Ferroelectric and Dielectric Properties of Strontium Titanate Doped with Barium
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Rietveld Refined of X-ray Patterns
3.2. High-Resolution Transmission Electron Microscopy (HR-TEM)
3.3. AC Electrical Resistivity
3.4. Dielectric Constant with Temperature Properties
3.5. The Ferroelectric Hysteresis-Loop of BST Samples
3.6. Piezoelectric Coefficient of BST Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mudinepalli, V.R.; Feng, L.; Lin, W.; Murty, B.S. Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. J. Adv. Ceram. 2015, 4, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Xiao-Fei, Z.; Qing, X.; Yu-Heng, H.; Han-Xing, L.; Duan-Ping, H.; Feng, Z. Low-temperature synthesis of superfine barium strontium titanate powder by the citrate method. Ceram. Int. 2010, 3, 1405–1409. [Google Scholar]
- Lee, J.H.; Rhee, S.W.J. Chemical Vapor Deposition of Barium Strontium Titanate Films with Direct Liquid Injection of Single-Mixture Solution. Electrochem. Soc. 1999, 146, 3783. [Google Scholar] [CrossRef] [Green Version]
- Kuzmina, N.; Malkerova, I.; Alikhanyan, A.; Tsymbarenko, D.; Lyssenko, K.; Kreinin, O.; Shuster, G.; Lakin, A.; Zolotoyabko, E. Novel Low Melting Point Barium and Strontium Precursors for the MOCVD Growth of Barium-Strontium-Titanate Films. Chem. Vap. Depos. 2009, 15, 342. [Google Scholar] [CrossRef]
- Di, W.; Aidong, L.; Zhiguo, L.; Huiqin, L.; Chuan, Z.G.; Xiaoyong, L.; Hong, W.; Min, W.; Peng, L.; Naiben, M. Fabrication and electrical properties of sol-gel derived (BaSr)TiO3 thin films with metallic LaNiO3 electrode. Thin Solid Films. 1998, 336, 172. [Google Scholar]
- Nam, S.; Cho, N.; Kim, H. Characterization of SrTiO3 thin films prepared by RF magnetron sputtering. J. Phys. D Appl. Phys. 1992, 25, 727. [Google Scholar] [CrossRef]
- Remiens, D.; Yang, L.; Ponchel, F.; Le gier, J.F.; Chateigner, D.; Wang, G.; Dong, X. X-ray combined analysis of fiber-textured and epitaxial Ba(Sr,Ti)O3 thin films deposited by radio frequency sputtering. J. Appl. Phys. 2011, 109, 114106. [Google Scholar] [CrossRef]
- Ponchel, F.; Midy, J.; Le gier, J.F.; Soyer, C.; Re miens, D.; Lasri, T.; Guéguan, G. Dielectric microwave characterizations of (Ba,Sr)TiO3 film deposited on high resistivity silicon substrate: Analysis by two-dimensional tangential finite element method. J. Appl. Phys. 2010, 107, 054112. [Google Scholar] [CrossRef]
- Abdel-Motaleb, I.; Shetty, N.; Leedy, K.; Cortez, R. Investigation of the drain current shift in ZnO thin film transistors. J. Appl. Phys. 2011, 109, 014503. [Google Scholar] [CrossRef]
- Leach, J.H.; Liu, H.; Avrutin, V.; Rowe, E.; Ozgur, U.; Morkoc, H.; Song, Y.Y.; Wu, M. Electrically and magnetically tunable phase shifters based on a barium strontium titanate-yttrium iron garnet layered structure. J. Appl. Phys. 2010, 108, 064106. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, A.-M.; Bhavya, A.; Kevin, L.; Rebecca, C. Oxygen effects on barium strontium titanate morphology and MOS device performance. Mater. Lett. 2013, 92, 389–392. [Google Scholar]
