Persistence of Cognitive Difficulties in Adults Three Years After COVID-19 Infection
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
- (a)
- Mild/asymptomatic group (n = 101): individuals with mild symptoms (e.g., rhinorrhea, headache, isolated fever) or asymptomatic cases who did not require specialized medical care;
- (b)
- Moderate gravity group (n = 101): individuals presenting persistent fever, cough, and progressive respiratory difficulty, requiring hospitalization in a general ward;
- (c)
- Severe group (n = 95): individuals diagnosed with Severe Acute Respiratory Syndrome (SARS), with dyspnea, persistent chest pain, and oxygen saturation below 90%, requiring admission to the intensive care unit (ICU).
2.2. Elegibility Criteria
2.3. Data Collection and Measures
- Intelligence Quotient (IQ) obtained through the Vocabulary and Matrix Reasoning subtests of the Wechsler Abbreviated Scale of Intelligence (WASI) [29].
- Attention and working memory through verbal stimuli were assessed using the Digit Span subtest—Forward and Backwards—of the Wechsler Adult Intelligence Scale, Third Edition (WAIS-III) [30].
- Divided attention through visual stimuli was measured with a computerized divided attention test (Online Attention Test—AOL), requiring simultaneous focus on multiple stimuli [31].
- Verbal fluency was assessed using phonemic and semantic fluency tests (FAS), requiring the rapid production of words based on an initial letter or semantic category [32].
- Short-term visual recognition memory was measured using the Computerized Recognition Memory Test (TEM-R), which presents visual stimuli to be recognized after prior exposure [33].
2.4. Data Analysis
3. Results
3.1. Participants
3.2. Analysis of Cognitive Performance with the Severity of COVID Symptoms
3.3. Association Between Sociodemographic Variables Age and Education with Cognitive Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AOL | Atenção On-line [Online Attention Test] |
DS | Digit Span |
FAS | Phonemic and Semantic Verbal Fluency Task |
IQ | Intelligence Quotient |
TEM-R | Teste de Memória de Reconhecimento [Recognition Memory Test] |
WAIS-III | Wechsler Adult Intelligence Scale, Third Edition |
WASI | Wechsler Abreviated Scale of Intelligence |
References
- Pal, M.; Bulcha, M.R.; Banu, M.G.; Ketchakmadze, D. SARS-CoV-2 (COVID-19) Pandemic Remains a Global Public Health Threat. Iberoam. J. Med. 2021, 3, 264–270. [Google Scholar] [CrossRef]
- Isasi, F.; Naylor, M.D.; Skorton, D.; Grabowski, D.C.; Hernández, S.; Rice, V.M. Patients, Families, and Communities COVID-19 Impact Assessment: Lessons Learned and Compelling Needs; NAM Perspectives; National Academy of Medicine: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Jimenez, M.; Hormeño-Holgado, A.; Martinez-Gonzalez, M.B.; Benitez-Agudelo, J.C.; Perez-Palencia, N.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Impact of COVID-19 Pandemic in Public Mental Health: An Extensive Narrative Review. Sustainability 2021, 13, 3221. [Google Scholar] [CrossRef]
