Tuning of the Magnetocaloric Properties of Mn5Ge3 Compound by Chemical Modification
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Franco, V.; Blázquez, J.S.; Ingale, B.; Conde, A. The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models. Annu. Rev. Mater. Res. 2012, 42, 305–342. [Google Scholar] [CrossRef] [Green Version]
- Barclay, J.A. Magnetic Refrigeration: A Review of a Developing Technology. In Advances in Cryogenic Engineering; Fast, R.W., Ed.; A Cryogenic Engineering Conference Publication; Springer: Boston, MA, USA, 1988; Volume 33, pp. 719–731. ISBN 978-1-4613-9876-9. [Google Scholar]
- Franco, V.; Blázquez, J.S.; Ipus, J.J.; Law, J.Y.; Moreno-Ramírez, L.M.; Conde, A. Magnetocaloric Effect: From Materials Research to Refrigeration Devices. Prog. Mater. Sci. 2018, 93, 112–232. [Google Scholar] [CrossRef]
- Gottschall, T.; Skokov, K.P.; Fries, M.; Taubel, A.; Radulov, I.; Scheibel, F.; Benke, D.; Riegg, S.; Gutfleisch, O. Making a Cool Choice: The Materials Library of Magnetic Refrigeration. Adv. Energy Mater. 2019, 9, 1901322. [Google Scholar] [CrossRef] [Green Version]
- Dzekan, D.; Waske, A.; Nielsch, K.; Fähler, S. Efficient and Affordable Thermomagnetic Materials for Harvesting Low Grade Waste Heat. APL Mater. 2021, 9, 011105. [Google Scholar] [CrossRef]
- Brown, G.V. Magnetic Heat Pumping near Room Temperature. J. Appl. Phys. 1976, 47, 3673–3680. [Google Scholar] [CrossRef] [Green Version]
- Synoradzki, K.; Nowotny, P.; Skokowski, P.; Toliński, T. Magnetocaloric Effect in Gd5(Si,Ge)4 Based Alloys and Composites. J. Rare Earths 2019, 37, 1218–1223. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494–4497. [Google Scholar] [CrossRef]
- Provenzano, V.; Shapiro, A.J.; Shull, R.D. Reduction of Hysteresis Losses in the Magnetic Refrigerant Gd5Ge2Si2 by the Addition of Iron. Nature 2004, 429, 853–857. [Google Scholar] [CrossRef]
- Annaorazov, M.P.; Nikitin, S.A.; Tyurin, A.L.; Asatryan, K.A.; Dovletov, A.K. Anomalously High Entropy Change in FeRh Alloy. J. Appl. Phys. 1996, 79, 1689–1695. [Google Scholar] [CrossRef]
- Chirkova, A.; Skokov, K.P.; Schultz, L.; Baranov, N.V.; Gutfleisch, O.; Woodcock, T.G. Giant Adiabatic Temperature Change in FeRh Alloys Evidenced by Direct Measurements under Cyclic Conditions. Acta Mater. 2016, 106, 15–21. [Google Scholar] [CrossRef]
- Gozdur, R.; Gębara, P.; Chwastek, K. A Study of Temperature-Dependent Hysteresis Curves for a Magnetocaloric Composite Based on La(Fe, Mn, Si)13-H Type Alloys. Energies 2020, 13, 1491. [Google Scholar] [CrossRef] [Green Version]
- Gębara, P.; Pawlik, P. Broadening of Temperature Working Range in Magnetocaloric La(Fe,Co,Si)13-Based Multicomposite. J. Magn. Magn. Mater. 2017, 442, 145–151. [Google Scholar] [CrossRef]
- Pathak, A.K.; Khan, M.; Dubenko, I.; Stadler, S.; Ali, N. Large Magnetic Entropy Change in Ni50Mn50−xInx Heusler Alloys. Appl. Phys. Lett. 2007, 90, 262504. [Google Scholar] [CrossRef] [Green Version]
