Intersection of Gender and Disability on Returns to Education: A Case from Metro Manila, Philippines
Abstract
:1. Introduction
2. Dataset from Metro Manila in the Philippines
3. Empirical Strategies
3.1. Mincerian Wage Equation with Continuous Education
3.2. Discontinuous Wage Earnings and the Signaling Effect
3.3. Quantile Regression
4. Results and Findings
4.1. The Results for the Mincerian Wage Equation on Continuous Education
4.2. The Results for Discontinuous Wage Earnings and the Signaling Effect
4.3. The Results for Quantile Regression
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gunderson, M.; Oreopolous, P. Returns to education in developed countries. In The Economics of Education; Elsevier: Amsterdam, The Netherlands, 2020; pp. 39–51. ISBN 978-0-12-815391-8. [Google Scholar]
- Patrinos, H.A.; Psacharopoulos, G. Returns to education in developing countries. In The Economics of Education; Elsevier: Amsterdam, The Netherlands, 2020; pp. 53–64. ISBN 978-0-12-815391-8. [Google Scholar]
- Card, D. The Causal Effect of Education on Earnings. In Handbook of Labor Economics; Elsevier: Amsterdam, The Netherlands, 1999; Volume 3, pp. 1801–1863. ISBN 978-0-444-50187-5. [Google Scholar]
- Lamichhane, K.; Okubo, T. The Nexus between Disability, Education, and Employment: Evidence from Nepal. Oxf. Dev. Stud. 2014, 42, 439–453. [Google Scholar] [CrossRef]
- Lamichhane, K. Individuals with visual impairments teaching in Nepal’s mainstream schools: A model for inclusion. Int. J. Incl. Educ. 2016, 20, 16–31. [Google Scholar] [CrossRef]
- Braithwaite, J.; Mont, D. Disability and poverty: A survey of World Bank Poverty Assessments and implications. Alter 2009, 3, 219–232. [Google Scholar] [CrossRef]
- Mitra, S.; Yap, J. The 2022 Disability Data Report. 2022. Available online: https://disabilitydata.ace.fordham.edu/twentyreport/disability-data-initiative-2022-report/ (accessed on 20 August 2023).
- Card, D. Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems. Econometrica 2001, 69, 1127–1160. [Google Scholar] [CrossRef]
- Heckman, J.J.; Lochner, L.J.; Todd, P.E. Chapter 7 Earnings Functions, Rates of Return and Treatment Effects: The Mincer Equation and Beyond. In Handbook of the Economics of Education; Elsevier: Amsterdam, The Netherlands, 2006; Volume 1, pp. 307–458. ISBN 978-0-444-51399-1. [Google Scholar]
- Deming, D.J. Four Facts about Human Capital. J. Econ. Perspect. 2022, 36, 75–102. [Google Scholar] [CrossRef]
- Klasen, S. What Explains Uneven Female Labor Force Participation Levels and Trends in Developing Countries? World Bank Res. Obs. 2019, 34, 161–197. [Google Scholar] [CrossRef]
- Jayachandran, S. Social Norms as a Barrier to Women’s Employment in Developing Countries. IMF Econ. Rev. 2021, 69, 576–595. [Google Scholar] [CrossRef]
- Li, N. Women’s work in India: Evidence from changes in time use between 1998 and 2019. World Dev. 2023, 161, 106107. [Google Scholar] [CrossRef]
- Filmer, D. Disability, Poverty, and Schooling in Developing Countries: Results from 14 Household Surveys. World Bank Econ. Rev. 2008, 22, 141–163. [Google Scholar] [CrossRef]
- Mitra, S.; Sambamoorthi, U. Disability and the Rural Labor Market in India: Evidence for Males in Tamil Nadu. World Dev. 2008, 36, 934–952. [Google Scholar] [CrossRef]
