Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods
Abstract
:1. Introduction
Probiotic | Health Effect | Reference |
---|---|---|
L. plantarum | Relief of irritable bowel syndrome (IBS). | Stevenson et al., 2014 [16] |
Reduction of LDL-cholesterol. Reduction in the recurrence of diarrhea due to Clostridium difficile. | Nordström et al., 2021 [17] | |
L. casei | Immune modulation. | Galdeano et al., 2015 [18] |
L. rhamnosus | Treatment of acute rotavirus and antibiotic-associated diarrhea. | Guandalini et al., 2017 [19] |
Treatment and prevention of allergies. | Tomaro-Duchesneau et al., 2014 [20] | |
L. acidophilus | Activation of the immune system in patients with IBS. | Öhmanet et al., 2009 [21] |
Reduction of serum cholesterol. | Lee et al., 2010 [22] | |
Reduction in rotavirus and antibiotic-associated diarrhea. | Ahmadi et al., 2015 [23] | |
L. salivarius | Relief of IBS symptoms and modulation of the intestinal microbiota. | Sierra et al., 2010 [24] |
L. reuteri | Reduction in rotavirus and associated diarrhea. | Urbanska et al., 2016 [25] |
Immune modulation. | Engevik et al., 2021 [26] | |
Bifidobacterium breve | Immune modulation and stimulation. Reduction in IBS symptoms. | Choi et al., 2022 [27] |
B. animalis | Increased IgA secretions. | Solano-Aguilar et al., 2018 [28] |
B. longum | Allergy treatment. | Miraglia Del Giudice et al., 2017 [29] |
Escherichia coli Nissle 1917 | Fewer relapses in IBS disease. Immune modulation. Recovery from ulcerative colitis. Exclusion of E. coli pathogens. | Schultz et al., 2017 [30] |
B. lactis | Reduction in the frequency of rotavirus and traveler’s diarrhea. Inhibitory effects against Helicobacter pylori. | Cruchet et al., 2015 [31] |
S. thermophilus | Improvement in lactose intolerance. Prevention of rotavirus diarrhea | Kora, 2022 [32] |
2. Probiotics and Gut Microbiota
3. Stability and Survival of Probiotic Bacteria during Crossing through the Gastrointestinal Tract
4. Mechanism of Action of Probiotics to Inhibit Food-Borne Pathogens
4.1. Competition with Pathogens for Binding Sites and Food Sources
4.2. Preventing the Adhesion of Pathogenic Bacteria to the Intestinal Epithelium by Producing Inhibitory Agents
4.3. Organizing a Mucosal Barrier with Mucin Secretion
4.4. Immunomodulation
5. Development of Nondairy Foods with the Incorporation of Prebiotics and Probiotics
6. Side Effects of Probiotics
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fijan, S. Microorganisms with Claimed Probiotic Properties: An Overview of Recent Literature. Int. J. Environ. Res. Public Health 2014, 11, 4745–4767. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Li, S.; Gan, R.-Y.; Zhou, T.; Xu, D.-P.; Li, H.-B. Impacts of Gut Bacteria on Human Health and Diseases. Int. J. Mol. Sci. 2015, 16, 7493–7519. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhu, L.-J.; Leng, Y.-Q.; Wang, Y.-W.; Shi, T.; Wang, W.-Z.; Sun, J.-C. Inflammatory Response: A Crucial Way for Gut Microbes to Regulate Cardiovascular Diseases. Nutrients 2023, 15, 607. [Google Scholar] [CrossRef] [PubMed]
- Ooi, L.-G.; Liong, M.-T. Cholesterol-Lowering Effects of Probiotics and Prebiotics: A Review of In Vivo and In Vitro Findings. Int. J. Mol. Sci. 2010, 11, 2499–2522. [Google Scholar] [CrossRef] [PubMed]