- Planes, A.; Mañosa, L.; Acet, M. Magnetocaloric Effect and Its Relation to Shape-Memory Properties in Ferromagnetic Heusler Alloys. J. Phys. Condens. Matter 2009, 21, 233201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tegus, O.; Brück, E.; Buschow, K.H.J.; de Boer, F.R. Transition-Metal-Based Magnetic Refrigerants for Room-Temperature Applications. Nature 2002, 415, 150–152. [Google Scholar] [CrossRef]
- Wada, H.; Tanabe, Y. Giant Magnetocaloric Effect of MnAs1−xSbx. Appl. Phys. Lett. 2001, 79, 3302–3304. [Google Scholar] [CrossRef]
- Zhang, H.; Gimaev, R.; Kovalev, B.; Kamilov, K.; Zverev, V.; Tishin, A. Review on the Materials and Devices for Magnetic Refrigeration in the Temperature Range of Nitrogen and Hydrogen Liquefaction. Phys. B Condens. Matter 2019, 558, 65–73. [Google Scholar] [CrossRef]
- Ćwik, J.; Koshkid’ko, Y.; Nenkov, K.; Mikhailova, A.; Małecka, M.; Romanova, T.; Kolchugina, N.; de Oliveira, N.A. Experimental and Theoretical Analysis of Magnetocaloric Behavior of Dy1−xErxNi2 Intermetallics ( x = 0.25, 0.5, 0.75 ) and Their Composites for Low-Temperature Refrigerators Performing an Ericsson Cycle. Phys. Rev. B 2021, 103, 214429. [Google Scholar] [CrossRef]
- Ćwik, J.; Koshkid’ko, Y.; Małecka, M.; Weise, B.; Krautz, M.; Mikhailova, A.; Kolchugina, N. Magnetocaloric Prospects of Mutual Substitutions of Rare-Earth Elements in Pseudobinary Tb1−xHoxNi2 Compositions (x = 0.25–0.75). J. Alloy. Compd. 2021, 886, 161295. [Google Scholar] [CrossRef]
- Andreenko, A.S.; Belov, K.P.; Nikitin, S.A.; Tishin, A.M. Magnetocaloric Effects in Rare-Earth Magnetic Materials. Sov. Phys. Uspekhi 1989, 32, 649–664. [Google Scholar] [CrossRef]
- Kuz’min, M.D.; Tishin, A.M. Magnetic Refrigerants for the 4.2-20 K Region: Garnets or Perovskites? J. Phys. D Appl. Phys. 1991, 24, 2039–2044. [Google Scholar] [CrossRef]
- Gschneidner, K.A.; Pecharsky, V.K. Rare Earths and Magnetic Refrigeration. J. Rare Earths 2006, 24, 641–647. [Google Scholar] [CrossRef]
- Li, L.; Yan, M. Recent Progresses in Exploring the Rare Earth Based Intermetallic Compounds for Cryogenic Magnetic Refrigeration. J. Alloy. Compd. 2020, 823, 153810. [Google Scholar] [CrossRef]
- Brück, E.; Tegus, O.; Cam Thanh, D.T.; Trung, N.T.; Buschow, K.H.J. A Review on Mn Based Materials for Magnetic Refrigeration: Structure and Properties. Int. J. Refrig. 2008, 31, 763–770. [Google Scholar] [CrossRef]
- Phan, M.-H.; Yu, S.-C. Review of the Magnetocaloric Effect in Manganite Materials. J. Magn. Magn. Mater. 2007, 308, 325–340. [Google Scholar] [CrossRef]
- Dubenko, I.; Khan, M.; Pathak, A.K.; Gautam, B.R.; Stadler, S.; Ali, N. Magnetocaloric Effects in Ni–Mn–X Based Heusler Alloys with X = Ga, Sb, In. J. Magn. Magn. Mater. 2009, 321, 754–757. [Google Scholar] [CrossRef]
- Chaudhary, V.; Chen, X.; Ramanujan, R.V. Iron and Manganese Based Magnetocaloric Materials for near Room Temperature Thermal Management. Prog. Mater. Sci. 2019, 100, 64–98. [Google Scholar] [CrossRef]
