Effects of Mode of Preparation of Titanium Dioxide Nanotube Arrays on Their Photocatalytic Properties: Application to p-Nitroaniline Degradation
Abstract
:1. Introduction
2. Results
2.1. SEM and XRD Studies
2.2. Photocatalytic Activity
2.2.1. Impact of the Annealing Temperature
2.2.2. Distribution of End-Products vs. Nature of Substrate
2.2.3. Degradation and Distribution of End-Products vs. pH
3. Materials and Methods
3.1. Electrochemical Fabrication of Self-Organized Titanium Nanotubes
3.2. Characterization of TiO2 Nanotubes
3.3. Photocatalytic Reaction Experiments
3.4. Photocatalytic Reaction Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balapure, A.; Ganesan, R. Anatase versus triphasic TiO2: Near-identical synthesis and comparative structure-sensitive photocatalytic degradation of methylene blue and 4-chlorophenol. J. Colloid. Interface Sci. 2021, 581, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Rajabizadeh, K.; Yazdanpanah, G.; Dowlatshahi, S.; Malakootian, M. Photooxidation process efficiency (UV/O3) for p-nitroaniline removal from aqueous solutions. Ozone Sci. Eng. 2020, 42, 420–427. [Google Scholar] [CrossRef]
- Feng, G.Y.; Zhu, M.L.; Liu, L.; Li, C.B. A quantitative one-pot synthesis method for industrial azo pigments with recyclable wastewater. Green Chem. 2019, 21, 1769–1776. [Google Scholar] [CrossRef]
- Lebkowska, M.; Rutkowska-Narozniak, A.; Pajor, E.; Tabernacka, A.; Zaleska-Radziwill, M. Impact of a static magnetic field on biodegradation of wastewater compounds and bacteria recombination. Environ. Sci. Pollut. Res. 2018, 25, 22571–22583. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.L.; Wang, Y.Q.; Zhang, H.M. Study on the interactions between toxic nitroanilines and lysozyme by spectroscopic approaches and molecular modeling. Spectrochim. Acta A 2018, 202, 260–268. [Google Scholar] [CrossRef]
- Silambarasana, S.; Vangnai, A.S. Biodegradation of 4-nitroaniline by plant-growth promoting Acinetobacter sp. AVLB2 and toxicological analysis of its biodegradation metabolites. J. Hazard. Mater. 2016, 302, 426–436. [Google Scholar] [CrossRef]
- Li, K.; Zheng, Z.; Feng, J.; Zhang, J.; Luo, X.; Zhao, G.; Huang, X. Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. J. Hazard. Mater. 2009, 166, 1180–1185. [Google Scholar] [CrossRef]
- Khalid, A.; Arshad, M.; Crowley, D.E. Biodegradation potential of pure and mixed bacterial cultures for removal of 4-nitroaniline from textile dye wastewater. Water. Res. 2009, 43, 1110–1116. [Google Scholar] [CrossRef]
- Gopinath, K.P.; Madhav, N.V.; Krishnan, A.; Malolan, R.; Rangarajan, G. Present applications of titanium dioxide for the photocatalytic removal of pollutants from water. A review. J. Environ. Manag. 2020, 270, 110906. [Google Scholar] [CrossRef]
- Titchou, F.E.; Zazou, H.; Afanga, H.; El Gaayda, J.; Ait Akbour, R.; Nidheesh, P.V.; Hamdani, M. Removal of organic pollutants from wastewater by advanced oxidation processes and its combination with membrane processes. Chem. Eng. Process. Process. Intensif. 2021, 169, 108631. [Google Scholar] [CrossRef]
- Domingues, E.; Fernandes, E.; Gomes, J.; Martins, R.C. Advanced oxidation processes perspective regarding swine wastewater treatment. Sci. Total Environ. 2021, 776, 145958. [Google Scholar] [CrossRef]
