Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Methods
2.2. Characterization Techniques
2.3. Electrochemical Measurements
2.4. Fabrication of TH@CdSe QDs Modified PIGE
3. Results
3.1. UV-Visible Spectroscopy
3.2. Confocal Raman Microscopy
3.3. Surface Morphology
3.4. Electrochemical Characterization of TH@CdSe QDs Modified PIGE
3.5. Effect of Supporting Electrolyte
3.6. Effect of Scan Rate and pH
3.7. Electrocatalytic Behavior of TH@CdSe QDs Modified PIGE for the Reduction in RF
3.8. Hydrodynamic and Chronoamperometric Studies
3.9. Interference Studies
3.10. Stability of TH@CdSe QDs Modified PIGE towards RF
3.11. Determination of RF in Commercial Tablets
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Girish, T.; Manjunatha, J.G. A surfactant enhanced novel pencil graphite and carbon nanotube composite paste material as an effective electrochemical sensor for determination of riboflavin. J. Sci. Adv. Mater. Dev. 2020, 5, 56–64. [Google Scholar] [CrossRef]
- Severino, S.M.-F.; Stefani, I.E.A.; Marcelo, B.L.; Mario, C.U.A. Synthesis of highly fluorescent carbon dots from lemon and onion juices for determination of riboflavin in multivitamin/mineral supplements. J. Pharm. Anal. 2019, 9, 209–216. [Google Scholar] [CrossRef]
- Anisimova, L.S.; Mikheeva, E.V.; Slipchenko, V.F. Voltammetric determination of riboflavin in vitaminized supplements and feeds. J. Anal. Chem 2001, 56, 658–662. [Google Scholar] [CrossRef]
- Privitera, M.L.; Lozano, V.A. Development of a second-order standard addition fluorescence method for the direct determination of riboflavin in human urine samples without previous clean up and separation steps. Microchem. J. 2017, 133, 60–63. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, J.; Wen, Y.; Wang, T. A highly-sensitive VB2 electrochemical sensor based on one-step co-electrodeposited molecularly imprinted WS2-PEDOT film supported on graphene oxide-SWCNTs nanocomposite. Mater. Sci. Eng. C 2018, 92, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, L.; Hao, Y.; Dong, W.; Liu, Y.; Song, S.; Shuang, S.; Dong, C.; Gong, X. Ratiometric fluorescent sensors for sequential on-off-on determination of riboflavin, Ag+ and L-cysteine based on NPCl-doped carbon quantum dots. Anal. Chim. Acta 2021, 1144, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kang, L.; Lin, C.; Ning, F.; Sun, X.; Zhang, M.; Zhang, H.; Wang, Y.; Hu, P. Rapid determination of folic acid and riboflavin in urine by polypyrrole magnetic solid-phase extractant combined ultra-performance liquid chromatography. J. Chromatogr. A 2021, 1648, 462192. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Q.; Wang, Y.; Wang, C.; Qin, D.; Shan, D.; Chen, J.; Lu, X. Resonance energy transfer based electrochemiluminescence and fluorescence sensing of riboflavin using graphitic carbon nitride quantum dots. Anal. Chim. Acta 2017, 973, 34–42. [Google Scholar] [CrossRef]
- Alvarenga, B.R., Jr.; Soares, F.L.F.; Ardila, J.A.; Durango, L.G.C.; Forim, M.R.; Carneiro, R.L. Determination of B-complex vitamins in pharmaceutical formulations by surface-enhanced Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 188, 589–595. [Google Scholar] [CrossRef]
- Stefanov, C.; Negut, C.C.; Gugoasa, L.A.D.; Staden, J.F. Sensitive voltammetric determination of riboflavin in pharmaceutical and biological samples using FSN-Zonyl-Nafion modified carbon paste electrode. Microchem. J. 2020, 155, 104729. [Google Scholar] [CrossRef]