- Mitra, S.; Sambamoorthi, U. Wage differential by disability status in an agrarian labour market in India. Appl. Econ. Lett. 2009, 16, 1393–1398. [Google Scholar] [CrossRef]
- Mizunoya, S.; Mitra, S. Is There a Disability Gap in Employment Rates in Developing Countries? World Dev. 2013, 42, 28–43. [Google Scholar] [CrossRef]
- Hollenbeck, K.; Kimmel, J. Differences in the Returns to Education for Males by Disability Status and Age of Disability Onset. South. Econ. J. 2008, 74, 707–724. [Google Scholar] [CrossRef]
- Lamichhane, K.; Sawada, Y. Disability and returns to education in a developing country. Econ. Educ. Rev. 2013, 37, 85–94. [Google Scholar] [CrossRef]
- Albert, J.R.; Mori, S.; Reyes, C.; Tabuga, A.D.; Yamagata, T. Income Disparity among Persons with Disabilities, Assessed by Education and Sex: Accentuated Gender Difference Found in Metro Manila, the Philippines: Income Disparity Among Persons with Disabilities in Metro Manila. Dev. Econ. 2015, 53, 289–302. [Google Scholar] [CrossRef]
- Pinilla-Roncancio, M.; Gallardo, M. Inequality in labour market opportunities for people with disabilities: Evidence for six Latin American countries. Glob. Soc. Policy 2023, 23, 67–91. [Google Scholar] [CrossRef]
- Tiwari, S.; Savastano, S.; Winters, P.; Improta, M. Rural economic activities of persons with disabilities in Sub-Saharan Africa. Oxf. Dev. Stud. 2022, 50, 321–335. [Google Scholar] [CrossRef]
- Stern, S. Measuring the Effect of Disability on Labor Force Participation. J. Hum. Resour. 1989, 24, 361. [Google Scholar] [CrossRef]
- DeLeire, T. The Wage and Employment Effects of the Americans with Disabilities Act. J. Hum. Resour. 2000, 35, 693. [Google Scholar] [CrossRef]
- DeLeire, T. Changes in Wage Discrimination against People with Disabilities: 1984–93. J. Hum. Resour. 2001, 36, 144. [Google Scholar] [CrossRef]
- Hotchkiss, J.L. The Labor Market Experience of Workers with Disabilities: The ADA and Beyond; W.E. Upjohn Institute: Kalamazoo, MI, USA, 2003; ISBN 978-0-585-44978-4. [Google Scholar]
- Psacharopoulos, G.; Patrinos, H.A. Returns to investment in education: A further update. Educ. Econ. 2004, 12, 111–134. [Google Scholar] [CrossRef]
- UNDP. Human Development Report 2021: Uncertain Times, Unsettled Lives: Shaping Our Future in a Transforming World; Human Development Report; United Nations Development Programme: New York, NY, USA, 2022; ISBN 978-92-1-126451-7. [Google Scholar]
- World Economic Forum. Global Gender Gap Report 2022. Available online: https://www.weforum.org/publications/global-gender-gap-report-2022/ (accessed on 20 August 2023).
- Lamichhane, K.; Takeda, T. Disability and Intrahousehold Investment Decisions in Education: Empirical Evidence from Bangladesh. Asian Dev. Rev. 2022, 39, 201–238. [Google Scholar] [CrossRef]
- Reyes, C.M.; Tabuga, A.D.; Mina, C.D. Features of life of PWDs. In Poverty Reduction of the Disabled; Routledge: Abingdon, UK, 2014; pp. 25–70. [Google Scholar]
- Yamauchi, F.; Tiongco, M. Why women are progressive in education? Gender disparities in human capital, labor markets, and family arrangement in the Philippines. Econ. Educ. Rev. 2013, 32, 196–206. [Google Scholar] [CrossRef]