- Wrzeciono, A.; Gemperle, R. Abhängigkeit der Bereichsstruktur in Mn5Ge3 von der Kristalldicke. Phys. Status Solidi (B) 1966, 14, 491–497. [Google Scholar] [CrossRef]
- Panguluri, R.P.; Zeng, C.; Weitering, H.H.; Sullivan, J.M.; Erwin, S.C.; Nadgorny, B. Spin Polarization and Electronic Structure of Ferromagnetic Mn5Ge3 Epilayers. Phys. Status Solidi B 2005, 242, R67–R69. [Google Scholar] [CrossRef] [Green Version]
- Olive-Mendez, S.; Spiesser, A.; Michez, L.A.; Le Thanh, V.; Glachant, A.; Derrien, J.; Devillers, T.; Barski, A.; Jamet, M. Epitaxial Growth of Mn5Ge3/Ge(111) Heterostructures for Spin Injection. Thin Solid Film. 2008, 517, 191–196. [Google Scholar] [CrossRef]
- Ndiaye, W.; Richter, M.C.; Heckmann, O.; De Padova, P.; Mariot, J.-M.; Stroppa, A.; Picozzi, S.; Wang, W.; Taleb-Ibrahimi, A.; Le Fèvre, P.; et al. Bulk Electronic Structure of Mn5Ge3/Ge(111) Films by Angle-Resolved Photoemission Spectroscopy. Phys. Rev. B 2013, 87, 165137. [Google Scholar] [CrossRef]
- Tang, J.; Wang, C.-Y.; Chang, L.-T.; Fan, Y.; Nie, T.; Chan, M.; Jiang, W.; Chen, Y.-T.; Yang, H.-J.; Tuan, H.-Y.; et al. Electrical Spin Injection and Detection in Mn5Ge3/Ge/Mn5Ge3 Nanowire Transistors. Nano Lett. 2013, 13, 4036–4043. [Google Scholar] [CrossRef] [PubMed]
- Spiesser, A.; Saito, H.; Jansen, R.; Yuasa, S.; Ando, K. Large Spin Accumulation Voltages in Epitaxial Mn5Ge3 Contacts on Ge without an Oxide Tunnel Barrier. Phys. Rev. B 2014, 90, 205213. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.; Yuan, Y.; Birowska, M.; Zhang, C.; Cao, L.; Wang, M.; Grenzer, J.; Kriegner, D.; Doležal, P.; Zeng, Y.-J.; et al. Strain-Induced Switching between Noncollinear and Collinear Spin Configuration in Magnetic Mn5Ge3 Films. Phys. Rev. B 2021, 104, 064416. [Google Scholar] [CrossRef]
- Toliński, T.; Synoradzki, K. Specific Heat and Magnetocaloric Effect of the Mn5Ge3 Ferromagnet. Intermetallics 2014, 47, 1–5. [Google Scholar] [CrossRef]
- Zheng, T.F.; Shi, Y.G.; Hu, C.C.; Fan, J.Y.; Shi, D.N.; Tang, S.L.; Du, Y.W. Magnetocaloric Effect and Transition Order of Mn5Ge3 Ribbons. J. Magn. Magn. Mater. 2012, 324, 4102–4105. [Google Scholar] [CrossRef]
- Lalita; Rathi, A.; Pardeep; Verma, A.K.; Gahtori, B.; Gautam, A.; Pant, R.P.; Babu, P.D.; Basheed, G.A. Field Dependence of Magnetic Entropy Change in Mn5Ge3 near Room Temperature. J. Alloy. Compd. 2021, 876, 159908. [Google Scholar] [CrossRef]
- Maraytta, N.; Voigt, J.; Salazar Mejía, C.; Friese, K.; Skourski, Y.; Perßon, J.; Salman, S.M.; Brückel, T. Anisotropy of the Magnetocaloric Effect: Example of Mn5Ge3. J. Appl. Phys. 2020, 128, 103903. [Google Scholar] [CrossRef]
- Wang, S.; Fan, C.; Liu, D. Large Anisotropic Magnetocaloric Effect, Wide Operating Temperature Range, and Large Refrigeration Capacity in Single-Crystal Mn5Ge3 and Mn5Ge3/Mn3.5Fe1.5Ge3 Heterostructures. ACS Appl. Mater. Interfaces 2021, 13, 33237–33243. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, E.J.; Choi, K.; Han, W.B.; Kim, H.-S.; Yoon, C.S. Magnetocaloric Effect of Mn5+xGe3−x Alloys. J. Alloy. Compd. 2015, 620, 164–167. [Google Scholar] [CrossRef]