- Dewil, R.; Mantzavinos, D.; Poulios, I.; Rodrigo, M.A. New perspectives for Advanced Oxidation Processes. J. Environ. Manag. 2017, 195, 93–99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quivet, E.; Höhener, P.; Temime-Roussel, B.; Dron, J.; Revenko, G.; Verlande, M.; Lebaron, K.; Demelas, C.; Vassalo, L.; Boudenne, J.-L. Underestimation of Anthropogenic Bromoform Released into the Environment? Environ. Sci. Technol. 2022, 56, 1522–1533. [Google Scholar] [CrossRef] [PubMed]
- Bracco, E.; Butler, M.; Carnelli, P.; Candal, R. TiO2 and N-TiO2-photocatalytic degradation of salicylic acid in water: Characterization of transformation products by mass spectrometry. Envion. Sci. Pollut. Res. 2020, 27, 28469–28479. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, D.; Hong, S.; Khan, S.; Darya, B.; Lee, J.Y.; Chung, J.; Cho, S.H. Investigation of the synergistic effect of sonolysis and photocatalysis of titanium dioxide for organic dye degradation. Catalysts 2020, 10, 500. [Google Scholar] [CrossRef]
- Beheshti, F.; Tehrani, R.M.A.; Khadir, A. Sulfamethoxazole removal by photocatalytic degradation utilizing TiO2 and WO3 nanoparticles as catalysts: Analysis of various operational parameters. Int. J. Environ. Sci. Technol. 2019, 16, 7987–7996. [Google Scholar] [CrossRef]
- Yuan, X.; Kobylanski, M.P.; Cui, Z.; Li, J.; Beaunier, P.; Dragoe, D.; Colbeau-Justin, C.; Zaleska-Medynska, A.; Remita, H. Highly active composite TiO2-polypyrrole nanostructures for water and air depollution under visible light irradiation. J. Environ. Chem. Eng. 2020, 8, 104178. [Google Scholar] [CrossRef]
- Fatima, R.; Afridi, M.N.; Kumar, V.; Lee, J.; Ali, I.; Kim, K.H.; Kim, J.O. Photocatalytic degradation performance of various types of modified TiO2 against nitrophenols in aqueous systems. J. Clean. Prod. 2019, 231, 899–912. [Google Scholar] [CrossRef]
- Al-Mamum, M.R.; Kader, S.; Islam, M.S.; Khan, M.Z.H. Photocatalytic activity improvement and application of UV-TiO2 photocatalysis in textile wastewater treatment: A review. J. Environ. Chem. Eng. 2019, 7, 103248. [Google Scholar] [CrossRef]
- Maldonado-Larios, L.; Mayen-Mondragon, R.; Martinez-Orozco, R.D.; Paramo-Garcia, U.; Gallardo-Rivas, N.V.; Garcia-Alamilla, R. Electrochemically-assisted fabrication of titanium-dioxide/polyaniline nanocomposite films for the electroremediation of congo red in aqueous effluents. Synth. Met. 2020, 268, 116464. [Google Scholar] [CrossRef]
- Kazuga, T.; Hiramutsu, M.; Hoson, A.; Sekino, T.; Niihara, K. Formation of titanium oxide nanotube. Langmuir 1998, 14, 3160–3163. [Google Scholar] [CrossRef]
- Fraoucene, H.; Hatem, D.; Vacandio, F.; Pasquinelli, M. TiO2 nanotubes with nanograss structure: The effect of the anodizing voltage on the formation mechanism and structure properties. J. Electron. Mater. 2019, 48, 2046–2054. [Google Scholar] [CrossRef]
- Salian, G.D.; Koo, B.M.; Lefevre, C.; Cottineau, T.; Lebouin, C.; Tesfaye, A.T.; Knauth, P.; Keller, V.; Djenizian, T. Niobium alloying of self-organized TiO2 nanotubes as an anode for lithium-ion microbatteries. Adv. Mater. Technol. 2018, 3, 1700274. [Google Scholar] [CrossRef]
