing the fibre layer in the fabric leads to increase in sound absorption. | 100–2000 | [39] |
Mutingia calabura | 5.49 | 107 | ||||
Bauhinia purpurea | 5.40 | 110 | ||||
15 | Kenaf/yucca | 3.00 | 200 | 100% kenaf and 100% yucca samples have the highest and lowest NRC 1, respectively. | 80–6300 | [148] |
16 | Kapok/cotton | 2.00–12.00 | 75–130 | The otton/milkweed nonwoven fabric has better sound reduction than cotton/kapok. | - | [124] |
Milkweed/cotton | 3.00–13.50 | 60–100 | ||||
17 | Cotton/Luffa | 0.73 | 98 | The cotton/luffa and polyester/luffa 50/50 fabric showed higher sound reduction. | - - | [135] |
Polyester/Luffa | 0.72 | 91 | ||||
18 | Kapok/hollow polyester | 10 | - | Sound absorption coefficients rise with the increase in thickness for all kapok-based fibre nonwoven fabric samples. | 100–6300 | [125] |
Kapok/viscose | 10.00 | - | ||||
Kapok/cotton | 10.00 | - | ||||
Kapok/PP | 9.00 | - | ||||
19 | Corn husk | 0.65–2.91 | The acoustic absorption peak gradually moves to lower frequency range with the increase in back cavity distance. | 100–6000 | [170] | |
20 | Flax | 5.00 | 100 | The airlaid flax/wool/bicomponent nonwoven fabric showed lower sound absorption in comparison to two needle-punch flax and flax/wool nonwovens. | - | [63] |
Flax/wool | 5.50 | 93 | ||||
Flax/wool/Bicomponent | 35.00 | 20 | ||||
21 | Flax: PVA | 1.50–2.00 | 263 | Both flax: PVA and flax: PA6/CoPA nonwovens showed good acoustic insulation properties in the medium frequency range (500–600 Hz). | 50–2000 | [58] |
Flax: PA6/CoPA | 1.50–2.00 | 210 | ||||
22 | Olive/Lyocell/PES/PE | 0.5–1 | 300 | High olive pomace content offers a low acoustic absorption coefficient at low frequencies (below 600 Hz). Composites with PLA improve acoustic absorption coefficient compared to those derived from PES/PE fibres. | 100–6000 | [152] |
Olive/Lyocell/PLA | 0.5–1.5 | 300 | ||||
23 | Waste hemp/PLA/V | 2–4.5 | 100–300 | The highest values of acoustic absorption coefficient are obtained using three-layered nonwovens with high areal density and high content of hemp waste. | 100–6000 | [25] |
Waste hemp/PLA | 3–4 | 100–300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gaminian, H.; Ahvazi, B.; Vidmar, J.J.; Ekuere, U.; Regan, S. Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric. Biomass 2024, 4, 363-401. https://doi.org/10.3390/biomass4020018
Gaminian H, Ahvazi B, Vidmar JJ, Ekuere U, Regan S. Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric. Biomass. 2024; 4(2):363-401. https://doi.org/10.3390/biomass4020018
Chicago/Turabian StyleGaminian, Hamdam, Behzad Ahvazi, J. John Vidmar, Usukuma Ekuere, and Sharon Regan. 2024. "Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric" Biomass 4, no. 2: 363-401. https://doi.org/10.3390/biomass4020018
APA StyleGaminian, H., Ahvazi, B., Vidmar, J. J., Ekuere, U., & Regan, S. (2024). Revolutionizing Sustainable Nonwoven Fabrics: The Potential Use of Agricultural Waste and Natural Fibres for Nonwoven Fabric. Biomass, 4(2), 363-401. https://doi.org/10.3390/biomass4020018