- Angrist, J.D.; Krueger, A.B. Does Compulsory School Attendance Affect Schooling and Earnings? Q. J. Econ. 1991, 106, 979–1014. [Google Scholar] [CrossRef]
- Angrist, J.D.; Imbens, G.W.; Rubin, D.B. Identification of Causal Effects Using Instrumental Variables. J. Am. Stat. Assoc. 1996, 91, 444–455. [Google Scholar] [CrossRef]
- Trostel, P.; Walker, I.; Woolley, P. Estimates of the economic return to schooling for 28 countries. Labour Econ. 2002, 9, 1–16. [Google Scholar] [CrossRef]
- Soderbom, M.; Teal, F.; Wambugu, A.; Kahyarara, G. The Dynamics of Returns to Education in Kenyan and Tanzanian Manufacturing. Oxf. Bull Econ Stats 2006, 68, 261–288. [Google Scholar] [CrossRef]
- Amemiya, T. Advanced Econometrics; Harvard University Press: Cambridge, MA, USA, 1985; ISBN 978-0-674-00560-0. [Google Scholar]
- Spence, M. Job Market Signaling. Q. J. Econ. 1973, 87, 355. [Google Scholar] [CrossRef]
- Arrow, K.J. Higher education as a filter. J. Public Econ. 1973, 2, 193–216. [Google Scholar] [CrossRef]
- Stiglitz, J.E. The Theory of Screening, Education, and the Distribution of Income. Am. Econ. Rev. 1975, 65, 283–300. [Google Scholar] [CrossRef]
- Hungerford, T.; Solon, G. Sheepskin Effects in the Returns to Education. Rev. Econ. Stat. 1987, 69, 175. [Google Scholar] [CrossRef]
- Jaeger, D.A.; Page, M.E. Degrees Matter: New Evidence on Sheepskin Effects in the Returns to Education. Rev. Econ. Stat. 1996, 78, 733. [Google Scholar] [CrossRef]
- Martins, P.S.; Pereira, P.T. Does education reduce wage inequality? Quantile regression evidence from 16 countries. Labour Econ. 2004, 11, 355–371. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data, 2nd ed.; MIT Press: Cambridge, MA, USA, 2010; ISBN 978-0-262-23258-6. [Google Scholar]
- Lamichhane, K. Disability and barriers to education: Evidence from Nepal. Scand. J. Disabil. Res. 2013, 15, 311–324. [Google Scholar] [CrossRef]
- Lamichhane, K. Employment situation and life changes for people with disabilities: Evidence from Nepal. Disabil. Soc. 2012, 27, 471–485. [Google Scholar] [CrossRef]
- Asian Development Bank (Ed.) Gender Equality in the Labor Market in the Philippines; ILO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2013; ISBN 978-92-9254-403-4. [Google Scholar]
- Schady, N.R. Convexity and Sheepskin Effects in the Human Capital Earnings Function: Recent Evidence for Filipino Men. Oxf. Bull Econ Stats 2003, 65, 171–196. [Google Scholar] [CrossRef]
- Brown, R.L.; Moloney, M.E. Intersectionality, Work, and Well-Being: The Effects of Gender and Disability. Gend. Soc. 2019, 33, 94–122. [Google Scholar] [CrossRef]
- Hutchinson, D.L.; Underwood, L.J. (Eds.) The Intersectionality of Women’s Lives and Resistance; Lexington Books: Lanham, MD, USA, 2020; ISBN 978-1-79361-370-7. [Google Scholar]
- Lamichhane, K.; Venetis, E.; Mulcahy-Dunn, A.; Batchelder, K. Approaches to Increasing Employment and Quality of Employment Among Youth with Disabilities; USAID Evidence and Good Practices Paper; United States Agency for International Development: Washington, DC, USA, 2022. [Google Scholar]
(1) | (2) | (3) | (4) | (5) | |
---|---|---|---|---|---|
