Characterization of L-Asparaginase Free of L-Glutaminase and Urease Activity Produced by the Marine Paraconiothyrium cyclothyrioides Strain MABIK FU00000820
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection, Fungal Isolation, and Cultivation
2.2. Assessment of ASNase, GLNase, and Urease Activities in Marine Fungi
2.3. Genomic DNA Preparation, Polymerase Chain Reaction, and Phylogenetic Studies
2.4. Preparation of Crude Enzyme Extract
2.5. Determination of ASNase Activity Levels
2.6. Influence of Incubation Time, Temperature, pH, and NaCl Levels on ASNase Activity
2.7. Thermostability of ASNase
2.8. Data Analyses
3. Results
3.1. Examination of ASNase, GLNase, and Urease Activities in Marine Fungi
3.2. Identification of Strain MABIK FU00000820
3.3. Influence of Cultivation Time on ASNase Activity Under Submerged Fermentation
3.4. Influence of Incubation Time on ASNase Activity
3.5. Influence of Temperature on ASNase Activity
3.6. Influence of pH on ASNase Activity
3.7. Effect of NaCl Concentration on ASNase Activity
3.8. Thermal Stability of MABIK FU00000820 ASNase
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ALL | Acute lymphoblastic leukemia |
ASNase | L-Asparaginase |
GLNase | L-Glutaminase |
ITS | The internal transcribed spacer |
LSU | The partial D1/D2 domain of a large subunit of rDNA |
PDA | Potato dextrose agar |
PDB | Potato dextrose broth |
TCA | Trichloroacetic acid |
References
- Lopes, A.M.; de Oliveria-Nascimento, L.; Riberio, A.; Tairum, C.A.; Breyer, C.A.; de Oliveria, M.A.; Monteiro, G.; de Souza-Motta, C.M.; Magalhães, P.O.; Avendaño, J.G.F.; et al. Therapeutic L-asparaginase: Upstream, downstream and beyond. Crit. Rev. Biotechnol. 2017, 37, 82–99. [Google Scholar] [CrossRef]
- Bussolati, O.; Belletti, S.; Uggeri, J.; Gatti, R.; Orlandini, G.; Dall’Asta, V.; Gazzola, G.C. Characterization of apoptotic phenomena induced by treatment with L-asparaginase in NIH3T3 cells. Exp. Cell. Res. 1995, 220, 283–291. [Google Scholar] [CrossRef]
- Fonseca, M.H.G.; Fiúza, T.D.S.; de Morais, S.B.; de Souza, T.D.A.C.B.; Trevizani, R. Circumventing the side effects of L-asparaginase. Biomed. Pharmacother. 2021, 139, 111616. [Google Scholar] [CrossRef]
- Castro, D.; Marques, A.S.; Almeida, M.R.; de Paiva, G.B.; Bento, H.B.S.; Pedrolli, D.B.; Freire, M.G.; Tavares, A.P.M.; Santos-Ebinuma, V.C. L-asparaginase production review: Bioprocess design and biochemical characteristics. Appl. Microbiol. Biotechnol. 2021, 105, 4515–4534. [Google Scholar] [CrossRef] [PubMed]
- Burke, M.J.; Zalewska-Szewczyk, B. Hypersensitivity reactions to asparaginase therapy in acute lymphoblastic leukemia: Immunology and clinical consequences. Future Oncol. 2022, 18, 1285–1299. [Google Scholar] [CrossRef] [PubMed]
- Lynggaard, L.S.; Rank, C.U.; Hansen, S.N.; Gottschalk-Hojfeldt, S.; Henriksen, L.T.; Jarvis, K.B.; Ranta, S.; Nilinimaki, R.; Harila-Saari, A.; Wolthers, B.O.; et al. Asparaginase enzyme activity levels and toxicity in childhood acute lymphoblastic leukemia: A NOPHO ALL2008 study. Blood Adv. 2022, 6, 138–147. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.A.; Su, Y.; Lavie, A. Design and characterization of Erwinia chrysanthemi L-asparaginase variants with diminished L-glutaminase activity. J. Biol. Chem. 2016, 291, 17664–17676. [Google Scholar] [CrossRef]
- Sengupta, S.; Biswas, M.; Gandhi, K.A.; Gupta, S.K.; Gera, P.B.; Gota, V.; Sonawane, A. Preclinical evaluation of engineered L-asparaginase variants to improve the treatment of acute lymphoblastic leukemia. Transl. Oncol. 2024, 43, 101909. [Google Scholar] [CrossRef]
- Bano, M.; Sivaramakrishnan, V.M. Preparation and properties of L-asparaginase from green chillies (Capsicum annum L.). J. Biosci. 1980, 2, 291–297. [Google Scholar] [CrossRef]
- Muneer, F.; Siddique, M.H.; Azeem, F.; Rasul, I.; Muzammil, S.; Zubair, M.; Afzal, M.; Nadeem, H. Microbial L-asparaginase: Purification, characterization and applications. Arch. Microbiol. 2020, 202, 967–981. [Google Scholar] [CrossRef]