- Fijan, S. Probiotics and Their Antimicrobial Effect. Microorganisms 2023, 11, 528. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, P.; Zhang, X. Probiotics Regulate Gut Microbiota: An Effective Method to Improve Immunity. Molecules 2021, 26, 6076. [Google Scholar] [CrossRef] [PubMed]
- Saracino, I.M.; Pavoni, M.; Saccomanno, L.; Fiorini, G.; Pesci, V.; Foschi, C.; Piccirilli, G.; Bernardini, G.; Holton, J.; Figura, N.; et al. Antimicrobial Efficacy of Five Probiotic Strains Against Helicobacter pylori. Antibiotics 2020, 9, 244. [Google Scholar] [CrossRef] [PubMed]
- Delcenserie, V.; Martel, D.; Lamoureux, M.; Amiot, J.; Boutin, Y.; Roy, D. Immunomodulatory Effects of Probiotics in the Intestinal Tract. Curr. Issues Mol. Biol. 2008, 10, 37–54. [Google Scholar] [CrossRef]
- Piqué, N.; Berlanga, M.; Miñana-Galbis, D. Health Benefits of Heat-Killed (Tyndallized) Probiotics: An Overview. Int. J. Mol. Sci. 2019, 20, 2534. [Google Scholar] [CrossRef]
- Fazilah, N.F.; Hamidon, N.H.; Ariff, A.B.; Khayat, M.E.; Wasoh, H.; Halim, M. Microencapsulation of Lactococcus lactis Gh1 with Gum Arabic and Synsepalum dulcificum via Spray Drying for Potential Inclusion in Functional Yogurt. Molecules 2019, 24, 1422. [Google Scholar] [CrossRef]
- Cerdó, T.; García-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The Role of Probiotics and Prebiotics in the Prevention and Treatment of Obesity. Nutrients 2019, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Duca, F.; Lam, T. Gut microbiota, nutrient sensing and energy balance. Diabetes Obes. Metab. 2014, 16, 68–76. [Google Scholar] [CrossRef] [PubMed]
- Aron-Wisnewsky, J.; Doré, J.; Clement, K. The importance of the gut microbiota after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 590. [Google Scholar] [CrossRef] [PubMed]
- Schwiertz, A.; Taras, D.; Schäfer, K.; Beijer, S.; Bos, N.A.; Donus, C.; Hardt, P.D. Microbiota and SCFA in lean and overweight healthy subjects. Obesity 2010, 18, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, J.; Su, W.; Rahat-Rozenbloom, S.; Wolever, T.; Comelli, E. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr. Diabetes 2014, 4, e121. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, C.; Blaauw, R.; Fredericks, E.; Visser, J.; Roux, S. Randomized clinical trial: Effect of Lactobacillus plantarum 299 v on symptoms of irritable bowel syndrome. Nutrition 2014, 30, 1151–1157. [Google Scholar] [CrossRef]
- Nordström, E.A.; Teixeira, C.; Montelius, C.; Jeppsson, B.; Larsson, N. Lactiplantibacillus plantarum 299v (LP299V®): Three decades of research. Benef. Microbes 2021, 12, 441–465. [Google Scholar] [CrossRef]
- Maldonado, G.C.; Lemme-Dumit, J.M.; Thieblemont, N.; Carmuega, E.; Weill, R.; Perdigón, G. Stimulation of innate immune cells induced by probiotics: Participation of toll-like receptors. J. Clin. Cell. Immunol. 2015, 6, 1000283. [Google Scholar]
- Stefano, G.; Sansotta, N. Probiotics in the treatment of inflammatory bowel disease. Probiotics Child Gastrointest. Health Adv. Microbiol. Infect. Dis. Public Health 2019, 10, 101–107. [Google Scholar]
- Tomaro-Duchesneau, C.; Jones, M.L.; Shah, D.; Jain, P.; Saha, S.; Prakash, S. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation. Biomed Res. Int. 2014, 2014, 1–9. [Google Scholar] [CrossRef]
