Descriptive Profile of Hip Rotation in Athletic, Injured and Non-Active Populations: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources and Search Strategy
2.4. Selection Process
2.5. Data Items
2.6. Study Risk of Bias Assessment
2.7. Synthesis Methods
2.8. Reporting Bias Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics
3.3. Results of Individual Studies
3.4. Results of Syntheses
3.4.1. Comparison Between Populations
3.4.2. Comparison Between Hip Flexion Angles
3.4.3. Reporting Biases
4. Discussion
4.1. Hip Rotator ROM
4.2. Hip Rotator Strength
4.3. Study Strengths and Limitations
4.4. Implications for Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| ACL | Anterior cruciate ligament |
| cm | Centimeter |
| ER | External rotation |
| f | Force |
| FAI | Femoroacetabular impingement |
| IR | Internal rotation |
| kg | Kilograms |
| MVIC | Maximal voluntary isometric contraction |
| Nm | Newton meters |
| OA | Osteoarthritis |
| PFP | Patellofemoral pain |
| PICOS | Participants, intervention, comparisons, outcomes, and study design framework |
| RCT | Randomized controlled trial |
| ROM | Range of motion |
References
- Mosler, A.B.; Crossley, K.M.; Thorborg, K.; Whiteley, R.J.; Weir, A.; Serner, A.; Hölmich, P. Hip strength and range of motion: Normal values from a professional football league. J. Sci. Med. Sport 2016, 20, 339–343. [Google Scholar]
- Dallinga, J.M.; Benjaminse, A.; Lemmink, K.A.P.M. Which screening tools can predict injury to the lower extremities in team sports?: A systematic review. Sports Med. 2012, 42, 791–815. [Google Scholar]
- Kolasinski, S.L.; Neogi, T.; Hochberg, M.C.; Oatis, C.; Guyatt, G.; Block, J.; Callahan, L.; Copenhaver, C.; Dodge, C.; Felson, D.; et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Care Res. 2020, 72, 149–162. [Google Scholar] [CrossRef]
- Zacharias, A.; Pizzari, T.; English, D.J.; Kapakoulakis, T.; Green, R.A. Hip abductor muscle volume in hip osteoarthritis and matched controls. Osteoarthr. Cartil. 2016, 24, 1727–1735. [Google Scholar] [CrossRef]
- Judd, D.L.; Thomas, A.C.; Dayton, M.R.; Stevens-Lapsley, J.E. Strength and functional deficits in individuals with hip osteoarthritis compared to healthy, older adults. Disabil. Rehabil. 2014, 36, 307–312. [Google Scholar] [CrossRef]
- Loureiro, A.; Constantinou, M.; Diamond, L.E.; Beck, B.; Barrett, R. Individuals with mild-to-moderate hip osteoarthritis have lower limb muscle strength and volume deficits. BMC Musculoskelet. Disord. 2018, 19, 303. [Google Scholar] [CrossRef] [PubMed]
- Tak, I.; Engelaar, L.; Gouttebarge, V.; Barendrecht, M.; Van Den Heuvel, S.; Kerkhoffs, G.; Langhout, R.; Stubbe, J.; Weir, A. Is lower hip range of motion a risk factor for groin pain in athletes? A systematic review with clinical applications. Br. J. Sports Med. 2017, 51, 1611–1621. [Google Scholar] [CrossRef] [PubMed]
- Finnoff, J.T.; Hall, M.M.; Kyle, K.; Krause, D.A.; Lai, J.; Smith, J. Hip Strength and Knee Pain in High School Runners: A Prospective Study. Am. Acad. Phys. Med. Rehabil. 2011, 3, 792–801. [Google Scholar]
- Murphy, N.J.; Eyles, J.P.; Hunter, D.J. Hip Osteoarthritis: Etiopathogenesis and Implications for Management. Adv. Ther. 2016, 33, 1921–1946. [Google Scholar] [CrossRef]