Variable Names | N (If Dummy = 1) | Mean | Sd | Min | Max |
Dummy = 1 if female | 365 (140) | 0.384 | 0.487 | 0 | 1 |
Years of schooling | 365 | 8.425 | 4.192 | 0 | 16 |
Years of schooling (female) | 140 | 7.871 | 4.448 | 0 | 16 |
Years of schooling (male) | 225 | 8.769 | 3.997 | 0 | 16 |
Income (PHP) | 365 | 60,665 | 87,424 | 1 | 660,000 |
Income (PHP, female) | 140 | 50,216 | 85,939 | 1 | 660,000 |
Income (PHP, male) | 225 | 67,167 | 87,898 | 1 | 600,000 |
Age | 365 | 37.77 | 12.57 | 15 | 67 |
Age (female) | 140 | 38.23 | 13.22 | 15 | 67 |
Age (male) | 225 | 37.48 | 12.17 | 15 | 61 |
Dummy = 1 if physically impaired | 365 (120) | 0.329 | 0.470 | 0 | 1 |
Dummy = 1 if visually impaired | 365 (140) | 0.384 | 0.487 | 0 | 1 |
Dummy = 1 if hearing impaired | 365 (105) | 0.288 | 0.453 | 0 | 1 |
Dummy = 1 if physically impaired * female | 365 (38) | 0.104 | 0.306 | 0 | 1 |
Dummy = 1 if visually impaired * female | 365 (52) | 0.142 | 0.350 | 0 | 1 |
Dummy = 1 if hearing impaired * female | 365 (50) | 0.137 | 0.344 | 0 | 1 |
Dummy = 1 if physically impaired * male | 365 (82) | 0.225 | 0.418 | 0 | 1 |
Dummy = 1 if visually impaired * male | 365 (88) | 0.241 | 0.428 | 0 | 1 |
Dummy = 1 if hearing impaired * male | 365 (55) | 0.151 | 0.358 | 0 | 1 |
Average onset age for physically impaired | 114 | 23.06 | 16.22 | 0 | 53 |
Average onset age for visually impaired | 136 | 26.21 | 14.16 | 0 | 57 |
Dummy = 1 if hearing impaired since born | 105 (60) | 0.571 | 0.497 | 0 | 1 |
Dummy = 1 if hearing impaired before 3 years old | 105 (24) | 0.229 | 0.422 | 0 | 1 |
Dummy = 1 if hearing impaired after 3 years old | 105 (15) | 0.143 | 0.352 | 0 | 1 |
Dummy = 1 if Makati area resident | 365 (121) | 0.332 | 0.471 | 0 | 1 |
Dummy = 1 if Quezon area resident | 365 (108) | 0.296 | 0.457 | 0 | 1 |
Dummy = 1 if Valenzuela area resident | 365 (67) | 0.189 | 0.392 | 0 | 1 |
Dummy = 1 if Pasay area | 365 (69) | 0.184 | 0.388 | 0 | 1 |
Dependent Variable: Log Income (Years of Schooling (5) and (10)) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | |
Variable names | OLS | Tobit | IV-OLS | IV-Tobit | First-Stage | OLS | Tobit | IV-OLS | IV-Tobit | First-Stage |
Years of schooling | 0.259 *** | 0.312 *** | 0.348 ** | 0.395 * | 0.257 *** | 0.309 *** | 0.336 * | 0.381 * | ||
(0.0498) | (0.0628) | (0.172) | (0.203) | (0.0498) | (0.0625) | (0.177) | (0.208) | |||
Age | 0.283 ** | 0.341 ** | 0.221 * | 0.269 * | 0.345 *** | 0.290 ** | 0.351 ** | 0.222 * | 0.272 * | 0.363 *** |
(0.114) | (0.142) | (0.129) | (0.157) | (0.119) | (0.115) | (0.142) | (0.131) | (0.159) | (0.119) | |
Age squared | −0.00325 ** | −0.00391 ** | −0.00249 | −0.00304 | −0.00395 ** | −0.00335 ** | −0.00404 ** | −0.00249 | −0.00308 | −0.00418 *** |
(0.00146) | (0.00180) | (0.00168) | (0.00203) | (0.00157) | (0.00147) | (0.00181) | (0.00169) | (0.00205) | (0.00157) | |
Dummy = 1 if female | −0.899 ** | −1.095 ** | −0.923 * | −1.106 * | −0.978 ** | |||||
(0.435) | (0.527) | (0.493) | (0.588) | (0.444) | ||||||
Dummy = 1 if physically impaired | −1.923 *** | −2.244 *** | −1.757 *** | −2.001 *** | 0.202 | |||||
(0.518) | (0.622) | (0.517) | (0.610) | (0.519) | ||||||
Dummy = 1 if hearing impaired | −1.201 ** | −1.333 ** | −1.474 *** | −1.647 ** | −0.972 * | |||||