- Kim, Y.; Kang, K.H.; Kim, J.H.; Kim, E.J.; Choi, K.; Han, W.B.; Kim, H.-S.; Oh, Y.; Yoon, C.S. Magnetocaloric Refrigerant with Wide Operating Temperature Range Based on Mn5−xGe3(Co,Fe)x Composite. J. Alloy. Compd. 2015, 644, 464–469. [Google Scholar] [CrossRef]
- Carroll, P.; Williams, A.; Caudle, M.; Darkins, L.; Eaton, A.; Fitzgerald, B.; Knauf, B.; Rurka, M.; Shlonsky, E.; Wilson, P.; et al. Enhanced Magnetic Refrigeration Capacities in Minutely Co Doped Mn5-xCoxGe3 Compounds. Intermetallics 2017, 89, 10–15. [Google Scholar] [CrossRef]
- Kang, K.H.; Kim, J.H.; Oh, Y.; Kim, E.J.; Yoon, C.S. Critical Behavior and Magnetocaloric Effect of Mn4.75Ge3(Co, Fe)0.25 Alloys. J. Alloy. Compd. 2017, 696, 931–937. [Google Scholar] [CrossRef]
- Kang, K.H.; Kim, J.H.; Kim, J.W.; Chung, K.C.; Yoon, C.S. Direct Measurement of the Magnetocaloric Effect (ΔTad) of Mn5−x(Fe,Co)xGe3. J. Alloy. Compd. 2017, 729, 603–606. [Google Scholar] [CrossRef]
- Zhang, Q.; Du, J.; Li, Y.B.; Sun, N.K.; Cui, W.B.; Li, D.; Zhang, Z.D. Magnetic Properties and Enhanced Magnetic Refrigeration in (Mn1−xFex)5Ge3 Compounds. J. Appl. Phys. 2007, 101, 123911. [Google Scholar] [CrossRef]
- Brock, J.; Bell-Pactat, N.; Cai, H.; Dennison, T.; Fox, T.; Free, B.; Mahyub, R.; Nar, A.; Saaranen, M.; Schaeffer, T.; et al. The Effect of Fe Doping on the Magnetic and Magnetocaloric Properties of Mn5-xFexGe3. Adv. Mater. Sci. Eng. 2017, 2017, 9854184. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.H.; Kim, E.J.; Kim, J.; Yoon, C.S. Mn5−xGe3Nix Refrigerant for Active Magnetic Refrigeration. J. Appl. Phys. 2020, 128, 223903. [Google Scholar] [CrossRef]
- Liu, X.B.; Altounian, Z. Magnetocaloric Effect in Mn5Ge3−xSix Pseudobinary Compounds. J. Appl. Phys. 2006, 99, 08Q101. [Google Scholar] [CrossRef]
- Zhao, F.Q.; Dagula, W.; Tegus, O.; Buschow, K.H.J. Magnetic-Entropy Change in Mn5Ge3−xSix Alloys. J. Alloy. Compd. 2006, 416, 43–45. [Google Scholar] [CrossRef]
- Xi-Bin, L.; Shao-Ying, Z.; Bao-Gen, S. Magnetic Properties and Magnetocaloric Effects of Mn5Ge3xGax. Chin. Phys. 2004, 13, 397–400. [Google Scholar] [CrossRef]
- Songlin; Dagula; Tegus, O.; Brück, E.; de Boer, F.R.; Buschow, K.H.J. Magnetic and Magnetocaloric Properties of Mn5Ge3−xSbx. J. Alloy. Compd. 2002, 337, 269–271. [Google Scholar] [CrossRef]
- Zheng, T.F.; Shi, Y.G.; Fan, J.Y.; Shi, D.N.; Tang, S.L.; Lv, L.Y.; Zhong, W. Critical Behavior and the Universal Curve for Magnetocaloric Effect in Textured Mn5Ge3−xAlx Ribbons. J. Appl. Phys. 2013, 113, 17A944. [Google Scholar] [CrossRef]
- Si, X.; Liu, Y.; Zhang, Z.; Ma, X.; Lin, J.; Luo, X.; Zhong, Y.; Si, H. Analysis of the Magnetic Transition and Magnetocaloric Effect in Mn5Ge2.9Ag0.1 Compound. J. Alloy. Compd. 2019, 795, 304–313. [Google Scholar] [CrossRef]
- Qian, Y.; Ma, X.; Si, X.; Liu, H.; Luo, X.; Lin, J.; Liu, Y. The Analysis of Magnetocaloric Effect and Magnetic Critical Behavior in Mn5Ge3−xAgx Compounds. Phys. Scr. 2020, 95, 065701. [Google Scholar] [CrossRef]