- Más Martínez, J.; Morales-Santías, M.; Bustamante Suarez Suarez de Puga, D.; Sanz-Reig, J. La cirugía artroscópica de cadera en deportistas varones menores de 40 años con choque femoroacetabular: Resultado a corto plazo. Rev. Esp. Cir. Ortop. Traumatol. 2014, 58, 343–350. [Google Scholar] [CrossRef]
- Read, P.J.; Oliver, J.L.; De Ste Croix, M.B.A.; Myer, G.D.; Lloyd, R.S. Neuromuscular Risk Factors for Knee and Ankle Ligament Injuries in Male Youth Soccer Players. Sports Med. 2016, 46, 1059–1066. [Google Scholar] [CrossRef]
- Maestro, A.; Lago, J.; Revuelta, G.; Del Fueyo, P.; Del Pozo, L.; Ayan, C.; Martin, V. Analysis of hip strength and mobility as injury risk factors in amateur women’s soccer: A pilot study, Analisis de la fuerza y movilidad de la cadera como factores de riesgo de lesión en fútbol femenino amateur: Un estudio piloto. Arch. De Med. Del Deporte 2017, 34, 25–29. [Google Scholar]
- D’Onofrio, R.; Perna, P.; Pompa, D.; Civitillo, C.; Sannicandro, I.; Manzi, V. Asymmetry, lumbo-pelvic hip complex and injury in european soccer players. J. Sports Med. Phys. Fit. 2025. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef]
- de Morton, N.A. The PEDro scale is a valid measure of the methodological quality of clinical trials: A demographic study. Aust. J. Physiother. 2009, 55, 129–133. [Google Scholar] [CrossRef]
- Winter, D.A. Kinetics: Forces and Moments of Force. In Biomechanics and Motor Control of Human Movement; Wiley: Hoboken, NJ, USA, 2009; pp. 107–138. [Google Scholar]
- Haddaway, N.R.; Page, M.J.; Pritchard, C.C.; McGuinness, L.A. PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 2022, 18, e1230. [Google Scholar] [CrossRef]
- Ocarino, J.M.; Resende, R.A.; Bittencourt, N.F.N.; Correa, R.V.A.; Mendonça, L.M.; Reis, G.F.; Souza, T.R.; Fonseca, S.T. Normative data for hip strength, flexibility and stiffness in male soccer athletes and effect of age and limb dominance. Phys. Ther. Sport 2021, 47, 53–58. [Google Scholar]
- Nevin, F.; Delahunt, E. Adductor squeeze test values and hip joint range of motion in Gaelic football athletes with longstanding groin pain. J. Sci. Med. Sport 2014, 17, 155–159. [Google Scholar] [CrossRef] [PubMed]
- López-Valenciano, A.; Ayala, F.; Vera-García, F.J.; Ste Croix Mde Hernández-Sánchez, S.; Ruiz-Pérez, I.; Cejudo, A.; Santonja, F. Comprehensive profile of hip, knee and ankle ranges of motion in professional football players. J. Sports Med. Phys. Fit. 2019, 59, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Tak, I.J.R.; Langhout, R.F.H.; Groters, S.; Weir, A.; Stubbe, J.H.; Kerkhoffs, G.M.M.J. A new clinical test for measurement of lower limb specific range of motion in football players: Design, reliability and reference findings in non-injured players and those with long-standing adductor-related groin pain. Phys. Ther. Sport 2017, 23, 67–74. [Google Scholar] [CrossRef]