- Kamath, K.A.; Manjunatha, J.; Girish, T.; Sillanpää, M.; Tighezza, A.M.; Albaqami, M.D. Sensitive electrochemical determination of riboflavin at simple and low-cost poly (valine) modified graphite paste electrode. Inorg. Chem. Commun. 2022, 143, 109811. [Google Scholar] [CrossRef]
- Monteiro, M.C.; Winiarski, J.P.; Santana, E.R.; Szpoganicz, B.; Vieira, I.C. Ratiometric electrochemical sensor for butralin determination using a quinazoline-engineered Prussian Blue analogue. Molecules 2023, 16, 1024. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Liu, X.; Luo, L.; Hu, C.; Fu, J.; Chang, X.; Gan, T. A high-performance voltammetric methodology for the ultra-sensitive detection of riboflavin in food matrices based on graphene oxide-covered hollow MnO2 spheres. Food Chem. 2021, 352, 129368–129376. [Google Scholar] [CrossRef] [PubMed]
- Yingming, S.; Pan, H.; Chu, H.; Mamat, M.; Abudurexiti, A.; Li, D. Core-shell CdSe/ZnS quantum dots polymer composite as the saturable absorber at 1.3 μm: Influence of the doping concentration. Phys. Lett. A 2021, 400, 127307. [Google Scholar] [CrossRef]
- Zhu, Y.; Jin, T.; Lian, T.; Egap, E. Enhancing the efficiency of semiconducting quantum dot photocatalyzed atom transfer radical polymerization by ligand shell engineering. J. Chem. Phys. 2021, 154, 204903. [Google Scholar] [CrossRef]
- Litvin, A.; Martynenko, I.; Purcell-Milton, F.; Baranov, A.; Fedorov, A.; Gunko, Y. Colloidal quantum dots for optoelectronics. J. Mater. Chem. A 2017, 5, 13252–13275. [Google Scholar] [CrossRef]
- Selopal, G.S.; Zhao, H.; Wang, Z.; Rosei, F. Core/shell quantum dots solar cells. Adv. Funct. Mater. 2020, 30, 1908762. [Google Scholar] [CrossRef]
- Samuel, I. Colloidal nanocrystals: Electrifying quantum dots for lasers. Nat. Mater. 2018, 17, 9–10. [Google Scholar] [CrossRef]
- Chinnathambi, S.; Chen, S.; Ganesan, S.; Hanagata, N. Silicon quantum dots for biological applications. Adv. Healthc. Mater. 2014, 3, 10–29. [Google Scholar] [CrossRef]
- Shao, L.; Gao, Y.; Yan, F. Semiconductor quantum dots for biomedical applications. Sensors 2011, 11, 11736–11751. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Khadem, S.S.M.; Habibzadeh, S.; Esmaeili, A.; Abida, O.; Vatanpour, V.; Rabiee, N.; Bagherzadeh, M.; Iravani, S.; Saeb, M.R.; et al. Quantum dots for photocatalysis: Synthesis and environmental applications. Green Chem. 2021, 23, 4931–4954. [Google Scholar] [CrossRef]
- Garg, M.; Rani, R.; Sharma, A.L.; Singh, S. White graphene quantum dots as electrochemical sensing platform for ferritin. Faraday Discuss. 2021, 227, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Priya, C.; Sivasankari, G.; Narayanan, S.S. Electrochemical behavior of Azure A/gold nanoclusters modified electrode and its application as non-enzymatic hydrogen peroxide sensor. Colloids Surf. B Biointerfaces 2012, 97, 90–96. [Google Scholar] [CrossRef]
- Kalaivani, A.; Narayanan, S.S. Fabrication of CdSe quantum dots @ nickel hexacyanoferrate core-shell nanoparticles modified electrode for the electrocatalytic oxidation of hydrazine. J. Mater. Sci. Mater. Electron. 2018, 29, 20146–20155. [Google Scholar] [CrossRef]
- Sun, W.; Wang, D.; Li, G.; Zhai, Z.; Zhao, R.; Jiao, K. Direct electron transfer of hemoglobin in a CdS nanorods and Nafion composite film on carbon ionic liquid electrode. Electrochim. Acta 2008, 53, 8217–8221. [Google Scholar] [CrossRef]