- Swathi, S.; Arun, K.; Remya, U.D.; Dzubinska, A.; Reiffers, M.; Nagalakshmi, R. Ising Critical Behavior and Room Temperature Magnetocaloric Effect in Itinerant Ferromagnetic Mn5Ge2.9Fe0.1 Compound. Intermetallics 2021, 132, 107164. [Google Scholar] [CrossRef]
- Halder, M.; Yusuf, S.M.; Nigam, A.K. Magnetocaloric Effect and Its Implementation in Critical Behavior Study of Mn4FeGe3−xSix Intermetallic Compounds. J. Appl. Phys. 2011, 110, 113915. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.W.; Yan, J.L.; Feng, E.L.; Tang, G.W.; Zhou, K.W. Effect of Fe Substitution on the Structure and Magnetocaloric Effect of Mn5−xFexGeSi2 Alloys. J. Magn. Magn. Mater. 2017, 422, 356–361. [Google Scholar] [CrossRef]
- Rodríguez-Carvajal, J. Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Phys. B Condens. Matter 1993, 192, 55–69. [Google Scholar] [CrossRef]
- Forsyth, J.B.; Brown, P.J. The Spatial Distribution of Magnetisation Density in Mn5Ge3. J. Phys. Condens. Matter 1990, 2, 2713–2720. [Google Scholar] [CrossRef]
- Synoradzki, K.; Kowalski, W.; Falkowski, M.; Toliński, T.; Kowalczyk, A. Magnetic Properties and Magnetocaloric Effect of DyNi4Si. Acta Phys. Pol. A 2014, 126, 162–163. [Google Scholar] [CrossRef]
- Zhang, F.; Taake, C.; Huang, B.; You, X.; Ojiyed, H.; Shen, Q.; Dugulan, I.; Caron, L.; van Dijk, N.; Brück, E. Magnetocaloric Effect in the (Mn,Fe)2(P,Si) System: From Bulk to Nano. Acta Mater. 2022, 224, 117532. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Gschneidner, K.A., Jr.; Pecharsky, V.K.; Tsokol, A.O. Recent Developments in Magnetocaloric Materials. Rep. Prog. Phys. 2005, 68, 1479–1539. [Google Scholar] [CrossRef]
- Toliński, T.; Falkowski, M.; Kowalczyk, A.; Synoradzki, K. Magnetocaloric Effect in the Ternary DyCo3B2 Compound. Solid State Sci. 2011, 13, 1865–1868. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010; ISBN 978-0-521-81614-4. [Google Scholar]
- Ciszewski, R. Magnetic Structure of the Mn5Ge3 Alloy. Phys. Status Solidi (B) 1963, 3, 1999–2004. [Google Scholar] [CrossRef]
- Synoradzki, K.; Toliński, T. Effective Mass Enhancement and Spin-Glass Behaviour in CeCu4MnyAl1−y Compounds. J. Phys. Condens. Matter 2012, 24, 136003. [Google Scholar] [CrossRef] [PubMed]
- Synoradzki, K. Spin-Glass Behavior in LaCu4Mn Compound. Acta Phys. Pol. A 2017, 131, 1024–1026. [Google Scholar] [CrossRef]
- Synoradzki, K. Magnetocaloric Effect in Spin-Glass-like GdCu4Mn Compound. J. Magn. Magn. Mater. 2022, 546, 168857. [Google Scholar] [CrossRef]
- Kang, K.H.; Oh, Y.; Kim, J.H.; Kim, E.J.; Kim, H.-S.; Yoon, C.S. Magnetocaloric Effect of Compositionally Partitioned Mn5-xGe3Nix Alloys Produced by Solid State Sintering. J. Alloy. Compd. 2016, 681, 541–546. [Google Scholar] [CrossRef]
- Kappel, G.; Fischer, G.; Jaegle, A. On the Saturation Magnetization of Mn5Ge3. Phys. Lett. A 1973, 45, 267–268. [Google Scholar] [CrossRef]
