The Psychological Effects of Relational Job Characteristics Scale: An Adaptation Study for Brazilian K-12 Teachers
Abstract
:1. Introduction
1.1. Grant’s Job Impact Framework
1.2. Studies with the Psychological Effect of Relational Job Characteristics
1.3. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Instruments
2.3.1. Psychological Effects of Relational Job Characteristics (PERJCs) Scale
2.3.2. Prosocial Motivation Scale (PSMS)
2.3.3. Utrecht Work Engagement Scale—Short Version (UWES-9)
2.4. Data Analysis
3. Results
3.1. Item’s Characteristics
3.2. Validity Evidence Based on the Internal Structure
3.2.1. Factor Structure and Internal Consistency of the PERJCs
3.2.2. Convergent and Discriminant Validity Evidence
3.2.3. Measurement Invariance across the Different Kinds of Schools
3.2.4. Validity Evidence Based on Relationships with Other Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hackman, J.R. Work Redesign and Motivation. Prof. Psychol. Res. Pract. 1980, 11, 445–455. [Google Scholar] [CrossRef]
- Hackman, J.R.; Oldham, G.R. Motivation through the Design of Work: Test of a Theory. Organ. Behav. Hum. Perform. 1976, 16, 250–279. [Google Scholar] [CrossRef]
- Grant, A.M.; Fried, Y.; Juillerat, T. Work Matters: Job Design in Classic and Contemporary Perspectives. In APA Handbook of Industrial and Organizational Psychology, Vol 1: Building and Developing the Organization; Zedeck, S., Ed.; American Psychological Association: Washington, DC, USA, 2011; pp. 417–453. [Google Scholar]
- Grant, A.M.; Parker, S.K. Redesigning Work Design Theories: The Rise of Relational and Proactive Perspectives. Acad. Manag. Ann. 2009, 3, 317–375. [Google Scholar] [CrossRef]
- Grant, A.M. Relational Job Design and the Motivation to Make a Prosocial Difference. Acad. Manag. Rev. 2007, 32, 393–417. [Google Scholar] [CrossRef]
- Grant, A.M. Designing Jobs to Do Good: Dimensions and Psychological Consequences of Prosocial Job Characteristics. J. Posit. Psychol. 2008, 3, 19–39. [Google Scholar] [CrossRef]
- Grant, A.M. The Significance of Task Significance: Job Performance Effects, Relational Mechanisms, and Boundary Conditions. J. Appl. Psychol. 2008, 93, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.M.; Campbell, E.M.; Chen, G.; Cottone, K.; Lapedis, D.; Lee, K. Impact and the Art of Motivation Maintenance: The Effects of Contact with Beneficiaries on Persistence Behavior. Organ. Behav. Hum. Decis. Process. 2007, 103, 53–67. [Google Scholar] [CrossRef]
- Grant, A.M. Does Intrinsic Motivation Fuel the Prosocial Fire? Motivational Synergy in Predicting Persistence, Performance, and Productivity. J. Appl. Psychol. 2008, 93, 48–58. [Google Scholar] [CrossRef]
- Grant, A.M.; Campbell, E.M. Doing Good, Doing Harm, Being Well and Burning out: The Interactions of Perceived Prosocial and Antisocial Impact in Service Work. J. Occup. Organ. Psychol. 2007, 80, 665–691. [Google Scholar] [CrossRef]
- Grant, A.M.; Sumanth, J.J. Mission Possible? The Performance of Prosocially Motivated Employees Depends on Manager Trustworthiness. J. Appl. Psychol. 2009, 94, 927–944. [Google Scholar] [CrossRef]