- Sachs, J.D.; Karim, S.S.A.; Aknin, L.; Allen, J.; Brosbøl, K.; Colombo, F.; Barron, G.C.; Espinosa, M.F.; Gaspar, V.; Gaviria, A.; et al. The Lancet Commission on Lessons for the Future from the COVID-19 Pandemic. Lancet 2022, 400, 1224–1280. [Google Scholar] [CrossRef] [PubMed]
- Nalbandian, A.; Sehgal, K.; Gupta, A.; Madhavan, M.V.; McGroder, C.; Stevens, J.S.; Cook, J.R.; Nordvig, A.S.; Shalev, D.; Sehrawat, T.S.; et al. Post-Acute COVID-19 Syndrome. Nat. Med. 2021, 27, 601–615. [Google Scholar] [CrossRef]
- Bliddal, S.; Banasik, K.; Pedersen, O.B.; Nissen, J.; Cantwell, L.; Schwinn, M.; Tulstrup, M.; Westergaard, D.; Ullum, H.; Brunak, S.; et al. Acute and Persistent Symptoms in Non-Hospitalized PCR-Confirmed COVID-19 Patients. Sci. Rep. 2021, 11, 13153. [Google Scholar] [CrossRef]
- Ceban, F.; Ling, S.; Lui, L.M.W.; Lee, Y.; Gill, H.; Teopiz, K.M.; Rodrigues, N.B.; Subramaniapillai, M.; Di Vincenzo, J.D.; Cao, B.; et al. Fatigue and Cognitive Impairment in Post-COVID-19 Syndrome: A Systematic Review and Meta-Analysis. Brain Behav. Immun. 2022, 101, 93–135. [Google Scholar] [CrossRef]
- Hampshire, A.; Trender, W.; Chamberlain, S.R.; Jolly, A.E.; Grant, J.E.; Patrick, F.; Mazibuko, N.; Williams, S.C.; Barnby, J.M.; Hellyer, P.; et al. Cognitive Deficits in People Who Have Recovered from COVID-19. eClinicalMedicine 2021, 39, 101044. [Google Scholar] [CrossRef]
- Dong, Y.; Ritto, A.P.; Damiano, R.F.; Coli, A.G.; Hadade, R.; Rocca, C.C.A.; Serafim, A.P.; Guedes, B.F.; Nitrini, R.; Imamura, M.; et al. Memory Complaints after COVID-19: A Potential Indicator of Primary Cognitive Impairment or a Correlate of Psychiatric Symptoms? Transl. Psychiatry 2024, 14, 455. [Google Scholar] [CrossRef]
- Fanshawe, J.B.; Sargent, B.F.; Badenoch, J.B.; Saini, A.; Watson, C.J.; Pokrovskaya, A.; Aniwattanapong, D.; Conti, I.; Nye, C.; Burchill, E.; et al. Cognitive Domains Affected Post-COVID-19: A Systematic Review and Meta-Analysis. Eur. J. Neurol. 2025, 32, e16181. [Google Scholar] [CrossRef]
- Filev, R.; Lyubomirova, M.; Bogov, B.; Kalinov, K.; Hristova, J.; Svinarov, D.; Garev, A.; Rostaing, L. Post-Acute Sequelae of SARS-CoV-2 Infection (PASC) for Patients—3-Year Follow-Up of Patients with Chronic Kidney Disease. Biomedicines 2024, 12, 1259. [Google Scholar] [CrossRef]
- Al-Aly, Z.; Rosen, C.J. Long Covid and Impaired Cognition—More Evidence and More Work to Do. N. Engl. J. Med. 2024, 390, 858–860. [Google Scholar] [CrossRef]
- Hampshire, A.; Azor, A.; Atchison, C.; Trender, W.; Hellyer, P.J.; Giunchiglia, V.; Husain, M.; Cooke, G.S.; Cooper, E.; Lound, A.; et al. Cognition and Memory after Covid-19 in a Large Community Sample. N. Engl. J. Med. 2024, 390, 806–818. [Google Scholar] [CrossRef]
- Boldrini, M.; Canoll, P.D.; Klein, R.S. How COVID-19 Affects the Brain. JAMA Psychiatry 2021, 78, 682–683. [Google Scholar] [CrossRef]
- Taquet, M.; Sillett, R.; Zhu, L.; Mendel, J.; Camplisson, I.; Dercon, Q.; Harrison, P.J. Neurological and Psychiatric Risk Trajectories after SARS-CoV-2 Infection: An Analysis of 2-Year Retrospective Cohort Studies Including 1,284,437 Patients. Lancet Psychiatry 2022, 9, 815–827. [Google Scholar] [CrossRef]