- Mahani, R.M.; Battisha, I.K.; Aly, M.; Abou-Hamad, A.B. Structure and dielectric behavior of nano-structure ferroelectric BaxSr1−xTiO3 prepared by sol–gel method. J. Alloys Compd. 2010, 508, 354. [Google Scholar] [CrossRef]
- Ying, Y.; Shuangbin, L.; Yongzhong, J.; Shaolei, X. Microstructure and dielectric properties of BaxSr1−xTiO3 ceramics prepared by direct current arc discharge technique. J. Alloys Compd. 2015, 651, 273–277. [Google Scholar]
- Razak, K.A.; Asadov, A.; Yoo, J.; Haemmerle, E.; Gao, W. Structural and dielectric properties of barium strontium titanate produced by high temperature hydrothermal method. J. Alloys Compd. 2008, 449, 19–23. [Google Scholar] [CrossRef]
- Arrasheed, E.; Meaz, T.; Shalaby, R.; Salem, B.; Hemeda, O.; Henaish, A. Rietveld refinement, cation distribution, morphological and magnetic study of NiAlxFe2-xO4 nanoparticles. Appl. Phys. A 2021, 127, 221. [Google Scholar] [CrossRef]
- Patel, N.D.; Mangrola, M.H.; Soni, K.G.; Joshi, V.G. Structural and Electrical Properties of Nanocrystalline Barium Strontium Titanate. Mater. Today Proc. 2017, 4, 3842–3851. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Salem, B.I.; Mostafa, M. Structural and electric properties of strontium barium titanate prepared by tartrate precursor method. Eur. Phys. J. Plus 2020, 135, 46. [Google Scholar] [CrossRef]
- Henaish, A.M.A. Physical and Spectral Studies of Mg-Zn Ferrite Prepared Using Different Methods. Arab J. Nuc. Sci. Appl. 2019, 53, 9–18. [Google Scholar]
- Ioachim, A.; Toacsan, M.I.; Banciu, M.G.; Nedelcu, L.; Vasiliu, F.; Alexandru, H.V.; Berbecaru, C.; Stoica, G. Barium strontium titanate- based perovskite materials for microwave applications. Solid State Chem. 2007, 35, 513–520. [Google Scholar] [CrossRef]
- Brankovic, G.; Brankovic, Z.; Goes, M.S.; Paiva-Santos, C.O.; Cilense, M.; Varela, J.A.; Longo, E. Barium strontium titanate powders prepared by spray pyrolysis. Mater. Sci. Eng. B 2005, 122, 140–144. [Google Scholar] [CrossRef]
- Chen, J.; Che, M.C.; Yan, F. Synthesis of barium strontium titanate nanopowders by microwave hydrothermal method. Adv. Appl. Ceram. 2015, 114, 344–349. [Google Scholar] [CrossRef]
- Henaish, A.M.A.; Hemeda, O.M.; Dorgham, A.M.; Hamad, M.A. Characterization of excessive Sm3+ containing barium titanate prepared by tartrate precursor method. J. Mater. Res. Technol. 2020, 9, 15214–15221. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Mostafa, N.Y.; Elkader, O.H.A.; Hemeda, D.M.; Tawfik, A.; Mostafa, M. Electrical and morphological properties of magnetocaloric nano ZnNi ferrite. J. Magn. Magn. Mater. 2015, 394, 96–104. [Google Scholar] [CrossRef]
- Pinjari, R.K.; Burange, N.M.; Aldar, B.A. Structural and Electrical Analysis of Strontium Substituted Barium Titanate. Int. J. Eng. Res. Technol. (IJERT) 2014, 3, 209–213. [Google Scholar]
- Jin, L.; Luo, W.; Hou, L.; Tian, Y.; Hu, Q.; Wang, L.; Zhang, L.; Lu, X.; Du, H.; Wei, X.; et al. High electric field-induced strain with ultra-low hysteresis and giant electrostrictive coefficient in barium strontium titanate lead-free ferroelectrics. J. Eur. Ceram. Soc. 2019, 39, 295–304. [Google Scholar] [CrossRef]
- Zheng, P.; Zhang, J.I.; Tan, Y.Q.; Wang, C.L. Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 2012, 60, 5022–5030. [Google Scholar] [CrossRef]