- Santos, A.; Castanheira, F.; Chambel, M.J.; Amarante, M.V.; Costa, C. Psychological Effects of Relational Job Characteristics: Validation of the Scale for Hospital Nurses. J. Nurs. Manag. 2017, 25, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Oldham, G.R.; Fried, Y. Job Design Research and Theory: Past, Present and Future. Organ. Behav. Hum. Decis. Process. 2016, 136, 20–35. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-Determination Theory. Am. Psychol. 2000, 55, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Grant, A.M.; Berg, J.M. Prosocial Motivation at Work: When, Why, and How Making a Difference Makes a Difference. In The Oxford Handbook of Positive Organizational Scholarship; Spreitzer, G.M., Cameron, K.S., Eds.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Bolino, M.C.; Grant, A.M. The Bright Side of Being Prosocial at Work, and the Dark Side, Too: A Review and Agenda for Research on Other-Oriented Motives, Behavior, and Impact in Organizations. Acad. Manag. Ann. 2016, 10, 599–670. [Google Scholar] [CrossRef]
- Castanheira, F. Perceived Social Impact, Social Worth, and Job Performance: Mediation by Motivation. J. Organ. Behav. 2016, 37, 789–803. [Google Scholar] [CrossRef]
- Castanheira, F.; Chambel, M.J.; Lopes, S.; Oliveira-Cruz, F. Relational Job Characteristics and Work Engagement: Mediation by Prosocial Motivation. Mil. Psychol. 2016, 28, 226–240. [Google Scholar] [CrossRef]
- Santos, A.; Chambel, M.J.; Castanheira, F. Relational Job Characteristics and Nurses’ Affective Organizational Commitment: The Mediating Role of Work Engagement. J. Adv. Nurs. 2016, 72, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Santos, A.; Castanheira, F.; Chambel, M.J.; Amarante, M.V.; Costa, C. Relational Job Characteristics and Well-Being: A Study among Portuguese and Brazilian Hospital Nurses. Stress Health 2017, 33, 415–425. [Google Scholar] [CrossRef]
- Santos, A.; Chambel, M.J.; Castanheira, F. Wellbeing among Hospital Nurses: A Cross-Sectional Study of the Contributions of Relational Job Characteristics. Int. J. Nurs. Stud. 2020, 105, 103438. [Google Scholar] [CrossRef]
- Grant, A.M. Employees without a Cause: The Motivational Effects of Prosocial Impact in Public Service. Int. Public Manag. J. 2008, 11, 48–66. [Google Scholar] [CrossRef]
- Schaufeli, W.B.; Bakker, A.B.; Salanova, M. The Measurement of Work Engagement with a Short Questionnaire: A Cross-National Study. Educ. Psychol. Meas. 2006, 66, 701–716. [Google Scholar] [CrossRef]
- Sinval, J.; Pasian, S.; Queirós, C.; Marôco, J. Brazil-Portugal Transcultural Adaptation of the UWES-9: Internal Consistency, Dimensionality, and Measurement Invariance. Front. Psychol. 2018, 9, 353. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- RStudio Team. RStudio: Integrated Development Environment for R; RStudio: Integrated Development for R. RStudio, PBC: Boston, MA, USA, 2021. [Google Scholar]
- Waring, E.; Quinn, M.; McNamara, A.; de la Rubia, E.A.; Zhu, H.; Ellis, S. Skimr: Compact and Flexible Summaries of Data; 2023. Available online: https://rdrr.io/cran/skimr/ (accessed on 1 October 2023).