(0.521 | (0.622) | (0.551) | (0.649) | (0.577) | ||||||
Dummy = 1 if physically impaired * female | −2.806 *** | −3.385 *** | −2.253 ** | −2.609 ** | −0.830 | |||||
(0.897) | (1.118) | (0.879) | (1.062) | (0.834) | ||||||
Dummy = 1 if hearing impaired * female | −2.110 *** | −2.408 *** | −2.759 *** | −3.182 *** | −1.912 ** | |||||
(0.658) | (0.806) | (0.778) | (0.952) | (0.785) | ||||||
Dummy = 1 if visually impaired * female | −0.446 | −0.482 | −1.120 | −1.240 | −0.0343 | |||||
(0.653) | (0.755) | (0.712) | (0.822) | (0.796) | ||||||
Dummy = 1 if physically impaired * male | −1.694 *** | −1.913 *** | −2.040 *** | −2.276 *** | 0.702 | |||||
(0.580) | (0.679) | (0.566) | (0.663) | (0.607) | ||||||
Dummy = 1 if hearing impaired * male | −0.860 | −0.906 | −1.307 ** | −1.388 * | −0.335 | |||||
(0.667) | (0.792) | (0.650) | (0.764) | (0.720) | ||||||
Dummy = 1 if Makati area | −2.206 *** | −2.574 *** | −2.481 *** | −2.807 *** | 0.709 | −2.211 *** | −2.580 *** | −2.453 *** | −2.779 *** | 0.690 |
(0.575) | (0.686) | (0.616) | (0.726) | (0.630) | (0.576) | (0.686) | (0.611) | (0.720) | (0.625) | |
Dummy = 1 if Quezon area | −1.381 ** | −1.535 ** | −1.873 *** | −2.086 *** | −0.854 | −1.415 ** | −1.585 ** | −1.835 *** | −2.046 *** | −0.912 |
(0.548) | (0.638) | (0.551) | (0.640) | (0.653) | (0.552) | (0.641) | (0.561) | (0.652) | (0.660) | |
Dummy = 1 if Valenzuela area | −1.957 *** | −2.250 *** | −2.200 *** | −2.476 *** | −0.523 | −1.948 *** | −2.226 *** | −2.267 *** | −2.555 *** | −0.511 |
(0.656) | (0.786) | (0.683) | (0.809) | (0.741) | (0.667) | (0.797) | (0.683) | (0.811) | (0.739) | |
Years of schooling (Mother) | 0.0809 | 0.0818 | ||||||||
(0.0695) | (0.0694) | |||||||||
Years of schooling (Father) | 0.239 *** | 0.236 *** | ||||||||
(0.0685) | (0.0675) | |||||||||
Constant | 2.377 | 0.710 | 2.673 | 1.244 | −0.577 | 3.485 | 1.862 | 4.694 ** | 3.431 | −0.330 |
(2.129) | (2.696) | (2.300) | (2.874) | (2.249) | (2.216) | (2.777) | (2.328) | (2.886) | (2.371) | |
Observations | 365 | 365 | 300 | 300 | 300 | 365 | 365 | 300 | 300 | 300 |
First-stage F statistic for excluded instruments (p-value) | 15.026 | 14.887 | ||||||||
(0.000) | (0.000) | |||||||||
Sargan statistic test | 0.040 | 0.067 | ||||||||
(0.842) | ||||||||||
R-squared | 0.187 | 0.195 | 0.189 | 0.201 |
Dependent Variable: Log Income | ||||
---|---|---|---|---|
(1) | (2) | (3) | (4) | |
Variable Names | OLS | Tobit | OLS | Tobit |
Age | 0.251 ** | 0.292 ** | 0.315 *** | 0.378 *** |
(0.118) | (0.142) | (0.116) | (0.142) | |
Age squared | −0.00287 * | −0.00332 * | −0.00369 ** | −0.00442 ** |
(0.00152) | (0.00183) | (0.00147) | (0.00180) | |
Dummy = 1 if female | −0.974 ** | −1.183 ** | ||
(0.442) | (0.528) | |||
Kindergarten/preparatory school | −4.718 *** | −30.78 | ||
(1.117) | (0) | |||
Elementary grade I to V | −0.419 | −0.455 | ||
(1.041) | (1.318) | |||
Elementary graduate | 1.992 * | 2.482 * | ||
(1.108) | (1.342) | |||
1st to 3rd year high school | 2.321 ** | 2.915 ** | ||
(1.004) | (1.240) | |||
High school graduate | 1.651 * | 2.057 * | ||
(0.992) | (1.225) | |||
Vocational school | 2.298 ** | 2.787 ** | ||
(1.111) | (1.355) | |||
Post-secondary | 5.880 *** | 6.993 *** | ||