- Huan, Y.U.; Wang, X.; Fang, J.; Li, L. Grain-size dependence of piezoelectric properties in thermally annealed BaTiO3 ceramics. J. Am. Ceram. Soc. 2013, 96, 3369–3371. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Wang, H.; Kim, N.; Cross, L.E. Direct evaluation of domain-wall and intrinsic contributions to the dielectric and piezoelectric response and their temperature dependence on lead zirconate-titanate ceramics. J. Appl. Phys. 1994, 75, 454–456. [Google Scholar] [CrossRef]
- Hongwei, C.; Chuanren, Y.; Chunlin, F.; Li, Z.; Zhiqiang, G. The size effect of Ba0.6Sr0.4TiO3 thin films on the ferroelectric properties. Appl. Surf. Sci. 2006, 252, 4171–4177. [Google Scholar]
- Henaish, A.M.A.; Mostafa, M.; Salem, B.I.; Hemeda, O.M. Improvement of magnetic and dielectric properties of magnetoelectric BST-NCZMF nano-composite. Phase Transitions 2020, 93, 470–490. [Google Scholar] [CrossRef]
- Damjanovic, D.; Klein, N.; Li, J.; Porokhonskyy, V. What Can Be Expected From Lead-Free Piezoelectric Materials? Funct. Mater. Lett. 2010, 3, 5–13. [Google Scholar] [CrossRef]
- Li, F.; Wang, L.; Jin, L.; Lin, D.; Li, J.; Li, Z.; Xu, Z.; Zhang, S. Piezoelectric activity in perovskite ferroelectric crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2015, 62, 18–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, P.; Patterson, E.; Zang, J.; Jiang, S.; Rödel, J. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2)TiO3-based lead-free incipient piezoceramics. J. Eur. Ceram. Soc. 2015, 35, 2501–2512. [Google Scholar] [CrossRef]
- Fan, P.; Zhang, Y.; Zhang, Q.; Xie, B.; Zhu, Y.; Mawat, M.A.; Ma, W.; Liu, K.; Xiao, J.; Zhang, H. Large strain with low hysteresis in Bi4Ti3O12 modified Bi1/2(Na0.82K0.18)1/2TiO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 2018, 38, 4404–4413. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Eid, M.E.A.; Sharshar, T.; Ellabany, H.M.; Henaish, A.M.A. Synthesis of nanometer-sized PbZrxTi1-xO3 for gamma-ray attenuation. J. Phys. Chem. Solids. 2021, 148, 109688. [Google Scholar] [CrossRef]
- Salem, B.I.; Hemeda, O.M.; Mostafa, M.; Henaish, A.M.A. Electric and ferroelectric properties of high-energy ball milling-assisted (1 − x) Sr0.2Ba0.8TiO3 + (x) Ni0.1Cu0.2Zn0.15Mg0.55Fe2O4 composite. J. Mater. Sci. Mater. Electron. 2020, 31, 18673–18682. [Google Scholar] [CrossRef]
- Jo, W.; Dittmer, R.; Acosta, M.; Zang, J.; Groh, C.; Sapper, E.; Wang, K.; Rödel, J. Giant electric-field-induced strains in lead-free ceramics for actuator applications – status and perspective. J. Electroceram. 2012, 29, 71–93. [Google Scholar] [CrossRef]
- Malik, R.A.; Hussain, A.; Maqbool, A.; Zaman, A.; Song, T.K.; Kim, W.-J.; Kim, M.-H. Giant strain, thermally-stable high energy storage properties and structural evolution of Bi-based lead-free piezoceramics. J. Alloys Compd. 2016, 682, 302–310. [Google Scholar] [CrossRef]
- Lv, J.; Gao, W.; Li, J.; Li, T.; Long, C.; Lou, X.; Wu, J. Large strain and strain memory effect in bismuth ferrite lead-free ceramics. J. Mater. Chem. C 2017, 5, 9528–9533. [Google Scholar] [CrossRef]