- Tanabe, T.; Watabu, T.; Miaki, H.; Kubo, N.; Pleiades, T.I.; Sugano, T.; Mizuno, K. Association Between Nondominant Leg-Side Hip Internal Rotation Restriction and Low Back Pain in Male Elite High School Soft Tennis Players. J. Sport Rehabil. 2023, 32, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Manning, C.; Hudson, Z. Comparison of hip joint range of motion in professional youth and senior team footballers with age-matched controls: An indication of early degenerative change? Phys. Ther. Sport 2009, 10, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Espí-López, G.V.; López-Martínez, S.; Inglés, M.; Serra-Añó, P.; Aguilar-Rodríguez, M. Effect of manual therapy versus proprioceptive neuromuscular facilitation in dynamic balance, mobility and flexibility in field hockey players. A randomized controlled trial. Phys. Ther. Sport 2018, 32, 173–179. [Google Scholar] [CrossRef]
- Siwecka, G.; Wodka-Natkaniec, E.; Niedzwiedzki, L.; Switon, A.; Niedzwiedzki, T. Relationship between the hip range of motion and functional motor system movement patterns in football players. J. Sports Med. Phys. Fit. 2022, 62, 904–909. [Google Scholar]
- Girdwood, M.; Mentiplay, B.F.; Scholes, M.J.; Heerey, J.J.; Crossley, K.M.; O’Brien, M.J.M.; Perraton, Z.; Shawdon, A.; Kemp, J.L. Hip Muscle Strength, Range of Motion, and Functional Performance in Young Elite Male Australian Football Players. J. Sport. Rehabil. 2023, 32, 910–919. [Google Scholar] [CrossRef]
- Hoglund, L.T.; Wong, A.L.K.; Rickards, C. The impact of sagittal plane hip position on isometric force of hip external rotator and internal rotator muscles in healthy young adults. Int. J. Sports Phys. Ther. 2014, 9, 58–67. [Google Scholar]
- Ferber, R.; Bolgla, L.; Earl-Boehm, J.E.; Emery, C.; Hamstra-Wright, K. Strengthening of the hip and core versus knee muscles for the treatment of patellofemoral pain: A multicenter randomized controlled trial. J. Athl. Train. 2015, 50, 366–377. [Google Scholar] [CrossRef]
- Mendonça, L.D.; Ocarino, J.M.; Bittencourt, N.F.N.; Macedo, L.G.; Fonseca, S.T. Association of hip and foot factors with patellar tendinopathy (Jumper’s Knee) in Athletes. J. Orthop. Sports Phys. Ther. 2018, 48, 676–684. [Google Scholar]
- Zhang, Z.J.; Lee, W.C.; Ng, G.Y.F.; Fu, S.N. Isometric strength of the hip abductors and external rotators in athletes with and without patellar tendinopathy. Eur. J. Appl. Physiol. 2018, 118, 1635–1640. [Google Scholar] [CrossRef]
- McCann, R.S.; Bolding, B.A.; Terada, M.; Kosik, K.B.; Crossett, I.D.; Gribble, P.A. Isometric hip strength and dynamic stability of individuals with chronic ankle instability. J. Athl. Train. 2018, 53, 672–678. [Google Scholar] [CrossRef]
- Kline, P.W.; Burnham, J.; Yonz, M.; Johnson, D.; Ireland, M.L.; Noehren, B. Hip external rotation strength predicts hop performance after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 1137–1144. [Google Scholar] [CrossRef] [PubMed]
- Lobo Júnior, P.; Barbosa Neto, I.A.; de Souza Borges, J.H.; Ferreira Tobias, R.; da Silva Boitrago, M.; de Paula Olivera, M. Clinical Muscular Evaluation in Patellofemoral Pain Syndrome. Acta Ortop. Bras. 2018, 26, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Delp, S.L.; Hess, W.E.; Hungerford, D.S.; Jones, L.C. Variation of rotation moment arms with hip flexion. J. Biomech. 1999, 32, 493–501. [Google Scholar] [CrossRef] [PubMed]