(1.023) | (1.315) | |||
College level | 2.029 ** | 2.480 ** | ||
(0.978) | (1.209) | |||
College or university graduate | 4.002 *** | 4.735 *** | ||
(0.889) | (1.122) | |||
Master or higher | 3.077 *** | 3.609 *** | ||
(1.039) | (1.250) | |||
Not completed lower education (female) | −0.260 | −0.0347 | ||
(1.345) | (1.789) | |||
Completed lower education (female) | 2.393 * | 3.173 * | ||
(1.304) | (1.699) | |||
Not completed higher education (female) | 1.763 | 2.407 | ||
(1.394) | (1.802) | |||
Completed higher education (female) | 3.559 *** | 4.542 *** | ||
(1.231) | (1.615) | |||
No grade completed (male) | 0.651 | 1.200 | ||
(1.639) | (2.088) | |||
Not completed lower education (male) | 2.082 * | 2.835 * | ||
(1.238) | (1.637) | |||
Completed lower education (male) | 1.872 | 2.543 | ||
(1.257) | (1.648) | |||
Not completed higher education (male) | 2.945 ** | 3.772 ** | ||
(1.210) | (1.600) | |||
Completed higher education (male) | 4.546 *** | 5.532 *** | ||
(1.160) | (1.559) | |||
Dummy = 1 if physically impaired | −1.930 *** | −2.262 *** | −1.807 *** | −2.102 *** |
(0.525) | (0.624) | (0.525) | (0.623) | |
Dummy = 1 if hearing impaired | −1.000 * | −1.103 * | −1.139 ** | −1.273 * |
(0.554) | (0.653) | (0.559) | (0.663) | |
Dummy = 1 if Makati area | −2.113 *** | −2.437 *** | −2.040 *** | −2.361 *** |
(0.593) | (0.697) | (0.572) | (0.676) | |
Dummy = 1 if Quezon area | −1.131 ** | −1.215 * | −1.331 ** | −1.463 ** |
(0.571) | (0.657) | (0.547) | (0.634) | |
Dummy = 1 if Valenzuela area | −1.707 *** | −1.938 ** | −2.029 *** | −2.359 *** |
(0.654) | (0.770) | (0.663) | (0.789) | |
Constant | 4.701 ** | 3.527 | 0.894 | 1.087 |
(2.378) | (2.902) | (3.137) | (3.108) | |
Observations | 365 | 365 | 365 | 365 |
R-squared | 0.217 | 0.190 |
Dependent Variable: Log Income | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable names | (1) | (2) | (3) | ||||||
q25 | q50 | q75 | q25 | q50 | q75 | q25 | q50 | q75 | |
Years of schooling | 0.424 *** | 0.131 *** | 0.106 *** | 0.297 *** | 0.144 *** | 0.104 *** | |||
(0.114) | (0.0296) | (0.0149) | (0.107) | (0.0299) | (0.0157) | ||||
Age | 0.415 ** | 0.142 | 0.134 ** | 0.495 ** | 0.186 ** | 0.103 ** | 0.222 | 0.196 ** | 0.135 *** |
(0.189) | (0.129) | (0.0564) | (0.248) | (0.0815) | (0.0439) | (0.206) | (0.0857) | (0.0451) | |
Age squared | −0.00474 ** | −0.00152 | −0.00159 ** | −0.00579 * | −0.00209 ** | −0.00112 ** | −0.00277 | −0.00228 ** | −0.00161 *** |
(0.00225) | (0.00156) | (0.000701) | (0.00306) | (0.00103) | (0.000512) | (0.00258) | (0.00102) | (0.000558) | |
Dummy = 1 if female | 0.415 ** | 0.142 | 0.134 ** | ||||||
(0.189) | (0.129) | (0.0564) | |||||||
Not completed lower education (female) | −0.274 | −0.705 | −0.940 | ||||||
(2.813) | (3.759) | (0.583) | |||||||
Completed lower education (female) | 7.313 ** | 0.879 | 0.357 | ||||||
(2.846) | (3.494) | (0.374) | |||||||
Not completed higher education (female) | 5.405 | 0.650 | 0.573 | ||||||
(3.435) | (3.658) | (0.500) | |||||||
Completed higher education (female) | 7.609 *** | 0.752 | 0.901 | ||||||
(2.753) | (3.525) | (0.696) | |||||||
No grade completed (male) | 6.189 | −0.776 | −0.599 | ||||||
(3.984) | (3.391) | (0.581) | |||||||