- Tyagi, K.; Rai, P.; Gautam, A.; Kaur, H.; Kapoor, S.; Suttee, A.; Jaiswal, P.K.; Sharma, A.; Singh, G.; Barnwal, R.P. Neurological Manifestations of SARS-CoV-2: Complexity, Mechanism and Associated Disorders. Eur. J. Med. Res. 2023, 28, 307. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, R.S.; Selvam, S.; Ayyavoo, V. Neuroinflammation in Post COVID-19 Sequelae: Neuroinvasion and Neuroimmune Crosstalk. Rev. Med. Virol. 2024, 34, e70009. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.H.; Vannorsdall, T.D.; Weisenbach, S.L. Evaluation of Post-COVID-19 Cognitive Dysfunction: Recommendations for Researchers. JAMA Psychiatry 2023, 80, 1085–1086. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Martin, E.M.; Reuken, P.A.; Scholcz, A.; Ganse-Dumrath, A.; Srowig, A.; Utech, I.; Kozik, V.; Radscheidt, M.; Brodoehl, S.; et al. Long COVID Is Associated with Severe Cognitive Slowing: A Multicentre Cross-Sectional Study. eClinicalMedicine 2024, 68, 102434. [Google Scholar] [CrossRef]
- Meyer, P.; Zaiser, A.K. Insights on the Neurocognitive Mechanisms Underlying Hippocampus-Dependent Memory Impairment in COVID-19. Sci. Rep. 2025, 15, 20114. [Google Scholar] [CrossRef]
- Takács, J.; Deák, D.; Seregély, B.; Koller, A. Cognitive Slowing, Dysfunction in Verbal Working Memory, Divided Attention and Response Inhibition in Post COVID-19 Condition in Young Adults. Life 2025, 15, 821. [Google Scholar] [CrossRef]
- Panagea, E.; Messinis, L.; Petri, M.C.; Liampas, I.; Anyfantis, E.; Nasios, G.; Patrikelis, P.; Kosmidis, M. Neurocognitive Impairment in Long COVID: A Systematic Review. Arch. Clin. Neuropsychol. 2025, 40, 125–149. [Google Scholar] [CrossRef]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- De Pádua Serafim, A.; Saffi, F.; Soares, A.R.A.; Morita, A.M.; Assed, M.M.; Rocca, C.C.A.; Durães, R.S.S. Cognitive Performance of Post-COVID Patients in Mild, Moderate, and Severe Clinical Situations. BMC Psychol. 2024, 12, 236. [Google Scholar] [CrossRef]
- Zhao, S.; Toniolo, S.; Hampshire, A.; Husain, M. Effects of COVID-19 on Cognition and Brain Health. Trends Cogn. Sci. 2023, 27, 1053–1067. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Wang, X.; Gong, M.; Wang, Q.; Li, Y.; Jia, J. Post-COVID Cognitive Dysfunction: Current Status and Research Recommendations for High Risk Population. Lancet Reg. Health West. Pac. 2023, 38, 100836. [Google Scholar] [CrossRef] [PubMed]
- Popa, E.; Popa, A.E.; Poroch, M.; Poroch, V.; Ungureanu, M.I.; Slanina, A.M.; Bacusca, A.; Coman, E.A. The Molecular Mechanisms of Cognitive Dysfunction in Long COVID: A Narrative Review. Int. J. Mol. Sci. 2025, 26, 5102. [Google Scholar] [CrossRef]
- Douaud, G.; Lee, S.; Alfaro-Almagro, F.; Arthofer, C.; Wang, C.; McCarthy, P.; Lange, F.; Andersson, J.L.R.; Griffanti, L.; Duff, E.; et al. SARS-CoV-2 Is Associated with Changes in Brain Structure in UK Biobank. Nature 2022, 604, 697–707. [Google Scholar] [CrossRef]
- Wechsler, D. Escala Wechsler Abreviada de Inteligência (WASI); Casa do Psicólogo: São Paulo, Brazil, 2014. [Google Scholar]
