Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards
Abstract
:1. Introduction
2. Materials and Methods
3. Fabrication and Design of Transmission Line
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, D.; Kim, B.; Lee, J.; Youn, Y.; Kim, M.; Park, D.; Hong, W. Wideband and dual-polarized transparent antenna-on-display using via-less and single-layer topology for mmwave wireless communication. In Proceedings of the 2022 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (AP-S/URSI), Denver, CO, USA, 10–15 July 2022; pp. 319–320. [Google Scholar]
- Iovanna, P.; Bigongiari, A.; Cavaliere, F.; Bianchi, A.; Testa, F.; Marconi, S.; Menezo, S. Optical components for transport network enabling the path to 6G. J. Lightw. Technol. 2022, 40, 527–537. [Google Scholar] [CrossRef]
- Park, J.; Jang, I.; Seong, B.; Hong, W. Differentially-fed, 1-D phased array antenna-on-display featuring wideband and polarization agility for millimeter-wave wireless applications. IEEE Trans. Antennas Propag. 2023, 71, 7196–7205. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Luo, J.; Wang, X.; Chen, Y.; Liu, X. High-Temperature Polymer Dielectrics for Printed Circuit Board. In High Temperature Polymer Dielectrics: Fundamentals and Applications in Power Equipment; Zhang, Y., Cheng, Y., Tanaka, T., Eds.; Wiley-VCH: Weinheim, Germany, 2024; pp. 181–226. [Google Scholar]
- Choi, C.; Choi, M.K.; Liu, S.; Kim, M.; Park, O.K.; Im, C.; Kim, D.H. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Bi, Y.; Yi, B. An improved methodology for passive channel signal integrity performance characterization. In Proceedings of the 2024 IEEE Joint International Symposium on Electromagnetic Compatibility, Signal & Power Integrity: EMC Japan/Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Japan/APEMC Okinawa), Ginowan, Japan, 20–24 May 2024; pp. 190–193. [Google Scholar]
- Gupta, S.; Navaraj, W.T.; Lorenzelli, L.; Dahiya, R. Ultra-thin chips for high-performance flexible electronics. npj Flex. Electron. 2018, 2, 8. [Google Scholar] [CrossRef]
- Lin, J.; Su, J.; Weng, M.; Xu, W.; Huang, J.; Fan, T.; Min, Y. Applications of flexible polyimide: Barrier material, sensor material, and functional material. Soft Sci. 2023, 3, 2–53. [Google Scholar]
- Liu, Y.Y.; Wu, D.Y.; Wang, Y.; Shen, S.G.; Cao, J.H.; Li, Y. Colorless polyamide–imide films with tunable coefficient of thermal expansion and their application in flexible display devices. Polymer 2024, 294, 126712. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Chen, H.; Xu, C.; Nie, S.; Zha, J. Polyimide-modified cellulose insulating paper with improved thermal stability and insulation properties. IEEE Trans. Dielectr. Electr. Insul. 2024, 31, 1864–1873. [Google Scholar] [CrossRef]
- Ogbonna, V.; Popoola, O.; Popoola, P. Stability characterization of spark plasma sintered TiO2 PI nanocomposites for energy-power application. In Proceedings of the 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET), Sydney, Australia, 25–27 July 2024; pp. 1–6. [Google Scholar]
- Liu, D.; Zhang, L.; Chen, Y. Electrical properties of PI films with high thermal conductivity. In Proceedings of the 18th International Conference on AC and DC Power Transmission (ACDC 2022), Online Conference, China, 2–3 July 2022; pp. 298–302. [Google Scholar]
- Chi, M.; Sun, X.; Zhang, X.; Yu, Y.; Liu, C.; Shi, J. KH560-SiO2/PI insulating paper preparation and characterisation. In Proceedings of the 2023 IEEE 4th International Conference on Electrical Materials and Power Equipment (ICEMPE), Shanghai, China, 7–10 May 2023; pp. 1–4. [Google Scholar]
- Han, T.; Cavallini, A. Dielectric properties and partial discharge endurance of thermally aged nano-structured polyimide. IEEE Electr. Insul. Mag. 2020, 36, 39–46. [Google Scholar] [CrossRef]
- Irwin, P.C.; Cao, Y.; Bansal, A.; Schadler, L.S. Thermal and mechanical properties of polyimide nanocomposites. In Proceedings of the 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena, Albuquerque, NM, USA, 19–22 October 2003; pp. 120–123. [Google Scholar]