- Arrott, A. Criterion for Ferromagnetism from Observations of Magnetic Isotherms. Phys. Rev. 1957, 108, 1394–1396. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A. Magnetocaloric Effect from Indirect Measurements: Magnetization and Heat Capacity. J. Appl. Phys. 1999, 86, 565–575. [Google Scholar] [CrossRef]
- Griffith, L.D.; Mudryk, Y.; Slaughter, J.; Pecharsky, V.K. Material-Based Figure of Merit for Caloric Materials. J. Appl. Phys. 2018, 123, 034902. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field Dependence of the Magnetocaloric Effect in Materials with a Second Order Phase Transition: A Master Curve for the Magnetic Entropy Change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Le Guillou, J.C.; Zinn-Justin, J. Critical Exponents from Field Theory. Phys. Rev. B 1980, 21, 3976–3998. [Google Scholar] [CrossRef] [Green Version]
- Zverev, V.I.; Tishin, A.M.; Kuz’min, M.D. The Maximum Possible Magnetocaloric ΔT Effect. J. Appl. Phys. 2010, 107, 043907. [Google Scholar] [CrossRef]
- Law, J.Y.; Franco, V. Magnetocaloric Composite Materials. In Encyclopedia of Materials: Composites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 461–472. ISBN 978-0-12-819731-8. [Google Scholar]
- de Oliveira, R.C.; Demaille, D.; Casaretto, N.; Zheng, Y.J.; Marangolo, M.; Mosca, D.H.; Varalda, J. Magnetic and Structural Properties of Mn5+xGe3+y Thin Films as a Function of Substrate Orientation. J. Magn. Magn. Mater. 2021, 539, 168325. [Google Scholar] [CrossRef]
Alloy | Estimated Composition | a (Å) | c (Å) | V (Å3) | D (nm) | dt (g/cm3) | d (g/cm3) |
---|---|---|---|---|---|---|---|
Mn5Ge3 | Mn5.04(8)Ge2.96(8) | 7.203(2) | 5.041(1) | 226.5(1) | 52(8) | 7.243 | 7.04(6) |
Mn5(Ge0.95B0.05)3 | Mn5.08(8)Ge2.81(8)B0.11(8) | 7.204(8) | 5.041(6) | 226.5(5) | 48(3) | 7.097 | 6.69(5) |
Mn5(Ge0.95Al0.05)3 | Mn5.04(8)Ge2.83(8)Al0.13(8) | 7.209(3) | 5.037(3) | 226.7(2) | 49(3) | 7.238 | 6.95(2) |
(Mn0.95Cr0.05)5Ge3 | Mn4.88(8)Cr0.22(8)Ge2.90(8) | 7.209(17) | 5.042(12) | 226.9(1) | 45(5) | 7.268 | 6.90(9) |
(Mn0.95Co0.05)5Ge3 | Mn4.76(8)Co0.25(8)Ge2.99(8) | 7.197(15) | 5.030(11) | 225.6(1) | 41(4) | 7.284 | 6.92(4) |
Alloy | TC (K) | ΘCW (K) | μeff (μB/Mn) | σS (μB/Mn) at 4 K |
---|---|---|---|---|
Mn5Ge3 | 295(1) | 307(1) | 2.09(2) | 2.60(8) |
Mn5(Ge0.95B0.05)3 | 298(1) | 310(1) | 1.86(3) | 2.32(1) |
Mn5(Ge0.95Al0.05)3 | 294(1) | 304(1) | 1.95(1) | 2.57(7) |
(Mn0.95Cr0.05)5Ge3 | 288(1) | 304(1) | 1.90(2) | 2.10(1) |
(Mn0.95Co0.05)5Ge3 | 281(1) | 294(1) | 1.96(5) | 2.51(2) |
Alloy | μ0∆H | |∆Sm|MAX | ΔTad | RCP | TEC(3) | TEC(5) | TEC(10) | |
---|---|---|---|---|---|---|---|---|
(T) | (J kg−1 K−1) | (mJ cm−3 K−1) | (K) | (J kg−1) | (J kg−1 K−1) | (J kg−1 K−1) | (J kg−1 K−1) | |
Mn5Ge3 | 5 | 7.1(1) | 50(1) | - | 390(6) | 7.2(1) | 7.2(1) | 7.1(1) |
3 | 5.1(1) | 36(1) | - | 209(5) | 5.1(1) | 5.1(1) | 4.9(1) | |
1 | 2.3(1) | 16(1) | 1.1(1) | 46(2) | 2.3(1) | 2.2(1) | 2.1(1) | |
Mn5(Ge0.95B0.05)3 | 5 | 6.2(1) | 41(1) | - | 366(7) | 6.2(1) | 6.2(1) | 6.1(1) |
3 | 4.6(1) | 31(1) | - | 198(5) | 4.6(1) | 4.5(1) | 4.4(1) | |