- Wechsler, D. Escala de Inteligência Wechsler para Adultos WAIS III—Revisão das Normas Brasileiras da Escala de Inteligência Wechsler para Adultos; Casa do Psicólogo: São Paulo, Brazil, 2020. [Google Scholar]
- Lance, A.C.N.; Esteves, C.; Arsuffi, E.S.; Lima, F.F.; Reis, J.S. Teste Online de Atenção Dividida; Editora Vetor: São Paulo, Brazil, 2020. [Google Scholar]
- Opasso, P.R.; Barreto, S.S.; Ortiz, K.Z. Fluência Verbal Fonêmica em Adultos de Alto Letramento. Einstein 2016, 14, 398–402. [Google Scholar] [CrossRef]
- Rueda, J.M.; Raad, A.J.; Monteiro, R.M. Teste de Memória de Reconhecimento (TEM-R); Editora Vetor: São Paulo, Brazil, 2020. [Google Scholar]
- Miskowiak, K.W.; Pedersen, J.K.; Gunnarsson, D.V.; Roikjer, T.K.; Podlekareva, D.; Hansen, H.; Dall, C.H.; Johnsen, S. Cognitive Impairments among Patients in a Long-COVID Clinic: Prevalence, Pattern and Relation to Illness Severity, Work Function and Quality of Life. J. Affect. Disord. 2023, 324, 162–169. [Google Scholar] [CrossRef]
- Monastero, R.; Baschi, R. Persistent Cognitive Dysfunction in a Non-Hospitalized COVID-19 Long-Hauler Patient Responding to Cognitive Rehabilitation and Citicoline Treatment. Brain Sci. 2023, 13, 1275. [Google Scholar] [CrossRef]
- Doll-Lee, J.; Klietz, M.; Greten, S.; Kopp, B.; Berding, G.; Brendel, M.; Wilkens, I.; Katzdobler, S.; Levin, J.; Danek, A. Associations between Neuropsychological Profile and Regional Brain FDG Uptake in Progressive Supranuclear Palsy. J. Parkinson’s Dis. 2025, 15, 904–912. [Google Scholar] [CrossRef]
- Dadsena, R.; Walders, J.; Costa, A.S.; Wetz, S.; Romanzetti, S.; Lischewski, S.A.; Krockauer, C.; Heine, J.; Schlenker, L.; Klabunn, P.; et al. Two-year impact of COVID-19: Longitudinal MRI brain changes and neuropsychiatric trajectories. Psychiatry Clin. Neurosci. 2025, 79, 176–186. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Sun, S.; Xiao, S.; Chen, G.; Chen, P.; Yang, Z.; Tang, X.; Huang, L.; Wang, Y. COVID-19 Is Associated with Changes in Brain Function and Structure: A Multimodal Meta-Analysis of Neuroimaging Studies. Neurosci. Biobehav. Rev. 2024, 164, 105792. [Google Scholar] [CrossRef] [PubMed]
- Bertuccelli, M.; Ciringione, L.; Rubega, M.; Bisiacchi, P.; Masiero, S.; Del Felice, A. Cognitive Impairment in People with Previous COVID-19 Infection: A Scoping Review. Cortex 2022, 154, 212–230. [Google Scholar] [CrossRef] [PubMed]
- Müller, L.; Di Benedetto, S. The Impact of COVID-19 on Accelerating of Immunosenescence and Brain Aging. Front. Cell. Neurosci. 2024, 18, 1471192. [Google Scholar] [CrossRef]
- Stern, Y. Cognitive Reserve in Ageing and Alzheimer’s Disease. Lancet Neurol. 2021, 11, 1006–1012. [Google Scholar] [CrossRef]
- Fineschi, S.; Fahlström, M.; Fällmar, D.; Haller, S.; Wikström, J. Comprehensive MRI Assessment Reveals Subtle Brain Findings in Non-Hospitalized Post-COVID Patients with Cognitive Impairment. Front. Neurosci. 2024, 18, 1435218. [Google Scholar] [CrossRef]
- Esmaili, M.; Farhud, D.D.; Poushaneh, K.; Baghdassarians, A.; Ashayeri, H. Executive Functions and Public Health: A Narrative Review. Iran. J. Public Health 2023, 52, 1589–1599. [Google Scholar] [CrossRef]