- Sugiawati, V.A.; Vacandio, F.; Galeyeva, A.; Kurbatov Andrey, P.; Djenizian, T. Enhanced electrochemical performance of electropolymerized self-organized TiO2 nanotubes fabricated by anodization of Ti grid. Front. Phys. 2019, 7, 179. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cong, M.; Hu, J.; Yang, Z.; Chen, Z. Preparation of functionalized TiO2 nanotube arrays and their applications. Sci. Adv. Mater. 2016, 8, 1231–1241. [Google Scholar] [CrossRef]
- Lim, Y.P.; Yeo, W.H. The microstructure and mechanical properties of titanium dioxide nanotubes synthesized in the fluoride-based electrolyte. Metall. Mater. Eng. 2018, 24, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Nishanti, S.T.; Iyyapushpam, S.; Sundarakannan, B.; Subramanian, E.; Padiyan, D.P. Significance of crystallinity on the photoelectrochemical and photocatalytic activity of TiO2 nanotube arrays. Appl. Surf. Sci. 2014, 313, 449–454. [Google Scholar] [CrossRef]
- Hazra, A.; Bhowmik, B.; Dutta, K.; Manjuladevi, V.; Gupta, R.K.; Chattopadhyay, P.P.; Bhattacharyya, P. Formation mechanism of anodically grown free-standing nanotube array under the influence of mixed electrolytes. Sci. Adv. Mater. 2014, 6, 714–719. [Google Scholar] [CrossRef]
- Viet, P.V.; Tran, H.N. Adsorption and photocatalytic degradation of methylene blue by titanium dioxide nanotubes at different pH conditions. Adv. Nat. Sci. Nanosci. Nanotechnol. 2019, 10, 045011. [Google Scholar] [CrossRef]
- Cho, K.; Lee, S.; Kim, H.; Kim, H.E.; Son, A.; Kim, E.J.; Li, M.K.; Qiang, Z.; Hong, S.W. Effects of reactive oxidants generation and capacitance on phtotoelectrochemical water disinfection with self-doped titanium dioxide nanotube arrays. Appl. Catal. B 2019, 257, 117910. [Google Scholar] [CrossRef]
- Ye, Y.; Bruning, H.; Liu, W.; Rijnaarts, H.; Yntema, D. Effect of dissolved natural organic matter on the photocatalytic micropollutant removal performance of TiO2 nanotube array. J. Photochem. Photobiol. A 2019, 371, 216–222. [Google Scholar] [CrossRef]
- Haq, S.; Rehman, W.; Waseem, M.; Meynen, V.; Awan, S.U.; Khan, A.R.; Hussain, S.; Zain-Ul-Abdin; Din, S.U.; Hafeez, M.; et al. Effect of annealing temperature on structural phase transformations and band gap reduction for photocatalytic activity of mesopores TiO2 nanocatalysts. J. Inorg. Organomet. Polym. 2021, 31, 1312–1322. [Google Scholar] [CrossRef]
- Nasirian, M.; Lin, Y.P.; Bustillo-Lecompte, C.F.; Mehrvar, M. Enhancement of photocatalytic activity of titanium dioxide using non-metal doping methods under visible light: A review. Int. J. Environ. Sci. technol. 2018, 15, 2009–2032. [Google Scholar] [CrossRef]
- Molina-Reyes, J.; Romero-Moran, A.; Uribe-Vargas, H.; Lopez-Ruiz, B.; Sanchez-Salas, J.L.; Ortega, E.; Ponce, A.; Morales-Sanchez, A.; Lopez-Huerta, F.; Zuniga-Islas, C. Study on the photocatalytic activity of titanium dioxide nanostructures: Nanoparticles, nanotubes and ultra-thin films. Catal. Today 2020, 341, 2–12. [Google Scholar] [CrossRef]
- Castrejon-Sanchez, V.H.; Lopez, R.; Ramon-Gonzalez, M.; Enriquez-Perez, A.; Camacho-Lopez, M.; Villa-Sanchez, G. Annealing control on the anatase/rutile ratio of nanostructured titanium dioxide obtained by sol-gel. Crystals 2019, 9, 22. [Google Scholar] [CrossRef] [Green Version]
- Hurum, D.C.; Agrios, A.G.; Gray, K.A. Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 2003, 107, 4545–4549. [Google Scholar] [CrossRef]