- Zhang, F.; Li, J.; Liu, F.; Zhang, G.; Sun, R.; Wong, C.P. Intrinsic low dielectric constant and low dielectric loss polyimides: The effect of molecular structure. In Proceedings of the 2019 20th International Conference on Electronic Packaging Technology (ICEPT), Hong Kong, China, 12–15 August 2019; pp. 1–4. [Google Scholar]
- Tomikawa, M.; Araki, H.; Kiuchi, Y.; Shimada, A. Low dispersion loss polyimides for high frequency applications. In Proceedings of the 2018 IEEE CPMT Symposium Japan (ICSJ), Kyoto, Japan, 19–21 November 2018; pp. 167–170. [Google Scholar]
- Araki, H.; Kiuchi, Y.; Shimada, A.; Ogasawara, H.; Jukei, M.; Tomikawa, M. Low permittivity and dielectric loss polyimide with patternability for high frequency applications. In Proceedings of the 2020 IEEE 70th Electronic Components and Technology Conference (ECTC), Orlando, FL, USA, 3–30 June 2020; pp. 635–640. [Google Scholar]
- Xuwei, H.; Xiang, S.; Tao, L.; Jian, W.; Qingmin, L.; Zhongdong, W. Novel low dielectric loss polyimide film: Synthesis and high frequency electrical properties. In Proceedings of the 2018 IEEE 2nd International Conference on Dielectrics (ICD), Budapest, Hungary, 1–5 July 2018; pp. 1–5. [Google Scholar]
- Ren, Y.; Lam, D.C. Low temperature processable ultra-low dielectric porous polyimide for high frequency applications. In Proceedings of the 2006 International Conference on Electronic Materials and Packaging, Hong Kong, China, 11–14 December 2006; pp. 1–5. [Google Scholar]
- Fujiwara, T.; Tatsuta, Y.; Matsumura, K.; Kanamori, D.; Araki, H.; Shimada, A.; Tomikawa, M. Development of low dielectric loss polyimides and fabrication of advanced packagings for 5G applications. In Proceedings of the 2020 International Wafer Level Packaging Conference (IWLPC), San Jose, CA, USA, 13–30 October 2020; pp. 1–6. [Google Scholar]
- Wang, T.; Li, J.; Niu, F.; Zhang, G.; Sun, R. Design strategies of nanofillers in photosensitive polyimide nanocomposites. In Proceedings of the 2023 24th International Conference on Electronic Packaging Technology (ICEPT), Shihezi, China, 8–11 August 2023; pp. 1–4. [Google Scholar]
- Chen, P.; Qu, C.; Shan, L.; Zhang, G.; Sun, R. Preparation and dielectric properties of a novel fluorinated polyimide containing bulky lateral groups. In Proceedings of the 2024 25th International Conference on Electronic Packaging Technology (ICEPT), Tianjin, China, 7–9 August 2024; pp. 1–5. [Google Scholar]
- Othman, M.B.H.; Ahmad, Z.; Akil, H.M. Fabrication of nanoporous polyimide of low dielectric constant. In Proceedings of the 2008 33rd IEEE/CPMT International Electronics Manufacturing Technology Conference (IEMT), Penang, Malaysia, 4–6 November 2008; pp. 1–4. [Google Scholar]
- Wang, T.; Li, J.; Niu, F.; Shan, L.; Zhang, G.; Sun, R.; Wong, C.P. Novel low-dielectric fluorinated carbon fiber/polyimide materials with high elongation. In Proceedings of the 2021 22nd International Conference on Electronic Packaging Technology (ICEPT), Xiamen, China, 14–17 September 2021; pp. 1–4. [Google Scholar]
- Han, K.; Zhou, J.; Li, Q.; Shen, J.; Qi, Y.; Yao, X.; Chen, W. Effect of filler structure on the dielectric and thermal properties of SiO2/PTFE composites. J. Mater. Sci. Mater. Electron. 2020, 31, 9196–9202. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, X.; Weng, L.; Gao, X.; Shi, J. Preparation of low dielectric constant and low loss PI/PTFE composite films by self-assembly of microbranched structures. J. Mater. Sci. Mater. Electron. 2024, 35, 1074. [Google Scholar] [CrossRef]
- Lin, S.Y.; Ye, Y.M.; Chen, E.C.; Wu, T.M. Low dielectric properties and transmission loss of polyimide/organically modified hollow silica nanofiber composites. Polymers 2022, 14, 4462. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T. Low temperature curable polyimide for advanced package. J. Photopolym. Sci. Technol. 2016, 29, 379–382. [Google Scholar] [CrossRef]
- Mizuno, H.; Sakurai, T.; Okamoto, K.; Inomata, K. Low temperature curable photo-sensitive insulator. J. Photopolym. Sci. Technol. 2014, 27, 199–205. [Google Scholar] [CrossRef]
- Shoji, Y.; Hashimoto, K.; Koyama, Y.; Masuda, Y.; Araki, H.; Tomikawa, M. Low stress and low temperature curable photosensitive polyimide. J. Photopolym. Sci. Technol. 2021, 34, 195–199. [Google Scholar] [CrossRef]