1 | 2.2(1) | 15(1) | 1.2(1) | 53(3) | 2.2(1) | 2.1(1) | 2.0(1) | |
Mn5(Ge0.95Al0.05)3 | 5 | 6.8(1) | 47(1) | - | 381(6) | 6.8(1) | 6.8(1) | 6.7(1) |
3 | 4.7(1) | 33(1) | - | 212(5) | 4.8(1) | 4.8(1) | 4.7(1) | |
1 | 2.2(1) | 15(1) | 1.2(1) | 57(3) | 2.1(2) | 2.1(1) | 2.0(1) | |
(Mn0.95Cr0.05)5Ge3 | 5 | 4.8(1) | 33(1) | - | 302(7) | 4.8(1) | 4.8(1) | 4.7(1) |
3 | 3.4(1) | 23(1) | - | 160(5) | 3.4(1) | 3.3(1) | 3.3(1) | |
1 | 1.5(1) | 10(1) | 0.8(1) | 39(3) | 1.4(1) | 1.4(1) | 1.4(1) | |
(Mn0.95Co0.05)5Ge3 | 5 | 5.8(1) | 40(1) | - | 365(7) | 5.8(1) | 5.8(1) | 5.8(1) |
3 | 3.9(1) | 27(1) | - | 203(5) | 3.9(1) | 3.9(1) | 3.8(1) | |
1 | 1.4(1) | 10(1) | 0.8(1) | 45(3) | 1.4(1) | 1.4(1) | 1.4(1) |
β | δ | n | |
---|---|---|---|
Heisenberg model | 0.365 | 4.807 | 0.626 |
Ising model | 0.325 | 4.815 | 0.568 |
Mean-field | 0.5 | 3 | 0.66 |
Tricritical mean-field model | 0.25 | 5 | 0.40 |
Mn5Ge3 | 0.48(4) | 3.8(3) | 0.71(2) |
Mn5(Ge0.95B0.05)3 | 0.38(2) | 4.8(2) | 0.65(2) |
Mn5(Ge0.95Al0.05)3 | 0.38(2) | 5.9(3) | 0.72(1) |
(Mn0.95Cr0.05)5Ge3 | 0.48(3) | 4.2(2) | 0.74(2) |
(Mn0.95Co0.05)5Ge3 | 0.61(9) | 4.5(8) | 0.86(3) |
Alloy | TC (K) | μ0∆H (T) | |∆Sm|MAX (J kg−1 K−1) | RCP (J kg−1) | References |
---|---|---|---|---|---|
Mn5Ge3 | 295(1) | 1 | 2.3(1) | 46(2) | This work |
2 | 3.9(1) | 125(1) | This work | ||
Mn5Ge3 | 295 | 1 | 2.06 | - | [43] |
2 | 3.66 | - | [43] | ||
Mn5Ge3 | 293 | 1 | 2.5 | 43 | [71] |
Mn5Ge3 | 293 | 1 | 2.21 | - | [48] |
2 | 3.67 | 125 | [48] | ||
Mn5Ge3 | 296 | 2 | 3.65 | - | [47] |
Mn5Ge3 | 298 | 2 | 3.8 | 133 | [52] |
Mn5Ge3 | 297.2 | 2 | 3.7 | - | [53] |
1 | 2.3 | - | [53] | ||
Mn5Ge3 | 299.8 | 1 | 2.6 | - | [55] |
2 | 4.1 | - | [55] | ||
Mn5Ge3 | 296 | 1 | 2.5 (‖ c axis) | - | [39] |
1 | 2.15 (⊥c axis) | - | [39] | ||
Mn5Ge3 | 299 | 1 | 2.6 (‖ c axis) | - | [40] |
1 | 2.0 (⊥c axis) | - | [40] | ||
2 | 4.0 (‖ c axis) | 145 | [40] | ||
2 | 3.6 (⊥c axis) | 104 | [40] | ||
Mn4.9Ge3.1 | 281 | 1 | 1.91 | 46 | [41] |
Mn5Ge3 | 290 | 1 | 2.38 | 48 | [41] |
Mn5.1Ge2.9 | 302 | 1 | 2.91 | 58 | [41] |
Mn5Ge3 (thin film) | - | 1 | 1.59 | 64 | [80] |
Mn5Ge3 (thin film) | - | 1 | 1.75 | 81 | [80] |
(Mn1−xMex)5Ge3 | |||||
Mn4.75Cr0.25Ge3 | 288(1) | 1 | 1.5 (1) | 39(1) | This work |
2 | 2.5(1) | 99(1) | This work | ||
Mn4.95Fe0.05Ge3 | 296 | 2 | 3.58 | - | [47] |
Mn4.9Fe0.1Ge3 | 296 | 2 | 3.50 | - | [47] |
Mn4.85Fe0.15Ge3 | 296 | 2 | 3.63 | - | [47] |
Mn4.75Fe0.25Ge3 | 299 | 2 | 3.87 | 130 | [44] |
Mn4.75Fe0.25Ge3 | 311 | 1 | 1.59 | 42 | [42] |
Mn4Fe1Ge3 | 320 | 2 | 3.1 | - | [57] |
Mn4.95Co0.05Ge3 | 285 | 1 | 1.85 | [43] | |
2 | 3.34 | - | [43] | ||
Mn4.1Co0.1Ge3 | 285 | 1 | 2.00 | - | [43] |
2 | 3.57 | - | [43] | ||
Mn4.85Co0.15Ge3 | 280 | 1 | 2.15 | - | [43] |
2 | 3.86 | - | [43] | ||
Mn4.75Co0.25Ge3 | 281(1) | 1 | 1.4(1) | 45(1) | This work |
2 | 2.8(1) | 122(1) | This work | ||
Mn4.75Co0.25Ge3 | 266 | 2 | 3.52 | 136 | [44] |
Mn4.75Co0.25Ge3 | 273 | 1 | 2.81 | 43 | [42] |
Mn4.95Ni0.05Ge3 | 285 | 1 | 2.2 | 53 | [71] |