- Ohman, L.; Lindmark, A.-C.; Isaksson, S.; Posserud, I.; Strid, H.; Sjövall, H.; Simrén, M. B-cell activation in patients with irritable bowel syndrome (IBS). Neurogastroenterol. Motil. 2009, 21, 644–650. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, Y.; Yun, H.S.; Kim, J.G.; Oh, S.; Kim, S.H. Genetic and proteomic analysis of factors affecting serum cholesterol reduction by Lactobacillus acidophilus A4. Appl. Environ. Microbiol 2010, 76, 4829–4835. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, E.; Alizadeh-Navaei, R.; Rezai, M.S. Efficacy of probiotic use in acute rotavirus diarrhea in children: A systematic review and meta-analysis. Casp. J. Intern. Med. 2015, 6, 187. [Google Scholar]
- Sierra, S.; Lara-Villoslada, F.; Sempere, L.; Olivares, M.; Boza, J.; Xaus, J. Intestinal and immunological effects of daily oral administration of Lactobacillus salivarius CECT5713 to healthy adults. Anaerobe 2010, 16, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Urbańska, M.; Gieruszczak–Białek, D.; Szymański, H.; Szajewska, H. Effectiveness of Lactobacillus reuteri DSM 17938 for the Prevention of Nosocomial Diarrhea in Children. Pediatr. Infect. Dis. J. 2016, 35, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Engevik, M.A.; Ruan, W.; Esparza, M.; Fultz, R.; Shi, Z.; Engevik, K.A.; Engevik, A.C.; Ihekweazu, F.D.; Visuthranukul, C.; Venable, S.; et al. Immunomodulation of dendritic cells by Lactobacillus reuteri surface components and metabolites. Physiol. Rep. 2021, 9, e14719. [Google Scholar] [CrossRef]
- Choi, Y.J.; Shin, S.H.; Shin, H.S. Immunomodulatory Effects of Bifidobacterium spp. and Use of Bifidobacterium breve and Bifidobacterium longum on Acute Diarrhea in Children. J. Microbiol. Biotechnol. 2022, 32, 1186. [Google Scholar] [CrossRef]
- Solano-Aguilar, G.; Shea-Donohue, T.; Madden, K.B.; Quinones, A.; Beshah, E.; Lakshman, S.; Xie, Y.; Dawson, H.; Urban, J.F. Bifidobacterium animalis subspecies lactis modulates the local immune response and glucose uptake in the small intestine of juvenile pigs infected with the parasitic nematode Ascaris suum. Gut Microbes 2018, 9, 422–436. [Google Scholar]
- Miraglia Del Giudice, M.; Indolfi, C.; Capasso, M.; Maiello, N.; Decimo, F.; Ciprandi, G. Bifidobacterium mixture (B longum BB536, B infantis M-63, B breve M-16V) treatment in children with seasonal allergic rhinitis and intermittent asthma. Ital. J. Pediatr. 2017, 43, 25. [Google Scholar] [CrossRef]
- Schultz, M.; Burton, J.P. Escherichia coli Nissle 1917. In The Microbiota in Gastrointestinal Pathophysiology; Academic Press: Cambridge, MA, USA, 2017; pp. 59–69. [Google Scholar]
- Cruchet, S.; Furnes, R.; Maruy, A.; Hebel, E.; Palacios, J.; Medina, F.; Ramirez, N.; Orsi, M.; Rondon, L.; Sdepanian, V.; et al. The use of probiotics in pediatric gastroenterology: A review of the literature and recommendations by latin-american experts. Paediatr. Drugs 2015, 17, 199–216. [Google Scholar] [CrossRef]
- Kora, A.J. Probiotics in the prevention and treatment of diarrheal disease. Probiotics Prev. Manag. Hum. Dis. 2022, 107–115. [Google Scholar] [CrossRef]