- Sangeetha, N.S.; Narayanan, S.S. A novel bimediator amperometric sensor for electrocatalytic oxidation of gallic acid and reduction of hydrogen peroxide. Anal. Chim. Acta 2014, 828, 34–45. [Google Scholar] [CrossRef] [PubMed]
- Jeykumari, D.R.S.; Narayanan, S.S. A novel nanobiocomposite based glucose biosensor using neutral red functionalized carbon nanotubes. Biosens. Bioelectron. 2008, 23, 1404–1411. [Google Scholar] [CrossRef]
- Yao, H.; Li, N.; Xu, S.; Xu, J.Z.; Zhu, J.J.; Chen, H.Y. Electrochemical study of a new methylene blue/silicon oxide nanocomposition mediator and its application for stable biosensor of hydrogen peroxide. Biosens. Bioelectron. 2005, 2, 1372–1377. [Google Scholar] [CrossRef]
- Noorbakhsha, A.; Salimi, A. Amperometric detection of hydrogen peroxide at nano-nickel oxide/thionine and celestine blue nanocomposite-modified glassy carbon electrodes. Electrochim. Acta 2009, 54, 6312–6321. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Ma, J.; Zheng, J. High performance of nitrite electrochemical sensing based on Au-poly(thionine)-tin oxide/graphene nanosheets nanocomposites. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128582. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Asadian, E. Simultaneous voltammetric determination of ascorbic acid, acetaminophen and isoniazid using thionine immobilized multi-walled carbon nanotube modified carbon paste electrode. Electrochim. Acta 2010, 55, 666–672. [Google Scholar] [CrossRef]
- Kalaivani, A.; Narayanan, S.S. Simultaneous determination of adenine and guanine using cadmium selenide quantum dots-graphene oxide nanocomposite modified electrode. J. Nanosci. Nanotechnol. 2015, 15, 4697–4705. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wei, M.; Zheng, X.; Xu, S.; Zhou, C. Highly sensitive and selective sensing platform based on π–π interaction between tricyclic aromatic hydrocarbons with thionine-graphene composite. Anal. Chim. Acta 2014, 826, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Kamat, P.V. Dye-Capped Semiconductor Nanoclusters. One-Electron Reduction and Oxidation of Thionine and Cresyl Violet H-Aggregates Electrostatically Bound to SnO2 Colloids. Langmuir 1996, 12, 2190–2195. [Google Scholar] [CrossRef]
- Peng, J.J.; Liu, S.P.; Wang, L.; He, Y.Q. Studying the interaction between CdTe quantum dots and Nile blue by absorption, fluorescence and resonance Rayleigh scattering spectra Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Zhang, X.; Liu, X.; Guo, R. Adsorption Characteristics of Thionine on Gold Nanoparticles. Langmuir 2006, 22, 2292–2298. [Google Scholar] [CrossRef]
- Thomas, K.G.; Kamat, P.V. Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 2003, 36, 888–898. [Google Scholar] [CrossRef]
- Wang, Z.; Li, M.; Zhang, Y.; Yuan, J.; Shen, Y.; Niu, L.; Ivaska, A. Thionine-interlinked multi-walled carbon nanotube/gold nanoparticle composites. Carbon 2007, 45, 2111–2115. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Single-molecule detection of thionine on aggregated gold nanoparticles by surface enhanced Raman scattering. J. Raman Spectrosc. 2007, 38, 568–573. [Google Scholar] [CrossRef]
- Thenmozhi, K.; Narayanan, S.S. Electrochemical sensor for H2O2 based on thionin immobilized 3-aminopropyltrimethoxy silane derived sol–gel thin film electrode. Sens. Actuators B Chem. 2007, 125, 195–201. [Google Scholar] [CrossRef]
- Yin, H.; Meng, X.; Xu, Z.; Chen, L.; Ai, S. Electrochemical behavior of phenacetin on CdSe microspheres modified glassy carbon electrode and its simultaneous determination with paracetamol and 4-aminophenol. Anal. Methods 2012, 4, 1445–1451. [Google Scholar] [CrossRef]
