Matrix Effect of Properties of Au, ZnO and Eu2O3: Silica, Titania and Alumina Matrices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Common Procedures
2.2. General Procedure
2.3. Pyrolysis of the Precursors
3. Results and Discussions
3.1. Effect of the SiO2, TiO2 and Al2O3 Matrices on the Distribution of Au, ZnO and Eu2O3 inside Them
3.2. Morphology Effect of the Au, ZnO and Eu2O3 Nanoparticle by the Matrices SiO2, TiO2 and Al2O3
3.3. Morphology Comparation
3.3.1. Au
3.3.2. For Au/TiO2 Composites
3.3.3. Au/Al2O3
3.3.4. ZnO/Al2O3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Jensen, T.R.; Duval, M.L.; Kelly, K.L.; Lazarides, A.A.; Schatz, G.C.; Van Duye, R.P. Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles. J. Phys. Chem. B 1999, 103, 9846–9853. [Google Scholar] [CrossRef]
- Armelao, L.; Barreca, D.; Bottaro, G.; Gasparotto, A.; Gross, S.; Maragno, C.; Tondello, E. Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look. Coord. Chem. Rev. 2006, 250, 1294–1314. [Google Scholar] [CrossRef]
- Walters, G.; Parkin, I.P. The incorporation of noble metal nanoparticles into host matrix thin films: Synthesis, characterization and applications. J. Mater. Chem. 2009, 19, 574–590. [Google Scholar] [CrossRef]
- Matsuoka, J.; Yoshida, H.; Nasu, H.; Kamiya, K. Preparation of Gold Microcrystal-Doped TiO2, ZrO2 and Al2O3 Films Through Sol-Gel Process. J. Sol-Gel Sci. Technol. 1997, 9, 145–155. [Google Scholar] [CrossRef]
- Prevel, B.; Palpant, B.; Lerme, J.; Pellarin, M.; Treilleux, M.; Saviot, L.; Duval, E.; Perez, A.; Broyer, M. Comparative analysis of optical properties of gold and silver clusters embedded in an alumina matrix. Nanostructured Mater. 1999, 12, 307–310. [Google Scholar] [CrossRef]
- Epifani, M.; De, G.; Licciulli, A.; Vasanelli, L. Preparation of uniformly dispersed copper nanocluster doped silica glasses by the sol–gel process. J. Mater. Chem. 2001, 11, 3326–3332. [Google Scholar] [CrossRef]
- Torrell, M.; Cunha, L.; Cavaleiro, A.; Alves, E.; Barradas, N.P.; Vaz, F. Functional and optical properties of Au: TiO2 nanocomposite films: The influence of thermal annealing. Appl. Surf. Sci. 2010, 256, 6536–6542. [Google Scholar] [CrossRef]
- Gonella, F.; Mattei, G.; Mazzoldi, P.; Battaglin, G.; Quaranta, A.; De, G.; Montecchi, M. Structural and optical properties of silver-doped zirconia and mixed zirconia-silica matrices obtained by sol-gel processing. Chem. Mater. 1999, 11, 814–821. [Google Scholar] [CrossRef]
- Xu, L.; Cui, F.; Zhang, J.; Zhang, X.; Wang, Y.; Cui, T. A general autocatalytic route toward silica nanospheres with ultrasmall sized and well-dispersed metal oxide nanoparticles. Nanoscale 2018, 10, 9460–9465. [Google Scholar] [CrossRef]
- Joshi, D.P.; Pant, G.; Arora, N.; Nainwal, S. Effect of solvents on morphology, magnetic and dielectric properties of (α-Fe2O3@SiO2) core-shell nanoparticle. Heliyon 2017, 3, e00253. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Doke, D.S.; Unbarkar, S.D.; Biradar, A.V. One-pot synthesis of ultrasmall MoO3 nanoparticles supported on SiO2, TiO2, and ZrO2 nanospheres: An efficient epoxidation catalyst. J. Mater. Chem. A 2014, 2, 19056–19060. [Google Scholar] [CrossRef]
- Díaz, C.; Valenzuela, M.L.; Cifuentes-Vaca, O.; Segovia, M.; Laguna-Bercero, M.A. Incorporation of NiO into SiO2, TiO2, Al2O3, and Na4.2Ca2.8(Si6O18) Matrices: Medium Effect on the Optical Properties and Catalytic Degradation of Methylene Blue. Nanomaterials 2020, 10, 2470. [Google Scholar]
- Díaz, C.; Valenzuela, M.L.; Soto, K.; Laguna-Bercero, M.A. Incorporation of Au and Ag Nanostructures Inside SiO2. J. Chin. Chem. Soc. 2019, 64, 4502–4506. [Google Scholar] [CrossRef]
- Díaz, C.; Valenzuela, M.L.; Segovia, M.; Correa, K.; De la Campa, R.; Soto, A.P. Solution, Solid-State Two Step Synthesis and Optical Properties of ZnO and SnO2 Nanoparticles and Their Nanocomposites with SiO2. J. Clust. Sci. 2018, 29, 251–266. [Google Scholar] [CrossRef]
- Díaz, C.; Valenzuela, M.L.; Garcia, C.; de la Campa, R.; Soto, A.P. Solid-state synthesis of pure and doped lanthanide oxide nanomaterials by using polymer templates. Study of their luminescent properties. Mater. Lett. 2017, 209, 111–114. [Google Scholar] [CrossRef]