- Karim, Z. Low temperature polyimide processing for next gen backend applications. Chip Scale Rev. 2021, 25, 44–50. [Google Scholar]
- Sui, Y.; Li, J.; Wang, T.; Shan, L.; Liu, Q.; Zhang, G. Low temperature curable polyimides for advanced package application. In Proceedings of the 2021 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), Chengdu, China, 8–11 April 2021; pp. 1–3. [Google Scholar]
- Yoshizawa, A.; Asada, A.; Matsukawa, D.; Tanabe, T. High-planarity, ultra-low-temperature-curable photosensitive polyimide for heterogeneous integration. In Proceedings of the 2024 IEEE 74th Electronic Components and Technology Conference (ECTC), Denver, CO, USA, 28–31 May 2024; pp. 1382–1386. [Google Scholar]
- Guo, X.; Jackson, D.R.; Chen, J. An analysis of copper surface roughness effects on signal propagation in PCB traces. In Proceedings of the 2013 Texas Symposium on Wireless and Microwave Circuits and Systems (WMCS), Waco, TX, USA, 4–5 April 2013; pp. 1–4. [Google Scholar]
- Zee, A.; Massey, R.; Reischer, H. Impact of surface treatment on high frequency signal loss characteristics. In Proceedings of the 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference, Taipei, Taiwan, 21–23 October 2009; pp. 474–477. [Google Scholar]
- Peterson, A.; Durgin, G. Transient Signals on Transmission Lines; Springer International Publishers: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Orfanidis, S.J. Electromagnetic Waves and Antennas; Rutgers University: New Brunswick, NJ, USA, 2002. [Google Scholar]
- Balanis, C.A. Antenna Theory: Analysis and Design; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Osipov, A.V. Minimum reflection properties of planar impedance-matched boundaries. IEEE Trans. Antennas Propag. 2014, 62, 5666–5670. [Google Scholar] [CrossRef]
- Sun, X.; Lv, X.; Li, L.; Sui, M. Numerical simulation analyses of reflection loss based on transmission line theory. In Proceedings of the 2015 7th Asia-Pacific Conference on Environmental Electromagnetics (CEEM), Hangzhou, China, 4–7 November 2015; pp. 36–39. [Google Scholar]
- Cao, L.; Yin, H.; Pei, X.; Tan, L. RIS with practical reflection coefficients: Modeling and experimental measurements. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; pp. 1–5. [Google Scholar]
- Anzai, T.; Nomoto, H.; Sasaki, E.; Kitazawa, S. Experimental and simulation evaluation of reflection characteristics of the transparent film. In Proceedings of the 2023 IEEE International Symposium On Antennas And Propagation (ISAP), Kuala Lumpur, Malaysia, 30 October–2 November 2023; pp. 1–2. [Google Scholar]
- Cui, Y.; Sato, H.; Xu, K.D.; Fujikake, H.; Chen, Q. A method of dual-bias voltage supply for reducing reflection loss in reconfigurable intelligent surfaces of liquid crystal. IEEE Antennas Wirel. Propag. Lett. 2024, 23, 3529–3533. [Google Scholar] [CrossRef]
- Apeldorn, T.; Wolff-Fabris, F.; Altstädt, V. High-performance substrate based on a highly filled thermoplastic polymer. Circuit World 2011, 37, 4–14. [Google Scholar] [CrossRef]
Resonant Mode Order n | Theory | Simulation |
---|---|---|
9 | 21.22 GHz | 21.2212 GHz |
10 | 23.34 GHz | 23.3433 GHz |
11 | 25.47 GHz | 25.4855 GHz |
12 | 27.60 GHz | 27.5976 GHz |
13 | 29.72 GHz | 29.7297 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.; Chae, S.; Seo, M.; Kim, Y.; Park, S.; Park, S.; Nam, H. Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards. Micro 2025, 5, 23. https://doi.org/10.3390/micro5020023
Kim S, Chae S, Seo M, Kim Y, Park S, Park S, Nam H. Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards. Micro. 2025; 5(2):23. https://doi.org/10.3390/micro5020023
Chicago/Turabian StyleKim, Seonwoo, Suin Chae, Mirae Seo, Yubin Kim, Soobin Park, Sehoon Park, and Hyunjin Nam. 2025. "Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards" Micro 5, no. 2: 23. https://doi.org/10.3390/micro5020023
APA StyleKim, S., Chae, S., Seo, M., Kim, Y., Park, S., Park, S., & Nam, H. (2025). Development of Low-Dielectric Modified Polyimide with Low-Temperature Radical Curing for High-Frequency Flexible Printed Circuit Boards. Micro, 5(2), 23. https://doi.org/10.3390/micro5020023