- Rosseel, Y. Lavaan: An R Package for Structural Equation Modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Rhemtulla, M.; Brosseau-Liard, P.É.; Savalei, V. When Can Categorical Variables Be Treated as Continuous? A Comparison of Robust Continuous and Categorical SEM Estimation Methods under Suboptimal Conditions. Psychol. Methods 2012, 17, 354–373. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.A. Confirmatory for Analysis for Applied Research; Guilford Publication: New York, NY, USA, 2015. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming; Routledge: London, UK, 2016. [Google Scholar]
- Hoyle, R.H. Structural Equation Modeling: Concepts, Issues, and Applications; Sage Publications: New York, NY, USA, 1995. [Google Scholar]
- McDonald, R.P.; Ho, M.H. Principles and Practice in Reporting Structural Equation Analyses. Psychol. Methods 2002, 7, 64–82. [Google Scholar] [CrossRef] [PubMed]
- Cronbach, L.J. Coefficient Alpha and the Internal Structure of Tests. Psychometrika 1951, 16, 297–334. [Google Scholar] [CrossRef]
- Raykov, T. Estimation of Composite Reliability for Congeneric Measures. Appl. Psychol. Meas. 1997, 21, 173–184. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Cheung, G.W.; Rensvold, R.B. Evaluating Goodness-of-Fit Indexes for Testing Measurement Invariance. Struct. Equ. Model. Multidiscip. J. 2002, 9, 233–255. [Google Scholar] [CrossRef]
- Finney, S.J.; DiStefano, C. Nonnormal and Categorical Data in Structural Equation Modeling. In A Second Course in Structural Equation Modeling; Hancock, G.R., Mueller, R.O., Eds.; Information Age: Charlotte, NC, USA, 2013; pp. 439–492. [Google Scholar]
- Carlotto, M.S.; Câmara, S.G. Síndrome de Burnout e Estratégias de Enfrentamento em Professores de Escolas Públicas e Privadas. Psicol. Educ. 2008, 26. Available online: http://pepsic.bvsalud.org/scielo.php?script=sci_arttext&pid=S1414-69752008000100003 (accessed on 1 October 2023).
- Oliveira, T.F.; de Lins, V.L.; da Silva, R.M.; Fontoura, L.V. Qualidade de vida no trabalho: Um estudo comparativo entre professores de escola pública e privada. Psicol. Argum 2016, 34, 104–119. [Google Scholar]
Study | Sample | Item’s Grouping | M, SD | Reliability | β | |
---|---|---|---|---|---|---|
1 | Grant (2008a) | 201 public service (lifeguards and police officers) and telephone solicitation employees | PSI: 3 items [7,8]. ACC: 3 items [8] 7-point Likert-type scale Beneficiaries were represented according to each job | PSI: M = 5.03, SD = 1.06 ACC: M = 4.27, SD = 1.48 | PSIα = 0.86 ACCα = 0.90 | PSI → PSM: 0.22 ACC → PSM: 0.51 |
2 | Freeney and Fellenz (2013) | 182 Irish Midwives | PSI: 4 items [7] 7-point Likert-type scale Beneficiaries were represented as patients | PSI: M = 6.20, SD = NA | PSIα = 0.82 | PSI → ENG: 0.32 *** |