- Rajilić-Stojanović, M.; Heilij, H.G.; Tims, S.; Zoetendal, E.G.; de Vos, W.M. Long-term monitoring of the human intestinal microbiota composition. Environ. Microbiol. 2013, 15, 1146–1159. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Nigel, C. The effect of antibiotics on the composition of the intestinal microbiota-a systematic review. J. Infect. 2019, 79, 471–489. [Google Scholar] [CrossRef] [PubMed]
- Blaut, M. Gut microbiota and energy balance: Role in obesity. Proc. Nutr. Soc. 2015, 74, 227–234. [Google Scholar] [CrossRef]
- Agace, W.W.; Roberts, A.I.; Wu, L.; Greineder, C.; Ebert, E.C.; Parker, C.M. Human Intestinal Lamina Propria and Intraepithelial Lymphocytes Express Receptors Specific for Chemokines Induced by Inflammation. Eur. J. Immunol. 2000, 30, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Aleman, R.S.; Moncada, M.; Aryana, K.J. Leaky Gut and the Ingredients That Help Treat It: A Review. Molecules 2023, 28, 619. [Google Scholar] [CrossRef]
- Ohland, C.L.; MacNaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol. 2011, 32, 256–264. [Google Scholar] [CrossRef]
- Yamada, T.; Shimizu, K.; Ogura, H.; Asahara, T.; Nomoto, K.; Yamakawa, K.; Hamasaki, T.; Nakahori, Y.; Ohnishi, M.; Kuwagata, Y.; et al. Rapid and Sustained Long-Term Decrease of Fecal Short-Chain Fatty Acids in Critically Ill Patients With Systemic Inflammatory Response Syndrome. J. Parenter. Enter. Nutr. 2015, 39, 569–577. [Google Scholar] [CrossRef]
- Champagne, C.P.; Nancy, J.G. Effect of storage in a fruit drink on subsequent survival of probiotic lactobacilli to gastro-intestinal stresses. Food Res. Int. 2008, 41, 539–543. [Google Scholar] [CrossRef]
- Wan, M.L.Y.; Forsythe, S.J.; El-Nezami, H. Probiotics interaction with foodborne pathogens: A potential alternative to antibiotics and future challenges. Crit. Rev. Food Sci. Nutr. 2019, 59, 3320–3333. [Google Scholar] [CrossRef]
- Yang, L.; Lu, X.; Nossa, C.; Francois, F.; Peek, R.; Pei, Z. Inflammation and Intestinal Metaplasia of the Distal Esophagus Are Associated with Alterations in the Microbiome. Gastroenterology 2009, 137, 588–597. [Google Scholar] [CrossRef]
- Serra, D.; Almeida, L.M.; Dinis, T.C.P. Dietary polyphenols: A novel strategy to modulate microbiota-gut-brain axis. Trends Food Sci. Technol. 2018, 78, 224–233. [Google Scholar] [CrossRef]
- Foster, T.J. Colonization and infection of the human host by staphylococci: Adhesion, survival and immune evasion. Vet. Dermatol. 2009, 20, 456–470. [Google Scholar] [CrossRef]
- Abedi, D.; Feizizadeh, S.; Akbari, V.; Jafarian-Dehkordi, A. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp bulgaricus on Escherichia coli. Res. Pharm. Sci. 2013, 8, 260–268. [Google Scholar]
- Ploux, L.; Ponche, A.; Anselme, K. Bacteria/material interfaces: Role of the material and cell wall properties. J. Adhes. Sci. Technol. 2010, 24, 2165–2201. [Google Scholar] [CrossRef]
- Lu, Y.; Han, S.; Zhang, S.; Wang, K.; Lv, L.; McClements, D.J.; Xiao, H.; Berglund, B.; Yao, M.; Li, L. The role of probiotic exopolysaccharides in adhesion to mucin in different gastrointestinal conditions. Curr. Res. Food Sci. 2022, 5, 581–589. [Google Scholar] [CrossRef]
- Dhanani, A.S.; Tamishraha, B. Lactobacillus plantarum CS24. 2 prevents Escherichia coli adhesion to HT-29 cells and also down-regulates enteropathogen-induced tumor necrosis factor-α and interleukin-8 expression. Microbiol. Immunol. 2013, 57, 309–315. [Google Scholar] [CrossRef]