Mn4.95Ni0.05Ge3 | 283 | 1 | 2.13 | - | [48] |
2 | 3.55 | 135 | [48] | ||
Mn4.925Ni0.075Ge3 | 279 | 1 | 2.02 | - | [48] |
2 | 3.40 | 130 | [48] | ||
Mn4.9Ni0.1Ge3 | 275 | 1 | 1.91 | - | [48] |
2 | 3.21 | 132 | [48] | ||
Mn4.9Ni0.1Ge3 | 268 | 1 | 1.2 | 49 | [71] |
Mn4.875Ni0.125Ge3 | 272 | 1 | 1.83 | - | [48] |
2 | 3.13 | 138 | [48] | ||
Mn4.85Ni0.15Ge3 | 265 | 1 | 1.72 | - | [48] |
2 | 2.93 | 129 | [48] | ||
Mn4.8Ni0.2Ge3 | 264 | 1 | 1.64 | - | [48] |
2 | 2.83 | 130 | [48] | ||
Mn4.75Ni0.25Ge3 | 261 | 1 | 1.57 | - | [48] |
2 | 2.64 | 124 | [48] | ||
Mn4.975Ni0.025Ge3 | 288 | 1 | 2.20 | - | [48] |
2 | 3.60 | 130 | [48] | ||
Mn4.6Ni0.4Ge3 | 260 | 1 | 1.38 | - | [48] |
2 | 2.41 | - | [48] | ||
Mn5(Ge1−yOey)3 | |||||
Mn5Ge2.85B0.15 | 298(1) | 1 | 2.2(1) | 53(1) | This work |
2 | 3.5(1) | 121(1) | This work | ||
Mn5Ge2.85Al0.15 | 294(1) | 1 | 2.2(1) | 57(1) | This work |
2 | 3.6(1) | 131(1) | This work | ||
Mn5Ge2.5Al0.5 | 293.9 | 1 | 2.0 | - | [53] |
2 | 3.3 | - | [53] | ||
Mn5Ge2Al1 | 283.0 | 1 | 1.4 | - | [53] |
2 | 2.3 | - | [53] | ||
Mn5Ge2.5Si0.5 | 299 | 2 | 2.4 | - | [50] |
Mn5Ge2.0Si1.0 | 283 | 2 | 2.2 | - | [50] |
Mn5Ge1.5Si1.5 | 258 | 2 | 1.8 | - | [50] |
Mn5Ge1.0Si2.0 | 198 | 2 | 1.7 | - | [50] |
Mn5Ge2.9Fe0.1 | 299 | 2 | 2.53 | 88 | [56] |
Mn5Ge2.7Ga0.3 | 302 | 2 | 3.2 | 112 | [51] |
Mn5Ge2.4Ga0.6 | 292 | 2 | 3.5 | 123 | [51] |
Mn5Ge2.1Ga0.9 | 274 | 2 | 3.2 | 128 | [51] |
Mn5Ge2.9Ag0.1 | 302 | 2 | 3.72 | 123.1 | [54] |
Mn5Ge2.9Ag0.1 | 295.1 | 1 | 2.5 | - | [55] |
2 | 3.9 | - | [55] | ||
Mn5Ge2.9Sb0.1 | 304 | 2 | 3.4 | 129.2 | [52] |
Mn5Ge2.8Sb0.2 | 307 | 2 | 3.3 | 125.4 | [52] |
Mn5Ge2.7Sb0.3 | 312 | 2 | 2.9 | 127.6 | [52] |
(Mn1−xMex)5(Ge1−yOey)3 | |||||
Mn4Fe1Ge2.8Si0.2 | 320 | 2 | 3.4 | - | [57] |
Mn4Fe1Ge2.4Si0.6 | 319 | 2 | 2.9 | - | [57] |
Mn4Fe1Ge2Si | 318 | 2 | 2.0 | - | [57] |
Mn4.4Fe0.6GeSi2 | 182 | 2 | 1.9 | - | [58] |
Mn4.3Fe0.7GeSi2 | 200 | 2 | 3.5 | - | [58] |
Mn4.2Fe0.8GeSi2 | 196 | 2 | 3.7 | 211 | [58] |
Mn4.1Fe0.9GeSi2 | 211 | 2 | 2.7 | 192 | [58] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Synoradzki, K.; Urban, K.; Skokowski, P.; Głowiński, H.; Toliński, T. Tuning of the Magnetocaloric Properties of Mn5Ge3 Compound by Chemical Modification. Magnetism 2022, 2, 56-73. https://doi.org/10.3390/magnetism2010005
Synoradzki K, Urban K, Skokowski P, Głowiński H, Toliński T. Tuning of the Magnetocaloric Properties of Mn5Ge3 Compound by Chemical Modification. Magnetism. 2022; 2(1):56-73. https://doi.org/10.3390/magnetism2010005
Chicago/Turabian StyleSynoradzki, Karol, Krzysztof Urban, Przemysław Skokowski, Hubert Głowiński, and Tomasz Toliński. 2022. "Tuning of the Magnetocaloric Properties of Mn5Ge3 Compound by Chemical Modification" Magnetism 2, no. 1: 56-73. https://doi.org/10.3390/magnetism2010005
APA StyleSynoradzki, K., Urban, K., Skokowski, P., Głowiński, H., & Toliński, T. (2022). Tuning of the Magnetocaloric Properties of Mn5Ge3 Compound by Chemical Modification. Magnetism, 2(1), 56-73. https://doi.org/10.3390/magnetism2010005