3 | Castanheira (2016) | 370 customer service employees (bankers, retailers, and callers) | PSI: 6 items [7,10]. PSW: 3 items [7]. ACC: 3 items [6] 7-point Likert-type scale Beneficiaries were represented as customers Items were translated into Portuguese (Portugal) | PSI: M = 4.36, SD = 1.27 PSW: M = 3.89, SD = 1.38 ACC: M = 5.27, SD = 1.21 | PSIα = 0.89 PSWα = 0.83 ACCα = 0.89 PSICR = 0.90 PSWCR = 0.83 ACCCR = 0.90 | PSI → ENG: 0.32 *** PSW → ENG: 0.12 n.s. ACC → ENG: 0.13 * |
4 | Santos et al. (2016a) | 335 hospital nurses | PSI: 6 items [7,10]. PSW: 3 items [7]. ACC: 2 items [6], one was excluded for redundancy 7-point Likert-type scale Beneficiaries were represented as “others” | PSI: M = 5.85, SD = 0.82 PSW: M = 5.14, SD = 1.17 ACC: M = 5.46, SD = 1.11 | PSIα = 0.93 PSWα = 0.91 ACCα = 0.85 | PSI → ENG: 0.17 ** PSW → ENG: 0.16 * ACC → ENG: 0.22 ** |
5 | Castanheira et al. (2016) | 322 Officers and Sergeants | Only PSI and PSW, same as study 3 | PSI: M = 5.27, SD = 1.09 PSW: M = 4.62, SD = 1.38 | PSIα = 0.95 PSWα = 0.90 | PSI → ENG: 0.37 *** PSW → ENG: 0.17 * PSI → PSM: 0.62 *** PSW → PSM: −0.10 n.s. |
1045 soldiers | PSI: M = 4.52, SD = 1.28 PSW: M = 4.36, SD = 1.42 | PSIα = 0.93 PSWα = 0.86 | PSI → ENG: 0.27 *** PSW → ENG: 0.23 *** PSI → PSM: 0.34 *** PSW → PSM: 0.09 * | |||
6 | Santos et al. (2017b) | 335 Portuguese hospital nurses | PSI, PSW, and ACC, same as study 3 | PSI: M = 5.85, SD = 0.82 PSW: M = 5.14, SD = 1.17 ACC: M = 5.46, SD = 1.11 | PSIα = 0.93 PSWα = 0.91 ACCα = 0.85 | PSI → ENG: 0.15 * PSW → ENG: 0.24 ** ACC → ENG: 0.15 * |
285 Brazilian hospital nurses | PSI: M = 6.09, SD = 0.78 PSW: M = 5.75, SD = 1.13 ACC: M = 5.58, SD = 1.06 | PSIα = 0.92 PSWα = 0.88 ACCα = 0.73 | PSI → ENG: NA PSW → ENG: 0.36 ** ACC → ENG: NA | |||
7 | Santos et al. (2017a) | 620 hospital nurses (335 Portuguese and 285 Brazilian) | PSI, PSW, and ACC, same as study 3 | PSI: M = 5.95, SD = 0.81 PSW: M = 5.31, SD = 1.11 ACC: M = 5.60, SD = 1.14 | PSIα = 0.93 PSWα = 0.89 ACCα = 0.83 | PSI ↔ ENG: 0.36 ** PSW ↔ ENG: 0.39 ** ACC ↔ ENG: 0.32 ** |
8 | Santos et al. (2020) | 409 Portuguese hospital nurses | PSI, PSW, and ACC, same as study 3 | PSI: M = 6.02, SD = 0.88 PSW: M = 5.07, SD = 1.26 ACC: M = 5.65, SD = 1.14 | PSIα = 0.94 PSWα = 0.89 ACCα = 0.86 | PSI → ENG: 0.25 *** PSW → ENG: 0.27 *** ACC → ENG: 0.05 n.s. |
Item | M | SD | Skewness | Kurtosis | Histogram |
---|---|---|---|---|---|
PSI_1 | 6.18 | 0.83 | −1.41 | 4.18 | ▁ ▁ ▁ ▁ ▇ |
PSI_2 | 6.09 | 0.88 | −1.24 | 2.99 | ▁ ▁ ▁ ▂▇ |
PSI_3 | 6.06 | 0.92 | −1.19 | 2.47 | ▁ ▁ ▁ ▂▇ |
PSI_4 | 5.85 | 0.94 | −0.88 | 1.51 | ▁ ▁ ▁ ▂▇ |
PSI_5 | 5.81 | 0.97 | −1.06 | 2.26 | ▁ ▁ ▁ ▃▇ |
PSI_6 | 5.70 | 1.05 | −0.96 | 1.60 | ▁ ▁ ▁ ▃▇ |
ACC_1 | 6.05 | 1.27 | −2.20 | 5.43 | ▁ ▁ ▁ ▁ ▇ |
ACC_2 | 5.93 | 1.14 | −1.60 | 3.30 | ▁ ▁ ▁ ▂▇ |
PSW_1 | 5.60 | 0.98 | −1.08 | 2.31 | ▁ ▁ ▁ ▃▇ |
PSW_2 | 5.41 | 1.11 | −1.16 | 2.05 | ▁ ▁ ▂▅▇ |