- Langhout, R.; Tak, I.; Van Der Westen, R.; Lenssen, T. Range of motion of body segments is larger during the maximal instep kick than during the submaximal kick in experienced football players. J. Sports Med. Phys. Fit. 2017, 57, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Khayambashi, K.; Ghoddosi, N.; Straub, R.K.; Powers, C.M. Hip Muscle Strength Predicts Noncontact Anterior Cruciate Ligament Injury in Male and Female Athletes: A Prospective Study. Am. J. Sports Med. 2016, 44, 355–361. [Google Scholar] [CrossRef]
- Probst, M.M.; Fletcher, R.; Seelig, D.S. A Comparison of Lower-Body Flexibility, Strength, and Knee Stability between Karate Athletes and Active Controls. J. Strength Cond. Res. 2007, 21, 451–455. [Google Scholar] [CrossRef]
- Peduzzi de Castro, M.; de Brito Fontana, H.; Fóes, M.C.; Santos, G.M.; Ruschel, C.; Roesler, H. Activation of the gluteus maximus, gluteus medius and tensor fascia lata muscles during hip internal and external rotation exercises at three hip flexion postures. J. Bodyw. Mov. Ther. 2021, 27, 487–492. [Google Scholar] [CrossRef]


| Study ID | Population | Measurements | Outcomes | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Author | Study Design | Population | Pathology | Sample Size (n) | Sex (M/F) | Age, Mean | Duration | Variables Measured | Strength | ROM |
| ROM IR 0° | ||||||||||
| Ocarino 2021 [18] | Cross Sectional | Football Players | - | 293 | M | 19.42 | - | ROM (°/kg) | - | IR |
| ROM IR & ER 0° | ||||||||||
| Nevin 2014 [19] | Observational | Gaelic Football Players | GP | 36 | M | Injured: 23.89 Non-injured: 23.83 | - | ROM (°) | - | ER & IR |
| López-Valenciano 2017 [20] | Observational | Professional Football Players | - | 82 | M | 25.5 | - | ROM (°) | - | ER & IR |
| Tak 2017 [21] | Case-Controlled | Football Players | A-GP | 243 | M | Elite: 23 Amateur: 24 | - | ROM (°) | - | ER & IR |
| Tanabe 2023 [22] | Cross Sectional | Soft Tennis Players | LBP | 113 | M | 16.1 ± 0.07 | - | ROM (°) | - | ER & IR |
| ROM IR & ER 90° | ||||||||||
| Manning 2009 [23] | Observational | Junior & Senior Football Players | - | 40 | M | Senior: 16.3 Senior control: 27.2 | - | ROM (°) | - | ER & IR |
| Espí-Lopez 2018 [24] | RCT | Field Hockey Players | - | 42 | - | MT: 21 PNF: 22.35 | 4 weeks | ROM (°) | - | ER & IR |
| Siwecka 2022 [25] | RCT | Football Players | - | 50 | M | Footballers: 17.5 Control: 18.3 | ROM (°) | - | ER & IR | |
| Girdwood 2023 [26] | Cross Sectional | Australian Football Players | - | 58 | M | 18.60 ± 1.50 | - | ROM (°) | - | ER & IR |
| STRENGTH IR & ER 0° | ||||||||||
| Hoglund 2014 [27] | Cross Sectional | Volunteers | - | 80 | M/F | 23.2 | - | Strength (kg) | ER & IR | - |
| Ferber 2015 [28] | RCT | Volunteers | PFP | 199 | M/F | 29.0 | 6 weeks | Strength (N) | ER & IR | - |
| Girdwood 2023 [26] | Cross Sectional | Australian Football Players | - | 58 | M | 18.60 ± 1.50 | - | Strength (N) | ER & IR | - |
| STRENGTH IR & ER 90° | ||||||||||
| Hoglund 2014 [27] | Cross Sectional | Volunteers | - | 80 | M/F | 23.2 | - | Strength (kg) | ER & IR | - |
| Methods of Variable Evaluations (ROM) | |||||||
|---|---|---|---|---|---|---|---|
| Article | Variable | Body Position | Stabilization | Goniometer Position | Modalities | ||