- Valeeva, A.A.; Dorosheva, I.B.; Kozlova, E.A.; Kamalov, R.V.; Vokhmintsev, A.S.; Selishchev Saraev, A.A.; Gerasimov, E.Y.; Weinstein, I.A.; Rempel, A.A. Influence of calcination on photocatalytic properties of nonstoichiometric titanium dioxide nanotubes. J. Alloys Compd. 2019, 796, 293–299. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, P.; Liu, J.; Yu, J. New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys. Chem. Chem. Phys. 2014, 16, 20382–20386. [Google Scholar] [CrossRef]
- Gautam, S.; Kamble, S.P.; Sawant, S.B.; Pangarkar, V.G. Photocatalytic degradation of 4-nitroaniline using solar and artificial UV radiation. Chem. Eng. J. 2005, 110, 129–137. [Google Scholar] [CrossRef]
- Mack, J.; Bolton, J.R. Photochemistry of nitrite and nitrate in aqueous solution. A review. J. Phochem. Photobiol. A 1999, 128, 1–13. [Google Scholar] [CrossRef]
- Penpolcharoen, M.; Amal, R.; Brungs, M. Degradation of sucrose and nitrate ove titania coated nano-hematite photocatalysts. J. Nanopart. Res. 2001, 3, 289–302. [Google Scholar] [CrossRef]
- Silva, C.G.; Wang, W.; Faria, J.L. Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation. J. Photochem. Photobiol. A. 2006, 181, 314–324. [Google Scholar] [CrossRef]
- Sanchez, L.; Peral, J.; Domenech, X. Photocatalyzed destruction of aniline in UV-illuminated aqueous TiO2 suspensions. Electrochim. Acta 1997, 42, 1877–1882. [Google Scholar] [CrossRef]
Annealing Temperature (°C) | Ti/Si | Ti Foils | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
% Ti Atomic | % O Atomic | Ratio O/Ti | Specific Area (nm²) | Pore i.d. (nm) | Ti % Atomic | %O Atomic | Ratio O/Ti | Specific Area (nm²) | Pore i.d. (nm) | |
No annealing | 45.0 | 55.0 | 1.23 | 5.4 × 106 | 93 | 44.3 | 55.7 | 1.26 | 4.9 × 105 | 95 |
450 | 36.7 | 63.3 | 1.72 | 6.4 × 106 | 101 | 40.3 | 59.7 | 1.49 | 4.9 × 105 | 96 |
650 | 44.8 | 55.2 | 1.23 | 5.9 × 106 | 97 | 36.6 | 63.4 | 1.73 | 3.5 × 105 | 96 |
900 | 38.2 | 61.8 | 1.62 | - | - | 35.6 | 64.6 | 1.81 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshibeh Alwattar, N.; Vacandio, F.; Vassalo, L.; Djenizian, T.; Coulomb, B.; Boudenne, J.-L. Effects of Mode of Preparation of Titanium Dioxide Nanotube Arrays on Their Photocatalytic Properties: Application to p-Nitroaniline Degradation. Micro 2023, 3, 369-381. https://doi.org/10.3390/micro3010025
Alshibeh Alwattar N, Vacandio F, Vassalo L, Djenizian T, Coulomb B, Boudenne J-L. Effects of Mode of Preparation of Titanium Dioxide Nanotube Arrays on Their Photocatalytic Properties: Application to p-Nitroaniline Degradation. Micro. 2023; 3(1):369-381. https://doi.org/10.3390/micro3010025
Chicago/Turabian StyleAlshibeh Alwattar, Nisreen, Florence Vacandio, Laurent Vassalo, Thierry Djenizian, Bruno Coulomb, and Jean-Luc Boudenne. 2023. "Effects of Mode of Preparation of Titanium Dioxide Nanotube Arrays on Their Photocatalytic Properties: Application to p-Nitroaniline Degradation" Micro 3, no. 1: 369-381. https://doi.org/10.3390/micro3010025
APA StyleAlshibeh Alwattar, N., Vacandio, F., Vassalo, L., Djenizian, T., Coulomb, B., & Boudenne, J. -L. (2023). Effects of Mode of Preparation of Titanium Dioxide Nanotube Arrays on Their Photocatalytic Properties: Application to p-Nitroaniline Degradation. Micro, 3(1), 369-381. https://doi.org/10.3390/micro3010025