PSW_3 | 5.63 | 1.09 | −1.47 | 3.10 | ▁ ▁ ▁ ▃▇ |
Factor Models | χ2(df) | χ2/df | Δχ2 | RMSEA 90% CI [LB, UB] | TLI | CFI |
---|---|---|---|---|---|---|
Unidimensional | 2877.599 * (44) | 65.40 | - | 0.179 [0.173, 0.185] | 0.684 | 0.747 |
Tridimensional | 627.911 * (41) | 15.30 | 2249.689 * | 0.084 [0.079, 0.090] | 0.930 | 0.948 |
Tridimensional with residual covariances | 189.220 * (44) | 4.30 | 438.691 * | 0.044 [0.038, 0.051] | 0.980 | 0.987 |
PSI | ACC | PSW | |
---|---|---|---|
PSI | 0.697 | ||
ACC | 0.230 | 0.687 | |
PSW | 0.302 | 0.152 | 0.777 |
χ2 | df | RMSEA | TLI | CFI | ΔCFI | |
---|---|---|---|---|---|---|
Configural | 292.767 | 114 | 0.048 | 0.977 | 0.984 | - |
Fixed factor loadings | 319.636 | 136 | 0.045 | 0.980 | 0.984 | - |
Fixed intercepts | 351.076 | 152 | 0.044 | 0.981 | 0.982 | −0.002 |
Fixed means | 362.007 | 158 | 0.044 | 0.981 | 0.982 | 0.000 |
Whole Sample n = 2011 | Public Municipal n = 1650 | Public State n = 159 | Private n = 202 | |||||
---|---|---|---|---|---|---|---|---|
M | SD | M | SD | M | SD | M | SD | |
PSI | 5.95 | 0.76 | 5.95 | 0.75 | 5.88 | 0.79 | 6.05 | 0.77 |
ACC | 5.99 | 1.06 | 6.01 | 1.03 | 5.99 | 1.17 | 5.90 | 1.19 |
PSW | 5.55 | 0.93 | 5.53 | 0.94 | 5.56 | 1.04 | 5.68 | 0.73 |
PERJCs | 5.85 | 0.68 | 5.84 | 0.68 | 5.81 | 0.75 | 5.92 | 0.66 |
Deciles | PSI | ACC | PSW | PERJCs |
---|---|---|---|---|
10 | 5.00 | 4.50 | 4.33 | 5.00 |
20 | 5.33 | 5.50 | 5.00 | 5.36 |
30 | 5.67 | 6.00 | 5.33 | 5.55 |
40 | 5.83 | 6.00 | 5.33 | 5.73 |
50 | 6.00 | 6.00 | 5.67 | 5.91 |
60 | 6.17 | 6.50 | 6.00 | 6.09 |
70 | 6.33 | 7.00 | 6.00 | 6.18 |
80 | 6.67 | 7.00 | 6.00 | 6.45 |
90 | 7.00 | 7.00 | 6.67 | 6.73 |
Prosocial Motivation | B | SE | p | β |
---|---|---|---|---|
PSI → PSM | 0.339 | 0.043 | <0.001 | 0.432 |
ACC → PSM | 0.145 | 0.022 | <0.001 | 0.255 |
PSW → PSM | −0.015 | 0.018 | 0.401 | −0.026 |
Work Engagement | ||||
PSI → ENG | 0.118 | 0.047 | 0.011 | 0.101 |
ACC → ENG | 0.049 | 0.028 | 0.079 | 0.058 |
PSW → ENG | 0.319 | 0.039 | <0.001 | 0.362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klein, N.; Costa, C.; Marôco, J.P.; Pereira, C.R.; Chambel, M.J. The Psychological Effects of Relational Job Characteristics Scale: An Adaptation Study for Brazilian K-12 Teachers. Merits 2023, 3, 668-681. https://doi.org/10.3390/merits3040040
Klein N, Costa C, Marôco JP, Pereira CR, Chambel MJ. The Psychological Effects of Relational Job Characteristics Scale: An Adaptation Study for Brazilian K-12 Teachers. Merits. 2023; 3(4):668-681. https://doi.org/10.3390/merits3040040
Chicago/Turabian StyleKlein, Natan, Carlos Costa, João P. Marôco, Cicero Roberto Pereira, and Maria José Chambel. 2023. "The Psychological Effects of Relational Job Characteristics Scale: An Adaptation Study for Brazilian K-12 Teachers" Merits 3, no. 4: 668-681. https://doi.org/10.3390/merits3040040