- Yin, H.; Zhou, Y.; Ai, S.; Chen, Q.; Zhu, X.; Liu, X.; Zhu, L. Sensitivity and selectivity determination of BPA in real water samples using PAMAM dendrimer and CoTe quantum dots modified glassy carbon electrode. J. Hazard. Mater. 2010, 174, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Jeykumari, D.R.S.; Narayanan, S.S. Fabrication of bienzyme nanobiocomposite electrode using functionalized carbon nanotubes for biosensing applications. Biosens. Bioelectron. 2008, 23, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Laviron, E. The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J. Electroanal. Chem. Interf. Electrochem. 1979, 100, 263–270. [Google Scholar] [CrossRef]
- Papavasileiou, A.V.; Hoder, T.; Medek, T.; Prodromidis, M.I.; Hrbac, J. Sensitive riboflavin sensing using silver nanoparticles deposited onto screen-printed electrodes via controlled-energy spark discharges. Talanta 2023, 258, 124409. [Google Scholar] [CrossRef] [PubMed]
- Zribi, R.; Foti, A.; Donato, M.G.; Gucciardi, P.G.; Neri, G. Fabrication of a novel electrochemical sensor based on carbon cloth matrix functionalized with MoO3 and 2D-MoS2 layers for Riboflavin determination. Sensors 2021, 21, 1371. [Google Scholar] [CrossRef]
- Pereira, D.F.; Santana, E.R.; Spinelli, A. Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6. Microchem. J. 2022, 179, 107588. [Google Scholar] [CrossRef]
- Martins, E.C.; Santana, E.R.; Spinelli, A. Nitrogen and sulfur co-doped graphene quantum dot-modified electrode for monitoring of multivitamins in energy drinks. Talanta 2023, 252, 123836. [Google Scholar] [CrossRef]
- Sedhu, N.; Kumar, J.J.; Sivaguru, P.; Raj, V. Electrochemical detection of riboflavin in pharmaceutical and food samples using in situ electropolymerized glycine coated pencil graphite electrode. J. Electroanal. Chem. 2023, 928, 117037. [Google Scholar] [CrossRef]
Electrode | Electrolyte | Linear Range (μM) | Detection Limit | Ref. |
---|---|---|---|---|
Ag-sparked/SPE | PBS | 0.0019–0.1 | 0.56 nM | [45] |
D-MoS2-MoO3-CC/SPCE | PBS | 2.0–40.0 | 1.5 μM | [46] |
Fe3O4 NPs-ePADs | BR buffer | 2.0–20.0 | 0.25 μM | [47] |
N,S-GQD-CS/GCE | BR buffer | 0.001–8.0 | 0.30 μM | [48] |
PGI/PGE | PBS | 0.002–0.45 | 1.24 nm | [49] |
TH coated CdSe QDs | NH4NO3 | 0.16–140 | 53 nM | this work |
Sample No. | Labeled Content (Mg/Tablet) | Observed Content (Mg/Tablet) | Recovery (%) |
---|---|---|---|
1 | 25 | 24.9 | 99.6 |
25 | 24.7 | 98.8 | |
2 | 50 | 49.8 | 99.6 |
50 | 50.1 | 100.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalaivani, A.; Suresh Babu, R.; Sriman Narayanan, S. Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode. Micro 2023, 3, 686-698. https://doi.org/10.3390/micro3030048
Kalaivani A, Suresh Babu R, Sriman Narayanan S. Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode. Micro. 2023; 3(3):686-698. https://doi.org/10.3390/micro3030048
Chicago/Turabian StyleKalaivani, Arumugam, Rajendran Suresh Babu, and Sangilimuthu Sriman Narayanan. 2023. "Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode" Micro 3, no. 3: 686-698. https://doi.org/10.3390/micro3030048
APA StyleKalaivani, A., Suresh Babu, R., & Sriman Narayanan, S. (2023). Highly Sensitive Sensor for the Determination of Riboflavin Using Thionine Coated Cadmium Selenide Quantum Dots Modified Graphite Electrode. Micro, 3(3), 686-698. https://doi.org/10.3390/micro3030048