- Jirsaraie, R.J.; Sheffield, J.M.; Barch, D.M. Neural Correlates of Global and Specific Cognitive Deficits in Schizophrenia. Schizophr. Res. 2018, 201, 237–242. [Google Scholar] [CrossRef]
- Gläser, E.; Kilimann, I.; Platen, M.; Hoffmann, W.; Brosseron, F.; Buerger, K.; Coenjaerts, M.; Düzel, E.; Ewers, M.; Fliessbach, K.; et al. The Economic Burden of Subjective Cognitive Decline, Mild Cognitive Impairment and Alzheimer’s Dementia: Excess Costs and Associated Clinical and Risk Factors. Alzheimers Res. Ther. 2025, 17, 142. [Google Scholar] [CrossRef]
- Pfau, M.L.; Russo, S.J. Neuroinflammation Regulates Cognitive Impairment in Socially Defeated Mice. Trends Neurosci. 2016, 39, 353–355. [Google Scholar] [CrossRef]
- Gan, R.; Xie, H.; Zhao, Z.; Wu, X.; Wang, R.; Wu, B.; Chen, Q.; Jia, Z. Investigation of Patterns and Associations of Neuroinflammation in Cognitive Impairment. Cereb. Cortex 2025, 35, bhaf013. [Google Scholar] [CrossRef]
- Yıldırım, E.; Büyükişcan, E.S.; Kalem, Ş.A.; Gürvit, I.H. Remote Neuropsychological Assessment: Teleneuropsychology. Noro Psikiyatr. Ars. 2024, 61, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.; Zakzanis, K.K. A Review of the Reliability of Remote Neuropsychological Assessment. Appl. Neuropsychol. Adult 2025, 32, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.W.; Gardner, M.M.; Sherman, J.C.; Pasquariello, K.; Grieco, J.A.; Kay, C.D.; Pollak, L.E.; Morgan, A.K.; Carlson-Emerton, B.; Seligsohn, K.; et al. Feasibility and Acceptance of Direct-to-Home Tele-Neuropsychology Services during the COVID-19 Pandemic. J. Int. Neuropsychol. Soc. 2022, 28, 210–215. [Google Scholar] [CrossRef] [PubMed]
- Koterba, C.H.; Considine, C.M.; Becker, J.H.; Hoskinson, K.R.; Ng, R.; Vargas, G.; Basso, M.R.; Puente, A.E.; Lippa, S.M.; Whiteside, D.M. Neuropsychology Practice Guidance for the Neuropsychiatric Aspects of Long COVID. Clin. Neuropsychol. 2025, 39, 870–898. [Google Scholar] [CrossRef] [PubMed]
- Corrada, M.M.; Brookmeyer, R.; Paganini-Hill, A.; Berlau, D.; Kawas, C.H. Dementia Incidence Continues to Increase with Age in the Oldest Old: The 90+ Study. Ann. Neurol. 2010, 67, 114–121. [Google Scholar] [CrossRef]
- Di Giorgio, A.; Mirijello, A.; De Gennaro, C.; Fontana, A.; Alboini, P.E.; Florio, L.; Inchingolo, V.; Zarrelli, M.; Miscio, G.; Raggi, P.; et al. Factors Associated with Delirium in COVID-19 Patients and Their Outcome: A Single-Center Cohort Study. Diagnostics 2022, 12, 544. [Google Scholar] [CrossRef]
- Ranson, J.M.; Rittman, T.; Hayat, S.; Brayne, C.; Jessen, F.; Blennow, K.; van Duijn, C.; Barkhof, F.; Tang, E.; Mummery, C.J.; et al. Modifiable Risk Factors for Dementia and Dementia Risk Profiling: A User Manual for Brain Health Services—Part 2 of 6. Alzheimers Res. Ther. 2021, 13, 169. [Google Scholar] [CrossRef]
- Shan, D.; Wang, C.; Crawford, T.; Holland, C. Association between COVID-19 Infection and New-Onset Dementia in Older Adults: A Systematic Review and Meta-Analysis. BMC Geriatr. 2024, 24, 940. [Google Scholar] [CrossRef]