- Cross, L.E.; Jang, S.J.; Newnham, R.E.; Nomura, S.; Uchino, K. Large electrostrictive effects in relaxor ferroelectrics. Ferroelectrics 1980, 23, 187–191. [Google Scholar] [CrossRef]
- Tian, Y.; Jin, L.; Zhang, H.; Xu, Z.; Wei, X.; Politova, E.D.; Stefanovich, S.Y.; Tarakina, N.V.; Abrahams, I.; Yan, H. High energy density in silver niobate ceramics. J. Mater. Chem. A 2016, 4, 17279–17287. [Google Scholar] [CrossRef]
Sample | Phase | Structural Parameters | Crystallographic System | Space Group | Weight Fraction | Density (g/cm3) | Crystallite Size (nm) | ||
---|---|---|---|---|---|---|---|---|---|
a (Å) | b (Å) | c (Å) | |||||||
x = 0 | No.1 TiO2 | 3.9053 | 3.9053 | 3.9085 | Tetragonal | P42/mnm | 27.44% | 4.450 | 72.2548 |
No.2 SrTiO3 | 3.9066 | 3.9066 | 3.9066 | Cubic | Pm-3m | 72.56% | 5.111 | 83.662 | |
x = 0.8 | No.1 Ba0.8Sr0.2 TiO3 | 3.9878 | 3.9878 | 3.9819 | Tetragonal | P4mm | 60.53% | 6.819 | 39.71 |
No.2 BaTiO3 | 5.6708 | 5.6708 | 13.9200 | Hexagonal | P63/mmc | 39.37% | 7.828 | 9.02 | |
No.2 Sr2 | 3.9852 | 3.9852 | 3.9852 | Cubic | Im-3m | 0.10% | 4.598 | 21.95 | |
x = 1 | No.1 BaTiO3 | 3.98913 | 3.98913 | 4.00730 | Tetragonal | P4mm | 71.05% | 6.073 | 22.28 |
No.2 BaTiO3 | 5.6781 | 5.6781 | 13.9300 | Hexagonal | P63/mmc | 28.95% | 6.078 | 25.38 |
x | Atom | Atomic Parameters | ||
---|---|---|---|---|
x | y | z | ||
0 | Sr | 0.5 | 0.5 | 0.5 |
Ti | 0 | 0 | 0 | |
O | 0.5 | 0 | 0 | |
0.8 | Sr | 0 | 0 | 0 |
Ba | 0 | 0 | 0 | |
Ti | 0.5 | 0.5 | 0.5 | |
O | 0.5 | 0.5 | 0 | |
O | 0.5 | 0 | 0.5 | |
1 | Ba | 0 | 0 | 0 |
Ti | 0.5 | 0.5 | 0.5 | |
O | 0.5 | 0.5 | 0 | |
O | 0.5 | 0 | 0.5 |
Sample | D (nm) from HRTEM | D (nm) from XRD |
---|---|---|
x = 0 | 48.02 | 43.40 |
x = 0.8 | 20.2 | 26.79 |
x = 1 | 37.5 | 30.11 |
Phase | Rhombohedra | Orthorhombic | Tetragonal | Cubic |
---|---|---|---|---|
TC | out of range | 270 | 450 |
x | Tc from P–T Curve (K) | Tc When Hysteresis Closed (K) |
---|---|---|
0 | 393 | 433 |
0.2 | 333 | 317 |
0.4 | 313 | 298 |
0.6 | 323 | 310 |
0.8 | 313 | 314 |
1 | 380 | 388 |
x | d33 (pC/N) | Grain Size (μm) |
---|---|---|
0 | 770.7143 | 0.1905 |
0.2 | 377.1395 | 0.1955 |
0.4 | 1144.8673 | 0.1594 |
0.6 | 50.5204 | 0.1699 |
0.8 | 178.2653 | 0.2063 |
1 | 262.5646 | 0.3125 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henaish, A.M.; Mostafa, M.; Weinstein, I.; Hemeda, O.; Salem, B. Ferroelectric and Dielectric Properties of Strontium Titanate Doped with Barium. Magnetism 2021, 1, 22-36. https://doi.org/10.3390/magnetism1010003
Henaish AM, Mostafa M, Weinstein I, Hemeda O, Salem B. Ferroelectric and Dielectric Properties of Strontium Titanate Doped with Barium. Magnetism. 2021; 1(1):22-36. https://doi.org/10.3390/magnetism1010003
Chicago/Turabian StyleHenaish, Ahmed Maher, Maha Mostafa, Ilya Weinstein, Osama Hemeda, and Basant Salem. 2021. "Ferroelectric and Dielectric Properties of Strontium Titanate Doped with Barium" Magnetism 1, no. 1: 22-36. https://doi.org/10.3390/magnetism1010003
APA StyleHenaish, A. M., Mostafa, M., Weinstein, I., Hemeda, O., & Salem, B. (2021). Ferroelectric and Dielectric Properties of Strontium Titanate Doped with Barium. Magnetism, 1(1), 22-36. https://doi.org/10.3390/magnetism1010003