- Ashok, A.; Doriya, K.; Rao, J.V.; Qureshi, A.; Tiwari, A.K.; Kumar, D.S. Microbes producing L-asparagnase free of glutaminase and urease isolated from extreme locations of Antarctic soil and moss. Sci. Rep. 2019, 9, 1423. [Google Scholar] [CrossRef] [PubMed]
- Arumugam, N.; Shanmugam, M.K.; Thangavelu, P. Purification and anticancer activity of glutaminase and urease-free L-asparaginase from novel endophyte Chaetomium sp. Biotechnol. Appl. Biochem. 2022, 69, 2161–2175. [Google Scholar] [CrossRef] [PubMed]
- Ratuchne, A.; Izidoro, S.C.; Beitel, S.M.; Lacerda, L.T.; Knob, A. A new extracellular glutaminase and urease-free L-asparaginase from Meyerozyma guilliermondii. Braz. J. Microbiol. 2023, 54, 715–723. [Google Scholar] [CrossRef] [PubMed]
- Yu, W.J.; Lee, H.Y.; Kwon, Y.M.; Bae, S.S.; Choi, G.; Hwang, H.J.; Chung, D. The characterization of L-asparaginase with low L-glutaminase activity produced by the marine Pseudomonas sp. strain GH-W2b. Microbiol. Res. 2025, 16, 2. [Google Scholar] [CrossRef]
- Chung, D.; Baek, K.; Bae, S.S.; Jung, J. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J. Microbiol. 2019, 57, 372–380. [Google Scholar] [CrossRef]
- Raja, H.A.; Miller, A.N.; Pearce, C.J.; Oberlies, N.H. Fungal identification using molecular tools: A primer for the natural products research community. J. Nat. Prod. 2017, 80, 756–770. [Google Scholar] [CrossRef]
- Gardes, M.; Bruns, T.D. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol. Ecol. 1993, 2, 113–118. [Google Scholar] [CrossRef]
- Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [Google Scholar] [CrossRef]
- Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: Evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Ebrahiminezhad, A.; Rasoul-Amini, S.; Ghasemi, Y. l-Asparaginase production by moderate halophilic bacteria isolated from Maharloo Salt Lake. Indian J. Microbiol. 2011, 51, 307–311. [Google Scholar] [CrossRef]
- El-Naggar, N.E.A.; Deraz, S.F.; El-Ewasy, S.M.; Suddek, G.M. Purification, characterization and immunogenicity assessment of glutaminase free L-asparaginase from Streptomyces brollosae NEAE-115. BMC Pharmacol. Toxicol. 2018, 19, 51. [Google Scholar] [CrossRef]
- Wriston, J.C., Jr.; Yellin, T.O. L-asparaginase: A review. Adv. Enzymol. Relat. Areas Mol. Biol. 1973, 39, 185–248. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Karunarathna, S.C.; Dai, D.Q.; Xiong, Y.R.; Suwannarach, N.; Stephenson, S.L.; Elgorban, A.M.; Al-Rejaie, S.; Jayawardena, R.S.; Tibpromma, S. Description of four novel species in Pleosporales associated with coffee in Yunnan, China. J. Fungi 2022, 8, 1113. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.K.; Das, K.; Ryu, J.J.; Lim, S.K.; Choi, J.S.; Lee, S.Y.; Jung, H.Y. Morphological and phylogenetic analysis of a new record of Paraconiothyrium kelleni from soil in Korea. Kor. J. Mycol. 2023, 51, 101–109. [Google Scholar] [CrossRef]
- Wang, J.; Shao, S.; Liu, C.; Song, Z.; Liu, S.; Wu, S. The genus Paraconiothyrium: Species concepts, biological functions, and secondary metabolites. Crit. Rev. Microbiol. 2021, 47, 781–810. [Google Scholar] [CrossRef]
- Quang, T.H.; Kim, D.C.; Van Kiem, P.; Van Minh, C.; Nhiem, N.X.; Tai, B.H.; Yen, P.H.; Ngan, N.T.T.; Kim, H.J.; Oh, H. Macrolide and phenolic metabolites from the marine-derived fungus Paraconiothyrium sp. VK-13 with anti-inflammatory activity. J. Antibiot. 2018, 71, 826–830. [Google Scholar] [CrossRef]
- Fu, Z.Y.; An, J.Q.; Liu, W.; Zhang, H.P.; Yang, P. Genomic analyses of the fungus Paraconiothyrium sp. isolated from the Chinese white wax scale insect reveals its symbiotic character. Genes 2022, 13, 338. [Google Scholar] [CrossRef]
- Gordon, R.A.; Sutton, D.A.; Thompson, E.H.; Shrikanth, V.; Verkley, G.J.; Stielow, J.B.; Mays, R.; Oleske, D.; Morrison, L.K.; Lapolla, W.J.; et al. Cutaneous phaeohyphomycosis caused by Paraconiothyrium cyclothyrioides. J. Clin. Microbiol. 2012, 50, 3795–3798. [Google Scholar] [CrossRef]
- Khalmuratova, I.; Choi, D.H.; Yoon, H.J.; Kim, J.G. Diversity and plant growth promotion of fungal endophytes in five halophytes from the Buan salt marsh. J. Microbiol. Biotechnol. 2021, 31, 408–418. [Google Scholar] [CrossRef] [PubMed]