- Díaz, C.; Valenzuela, M.L.; Cifuentes-Vaca, O.; Segovia, M.; Laguna-Bercero, M.A. Incorporation of Nanostructured ReO3 in Silica Matrix and Their Activity Toward Photodegradation of Blue Methylene. J. Inorg. Organomet. Polym. Mater. 2020, 30, 1726–1734. [Google Scholar] [CrossRef]
- Díaz, C.; Valenzuela, M.L.; Cifuentes-Vaca, O.; Segovia, M.; Laguna-Bercero, M.A. Iridium nanostructured metal oxide, its inclusion in silica matrix and their activity toward photodegradation of methylene blue. Mater. Chem. Phys. 2020, 252, 123276. [Google Scholar] [CrossRef]
- Diaz, C.; Valenzuela, M.L.; Laguna-Bercero, M.A.; Mendoza, K.; Cartes, P. Solventless preparation of thoria, their inclusion inside SiO2 and TiO2, their luminescent properties and their photocataltytic behavior. ACS Omega 2021, 6, 9391–9400. [Google Scholar] [CrossRef]
- Brugnerotto, J.; Lizardi, J.; Goycoolea, F.M.; Arguelles-Monal, W.; Desbrieres, J.; Rinaudo, M. An infrared investigation in relation with chitin and chitosan characterization. Polymer 2001, 42, 3569–3580. [Google Scholar] [CrossRef]
- Armelao, L.; Barreca, D.; Gasparotto, A.; Pierangelo, E.; Tondello, E.; Stefano; Polizzi, S. Preparation of Gold Nanoparticles on Silica Substrate by Radio Frequency Sputtering. J. Nanosci. Nanotechnol. 2005, 5, 259–265. [Google Scholar] [CrossRef]
- Liu, X.; Ding, B.; Zhu, Y.; Wang, T.; Chen, B.; Shao, Y.; Chen, M.; Zheng, P.; Zhao, Y.; Qian, H. Facile synthesis of the SiO2/Au hybrid microspheres for excellent catalytic performance. J. Mater. Res. 2014, 29, 1417–1423. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Z.; Zhang, Q.; Jia, W.; Xi, K. Synthesis of stable Au–SiO2 composite nanospheres with good catalytic activity and SERS effect. J. Colloid Interface Sci. 2014, 418, 1–7. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, J.; Cheng, B.; Yu, H. Enhancement of Visible-Light Photocatalytic Activity of Mesoporous Au-TiO2 Nanocomposites by Surface Plasmon Resonance. Int. J. Photoenergy 2012, 2012, 532843. [Google Scholar] [CrossRef]
- Yang, X.; Wu, X.; Lia, J.; Liu, Y. TiO2–Au composite nanofibers for photocatalytic hydrogen evolution. RSC Adv. 2019, 9, 29097–29104. [Google Scholar] [CrossRef]
- Eskandari, M.J.; Shafyei, A.; Karimzadeh, F. One-step fabrication of Au@Al2O3 core-shell nanoparticles by continuous wave fiber laser ablation of thin gold layer on aluminum surface. Struct. Opt. Prop. Opt. Laser Technol. 2020, 126, 106066. [Google Scholar] [CrossRef]
- Rao, W.; Wang, D.; Kups, T.; Baradács, E.; Parditka, B.; Erdélyi, Z.; Schaaf, P. Nanoporous Gold Nanoparticles and Au/Al2O3 Hybrid Nanoparticles with Large Tunability of Plasmonic Properties. ACS Appl. Mater. Interfaces 2017, 9, 6273–6281. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Xu, X.; Han, S.; Cai, C.; Du, H.; Zhu, H.; Zu, X.; Fu, Y.Q. ZnO-Al2O3 nanocomposite as a sensitive layer for high performance surface acoustic wave H2S gas sensor with enhanced elastic loading effect. Sens. Actuators B Chem. 2020, 304, 127395. [Google Scholar] [CrossRef]
- Yadav, S.; Mittal, A.; Sharma, S.; Kumari, K.; Chauhan, N.S.; Kumar, N. Low temperature synthesized ZnO/Al2O3 nano-composites for photocatalytic and antibacterial applications. Semicond. Sci. Technol. 2020, 35, 055008. [Google Scholar] [CrossRef]
- Bouhamed, H.; Baklouti, S. Synthesis and characterization of Al2O3/ZnO nanocomposite by pressureless sintering. Powder Technol. 2014, 264, 278–290. [Google Scholar] [CrossRef]
- Tajizadegana, H.; Jafari, M.; Rashidzadehb, M.; Saffar-Teluri, A. A high activity adsorbent of ZnO–Al2O3 nanocomposite particles: Synthesis, characterization and dye removal efficiency. Appl. Surf. Sci. 2013, 276, 317–322. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz, C.; Cifuentes-Vaca, O.; Valenzuela, M.L. Matrix Effect of Properties of Au, ZnO and Eu2O3: Silica, Titania and Alumina Matrices. Micro 2023, 3, 699-714. https://doi.org/10.3390/micro3030049
Díaz C, Cifuentes-Vaca O, Valenzuela ML. Matrix Effect of Properties of Au, ZnO and Eu2O3: Silica, Titania and Alumina Matrices. Micro. 2023; 3(3):699-714. https://doi.org/10.3390/micro3030049
Chicago/Turabian StyleDíaz, Carlos, Olga Cifuentes-Vaca, and María Luisa Valenzuela. 2023. "Matrix Effect of Properties of Au, ZnO and Eu2O3: Silica, Titania and Alumina Matrices" Micro 3, no. 3: 699-714. https://doi.org/10.3390/micro3030049