Not completed lower education (male) | 6.850 ** | 0.340 | 0.171 | ||||||
(2.808) | (3.463) | (0.410) | |||||||
Completed lower education (male) | 5.955 * | 0.433 | 0.572 | ||||||
(3.286) | (3.420) | (0.393) | |||||||
Not completed higher education (male) | 7.675 ** | 0.713 | 0.643 | ||||||
(3.184) | (3.426) | (0.418) | |||||||
Completed higher education (male) | 8.774 *** | 1.582 | 1.407 *** | ||||||
(2.694) | (3.499) | (0.465) | |||||||
Dummy = 1 if physically impaired | −2.206 | −0.485 | −0.517 ** | −2.137 *** | −0.885 *** | −0.606 *** | |||
(1.913) | (0.323) | (0.233) | (0.691) | (0.309) | (0.184) | ||||
Dummy = 1 if hearing impaired | −0.964 | −0.862 ** | −0.646 *** | −1.558 ** | −0.960 ** | −0.573 ** | |||
(0.981) | (0.359) | (0.176) | (0.712) | (0.425) | (0.254) | ||||
Dummy = 1 if physically impaired * female | −8.019 *** | −0.573 | −0.632 *** | ||||||
(2.739) | (2.199) | (0.218) | |||||||
Dummy = 1 if hearing impaired * female | −3.470 | −1.832 *** | −1.396 *** | ||||||
(2.217) | (0.381) | (0.324) | |||||||
Dummy = 1 if visually impaired * female | −1.070 | −0.153 | −0.0308 | ||||||
(0.859) | (0.468) | (0.232) | |||||||
Dummy = 1 if physically impaired * male | −1.810 * | −0.792 ** | −0.583 ** | ||||||
(0.946) | (0.326) | (0.238) | |||||||
Dummy = 1 if hearing impaired * male | −1.411 | −0.240 | −0.499 ** | ||||||
(0.949) | (0.374) | (0.193) | |||||||
Dummy = 1 if Makati area | −2.293 ** | −0.981 *** | −1.010 *** | −2.133 | −1.288 *** | −0.984 *** | −2.160 ** | −1.065 *** | −0.668 *** |
(0.917) | (0.275) | (0.184) | (1.471) | (0.350) | (0.160) | (1.028) | (0.322) | (0.183) | |
Dummy = 1 if Quezon area | −1.134 * | −0.585 ** | −0.718 *** | −1.242 ** | −0.721 ** | −0.778 *** | −1.495 ** | −0.995 *** | −0.597 ** |
(0.619) | (0.249) | (0.210) | (0.586) | (0.355) | (0.187) | (0.579) | (0.321) | (0.234) | |
Dummy = 1 if Valenzuela area | −1.190 | −0.692 ** | −1.123 *** | −1.170 | −0.984 *** | −1.043 *** | −1.581 | −1.043 ** | −0.911 *** |
(1.434) | (0.314) | (0.210) | (1.909) | (0.337) | (0.248) | (1.492) | (0.408) | (0.253) | |
Constant | −1.551 | 7.415 *** | 8.868 *** | −1.411 | 6.618 *** | 9.238 *** | 0.182 | 7.493 ** | 9.122 *** |
(3.683) | (2.574) | (0.963) | (4.849) | (1.408) | (0.896) | (4.109) | (3.708) | (0.786) | |
Observations | 365 | 365 | 365 | 365 | 365 | 365 | 365 | 365 | 365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lamichhane, K.; Watanabe, T. Intersection of Gender and Disability on Returns to Education: A Case from Metro Manila, Philippines. Merits 2023, 3, 682-699. https://doi.org/10.3390/merits3040041
Lamichhane K, Watanabe T. Intersection of Gender and Disability on Returns to Education: A Case from Metro Manila, Philippines. Merits. 2023; 3(4):682-699. https://doi.org/10.3390/merits3040041
Chicago/Turabian StyleLamichhane, Kamal, and Takayuki Watanabe. 2023. "Intersection of Gender and Disability on Returns to Education: A Case from Metro Manila, Philippines" Merits 3, no. 4: 682-699. https://doi.org/10.3390/merits3040041
APA StyleLamichhane, K., & Watanabe, T. (2023). Intersection of Gender and Disability on Returns to Education: A Case from Metro Manila, Philippines. Merits, 3(4), 682-699. https://doi.org/10.3390/merits3040041