- Robinson, P.K. Enzymes: Principles and biotechnological applications. Essays Biochem. 2015, 59, 1–41. [Google Scholar] [CrossRef] [PubMed]
- Shrivastava, A.; Khan, A.A.; Shrivastav, A.; Jain, S.K.; Singhal, P.K. Kinetic studies of L-asparaginase from Penicillium digitatum. Prep. Biochem. Biotechnol. 2012, 42, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Asitok, A.; Ekpenyong, M. Production of the anti-leukemic therapeutic enzyme, L-asparaginase, by a brackish sediment strain of Aspergillus candidus. Br. J. Med. Health Res. 2019, 6, 47–68. [Google Scholar] [CrossRef]
- Bedaiwy, M.Y.; Awadalla, O.A.; Abou-Zeid, A.M.; Hamada, H.T. Optimal conditions for production of L-asparaginase from Aspergillus tamarii. Egypt. J. Exp. Biol. 2016, 12, 229–237. [Google Scholar]
- Battiston Loureiro, C.; Silva Borges, K.; Faria Andrade, A.; Gonzaga Tone, L.; Said, S. Purification and biochemical characterization of native and pegylated form of L-asparaginase from Aspergillus terreus and evaluation of its antiproliferative activity. Adv. Microbiol. 2012, 2, 138–145. [Google Scholar] [CrossRef][Green Version]
- Gomes, T.A.; Zanette, C.M.; Spier, M.R. An overview of cell disruption methods for intracellular biomolecules recovery. Prep. Biochem. Biotechnol. 2020, 50, 635–654. [Google Scholar] [CrossRef]
- Geciova, J.; Bury, D.; Jelen, P. Methods for disruption of microbial cells for potential use in the dairy industry—A review. Int. Dairy J. 2002, 12, 541–553. [Google Scholar] [CrossRef]
- Wolf, M.; Pittner, M.W.F.; Gabor, F. Stabilisation and determination of the biological activity of L-asparaginase in poly(D,L-lactide-co-glycolide) nanospheres. Int. J. Pharm. 2003, 256, 141–152. [Google Scholar] [CrossRef]
- Zeng, J.; Gao, X.; Dai, Z.; Tang, B.; Tang, X.F. Effects of metal ions on stability and activity of hyperthermophilic pyrolysin and further stabilization of this enzyme by modification of a Ca2+-binding site. Appl. Environ. Microbiol. 2014, 80, 2763–2772. [Google Scholar] [CrossRef]
- Jia, F.; Wan, X.; Geng, X.; Xue, D.; Xie, Z.; Chen, C. Microbial L-asparaginase for application in acrylamide mitigation from food: Current research status and future perspectives. Microorganisms 2021, 9, 1659. [Google Scholar] [CrossRef]
- Hendriksen, H.V.; Kornbrust, B.A.; Ostergaard, P.R.; Stringer, M.A. Evaluating the potential for enzymatic acrylamide mitigation in a range of food products using an asparaginase from Aspergillus oryzae. J. Agric. Food Chem. 2009, 57, 4168–4176. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, Z.; Huang, H. Physical cell disruption technologies for intracellular compound extraction from microorganisms. Processes 2024, 12, 2059. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, W.-J.; Lee, H.Y.; Kwon, Y.M.; Bae, S.S.; Hwang, H.-J.; Chung, D. Characterization of L-Asparaginase Free of L-Glutaminase and Urease Activity Produced by the Marine Paraconiothyrium cyclothyrioides Strain MABIK FU00000820. Appl. Microbiol. 2025, 5, 100. https://doi.org/10.3390/applmicrobiol5030100
Yu W-J, Lee HY, Kwon YM, Bae SS, Hwang H-J, Chung D. Characterization of L-Asparaginase Free of L-Glutaminase and Urease Activity Produced by the Marine Paraconiothyrium cyclothyrioides Strain MABIK FU00000820. Applied Microbiology. 2025; 5(3):100. https://doi.org/10.3390/applmicrobiol5030100
Chicago/Turabian StyleYu, Woon-Jong, Ha Young Lee, Yong Min Kwon, Seung Seob Bae, Hyun-Ju Hwang, and Dawoon Chung. 2025. "Characterization of L-Asparaginase Free of L-Glutaminase and Urease Activity Produced by the Marine Paraconiothyrium cyclothyrioides Strain MABIK FU00000820" Applied Microbiology 5, no. 3: 100. https://doi.org/10.3390/applmicrobiol5030100
APA StyleYu, W.-J., Lee, H. Y., Kwon, Y. M., Bae, S. S., Hwang, H.-J., & Chung, D. (2025). Characterization of L-Asparaginase Free of L-Glutaminase and Urease Activity Produced by the Marine Paraconiothyrium cyclothyrioides Strain MABIK FU00000820. Applied Microbiology, 5(3), 100. https://doi.org/10.3390/applmicrobiol5030100