| Manning 2009 [23] | PROM | IR/ER 90°: Supine with knee at 90° | Strapping | N/A | Average of 3 trials | ||
| Nevin 2014 [19] | PROM | IR 0°: Prone with knee at 90° ER 0°: Supine with knee at 90° | IR: Spirit level ER: N/A | IR/ER: LM | Average of 3 trials | ||
| López-Valenciano 2017 [20] | PROM | IR 0°: Prone with knee at 90° ER 0°: Supine with knee at 90° | Manual Pressure | IR/ER: Tibia | Average of 2 trials | ||
| Tak 2017 [21] | PROM | IR/ER 0°: Side lying with knee at 90° | 18 cm roll above medial femoral condyle | IR/ER: halfway on lateral side of the midline of the lower leg | Average of 2 trials | ||
| Espí-Lopez 2018 [24] | PROM | IR 90°: Sitting with knee at 90° ER 90°: Sitting with knee at 90° | N/A | IR: LM ER: MM | Average of 2 trials | ||
| Ocarino 2021 [18] | PROM | IR 0°: Prone with knee at 90° | Strapping | IR: Tibial tuberosity | Average of 3 trials | ||
| Siwecka 2022 [25] | PROM | IR/ER 90°: Supine with knee at 90° | Manual Pressure | N/A | Average of 3 trials | ||
| Girdwood 2023 [26] | PROM | IR/ER 90°: Supine with hip and knee at 90° | Strapping | N/A | Average of 2 trials | ||
| Tanabe 2023 [22] | PROM | IR/ER 0°: Prone with knee at 90° | Manual stabilization on pelvic girdle | IR/ER: halfway on lateral side of the midline of the lower leg | Average of 3 trials | ||
| Methods of Variable Evaluations (Strength) | |||||||
| Article | Variable | Body Position | Stabilization | Dynamometer Position | Contractions | Modalities | |
| Hoglund 2014 [27] | MVIC | IR 90°/ER 90°: Sitting with knee at 90° IR 0°/ER 0°: Supine with knee at 90° | Strapping | IR: LM ER: MM | Isometric | Average of 3 trials | |
| Ferber 2015 [28] | MVIC | IR 90°/ER 90°: Sitting with knee at 90° | Strapping | IR: LM ER: MM | Isometric | Maximal of 3 trials | |
| Girdwood 2023 [26] | MVIC | IR/ER 0°: Prone with knee at 90° | Strapping | IR: LM ER: MM | Isometric | Maximal of 3 trials | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Mayordomo, M.; Salar-Andreu, C.; Fernández-Garrido, J.; González-Lago, L.; Benitez-Martinez, J. Descriptive Profile of Hip Rotation in Athletic, Injured and Non-Active Populations: A Systematic Review. Encyclopedia 2025, 5, 170. https://doi.org/10.3390/encyclopedia5040170
Figueroa-Mayordomo M, Salar-Andreu C, Fernández-Garrido J, González-Lago L, Benitez-Martinez J. Descriptive Profile of Hip Rotation in Athletic, Injured and Non-Active Populations: A Systematic Review. Encyclopedia. 2025; 5(4):170. https://doi.org/10.3390/encyclopedia5040170
Chicago/Turabian StyleFigueroa-Mayordomo, Maria, Cristina Salar-Andreu, Julio Fernández-Garrido, Luís González-Lago, and Josep Benitez-Martinez. 2025. "Descriptive Profile of Hip Rotation in Athletic, Injured and Non-Active Populations: A Systematic Review" Encyclopedia 5, no. 4: 170. https://doi.org/10.3390/encyclopedia5040170
APA StyleFigueroa-Mayordomo, M., Salar-Andreu, C., Fernández-Garrido, J., González-Lago, L., & Benitez-Martinez, J. (2025). Descriptive Profile of Hip Rotation in Athletic, Injured and Non-Active Populations: A Systematic Review. Encyclopedia, 5(4), 170. https://doi.org/10.3390/encyclopedia5040170