Total | Mild Symptoms | Moderate Symptoms | Severe Symptoms | χ2 | p-Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
n | % | FR | n | % | RF | n | % | FR | n | % | RF | |||
Men | 148 | 100% | 49.8% | 48 | 32.4% | 47.5% | 52 | 35.1% | 51.5% | 48 | 32.4% | 50.5% | 0.34 | 0.842 |
Women | 149 | 100% | 50.2% | 53 | 35.6% | 52.5% | 49 | 32.9% | 48.5% | 47 | 31.5% | 49.5% | ||
n | M | SD | n | M | SD | n | M | SD | n | M | SD | Fisher | p | |
Age | 297 | 50.7 | 13.4 | 101 | 46.7 | 12.4 | 101 | 50.6 | 14.0 | 95 | 55.0 | 12.5 | 21.0 | <0.001 |
Education years | 297 | 12.8 | 3.5 | 101 | 14.4 | 2.6 | 101 | 12.4 | 3.4 | 95 | 11.5 | 3.9 | 31.7 | <0.001 |
Hospitalization | 101 | 8.2 | 3.9 | - | - | - | 101 | 8.2 | 3.9 | - | - | - | - | - |
Days in CTI | 196 | 7.0 | 9.2 | - | - | - | 101 | 0.0 | 0.0 | 95 | 14.4 | 8.2 | - | - |
Cognitive Test | Cognitive Domain | COVID-19 Symptoms | Stat. | p | |||
---|---|---|---|---|---|---|---|
Total | Mild | Moderate | Severe | ||||
M (SD) | M (SD) | M (SD) | M (SD) | ||||
IQ (WASI) | General intelligence | 95.8 (5.3) | 96.7 (4.2) | 95.3 (5.4) | 95.4 (6.1) | 7.3 1 | 0.026 |
AOL | Divided attention | 36.1 (12.6) | 44.5 (8.9) | 36.1 (11.3) | 27.3 (11.2) | 71.0 2 | <0.001 |
DS Forward | Working Memory | 9.6 (2.1) | 10.6 (1.4) | 9.3 (2.1) | 9.0 (2.3) | 35.6 1 | <0.001 |
DS Backwards | Attention/executive control | 8.1 (2.0) | 9.0 (1.3) | 7.6 (2.2) | 7.5(2.1) | 40.78 1 | <0.001 |
FAS | Verbal fluency | 13.7 (3.3) | 14.6 (1.7) | 14.3 (4.3) | 12.2 (2.8) | 32.9 1 | <0.001 |
TEM-R | Recognition memory | 22.9 (4.6) | 23.9 (3.7) | 23.2 (4.9) | 21.6 (4.9) | 9.9 1 | 0.007 |
Cognitive Test and Domain | Group | Adj. R2 (%) | p |
---|---|---|---|
DS Forward (Working Memory) | Mild | 29 | <0.001 |
Moderate | 31.7 | <0.001 | |
Severe | 35.4 | <0.001 | |
DS Backwards (Attention/executive control) | Mild | 2.7 | 0.132 |
Moderate | 33.8 | <0.001 | |
Severe | 15.7 | <0.001 | |
FAS (Verbal fluence) | Mild | 16.4 | 0.133 |
Moderate | 31.5 | <0.001 | |
Severe | 8.1 | <0.014 | |
TEM-R (Recognition memory) | Mild | 16.4 | 0.130 |
Moderate | 31.5 | <0.001 | |
Severe | 8.1 | 0.014 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serafim, A.d.P.; Campos, V.L.M.; Saffi, F.; Rocca, C.C.d.A.; Durães, R.S.d.S. Persistence of Cognitive Difficulties in Adults Three Years After COVID-19 Infection. COVID 2025, 5, 153. https://doi.org/10.3390/covid5090153
Serafim AdP, Campos VLM, Saffi F, Rocca CCdA, Durães RSdS. Persistence of Cognitive Difficulties in Adults Three Years After COVID-19 Infection. COVID. 2025; 5(9):153. https://doi.org/10.3390/covid5090153
Chicago/Turabian StyleSerafim, Antonio de Pádua, Victor Linking Magalhães Campos, Fabiana Saffi, Cristiana Castanho de Almeida Rocca, and Ricardo Silva dos Santos Durães. 2025. "Persistence of Cognitive Difficulties in Adults Three Years After COVID-19 Infection" COVID 5, no. 9: 153. https://doi.org/10.3390/covid5090153
APA StyleSerafim, A. d. P., Campos, V. L. M., Saffi, F., Rocca, C. C. d. A., & Durães, R. S. d. S. (2025). Persistence of Cognitive Difficulties in Adults Three Years After COVID-19 Infection. COVID, 5(9), 153. https://doi.org/10.3390/covid5090153