- Johnson-Henry, K.C.; Donato, K.A.; Shen-Tu, G.; Gordanpour, M.; Sherman, P.M. Lactobacillus rhamnosus Strain GG Prevents Enterohemorrhagic Escherichia coli O157:H7-Induced Changes in Epithelial Barrier Function. Infect. Immun. 2008, 76, 1340–1348. [Google Scholar] [CrossRef]
- Baktash, A.; Terveer, E.M.; Zwittink, R.D.; Hornung, B.V.; Corver, J.; Kuijper, E.J.; Smits, W.K. Mechanistic insights in the success of fecal microbiota transplants for the treatment of Clostridium difficile infections. Front. Microbiol. 2018, 9, 1242. [Google Scholar] [CrossRef]
- Misra, S.; Debapriya, M.; Swati, M. Applications of probiotics as a functional ingredient in food and gut health. J. Food Nutr. Res. 2019, 7, 213–223. [Google Scholar]
- Shi, S.; Qi, Z.; Sheng, T.; Tu, J.; Shao, Y.; Qi, K. Antagonistic Trait of Lactobacillus Reuteri S5 against Salmonella Enteritidis and Assessment of Its Potential Probiotic Characteristics. Microb. Pathog. 2019, 137, 103773. [Google Scholar] [CrossRef]
- Ashida, H.; Ogawa, M.; Kim, M.; Mimuro, H.; Sasakawa, C. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 2012, 8, 36–45. [Google Scholar] [CrossRef]
- Ansari, F.; Chi-Ching, L.; Azadeh, R.; Soheyl, E.; Tolulope, A.; Esmaeel, M.; Hadi, P.; Seid, J. The Role of Probiotics in Improving Food Safety: Inactivation of Pathogens and Biological Toxins. Curr. Pharm. Biotechnol. 2023. [Google Scholar]
- Lee, S.-Y.; Dong-Hyun, K. Survival mechanism of Escherichia coli O157: H7 against combined treatment with acetic acid and sodium chloride. Food Microbiol. 2016, 55, 95–104. [Google Scholar] [CrossRef]
- Coimbra, A.T.; Ferreira, S.; Duarte, A.P. Genus Ruta: A natural source of high value products with biological and pharmacological properties. J. Ethnopharmacol. 2020, 260, 113076. [Google Scholar] [CrossRef]
- Bosak, J.; Hrala, M.; Micenkova, L.; Smajs, D. Non-antibiotic antibacterial peptides and proteins ofEscherichia coli: Efficacy and potency of bacteriocins. Expert Rev. Anti-Infect. Ther. 2021, 19, 309–322. [Google Scholar] [CrossRef]
- Zacharof, M.P.; Lovitt, R.W. Bacteriocins produced by lactic acid bacteria a review article. Apcbee Procedia 2012, 2, 50–56. [Google Scholar] [CrossRef]
- Kasra-Kermanshahi, R.; Mobarak-Qamsari, E. Inhibition effect of lactic acid bacteria against food born pathogen, Listeria monocytogenes. Carbon 2015, 10, 13. [Google Scholar]
- Mokoena, M.P.; Omatola, C.A.; Olaniran, A.O. Applications of lactic acid bacteria and their bacteriocins against food spoilage microorganisms and foodborne pathogens. Molecules 2021, 26, 7055. [Google Scholar] [CrossRef]
- Leslie, V.A.; Alarjani, K.M.; Malaisamy, A.; Balasubramanian, B. Bacteriocin producing microbes with bactericidal activity against multidrug resistant pathogens. J. Infect. Public Health 2021, 14, 1802–1809. [Google Scholar]
- Duhan, J.S.; Nehra, K.; Gahlawat, S.K.; Saharan, P. Bacteriocins from lactic acid bacteria. In Biotechnology: Prospects and Applications; Springer: Berlin/Heidelberg, Germany, 2013; pp. 127–141. [Google Scholar]
- Weiss, G.; Schaible, U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015, 264, 182–203. [Google Scholar] [CrossRef] [PubMed]
- Hojjati, M.; Behabahani, B.A.; Falah, F. Aggregation, adherence, anti-adhesion and antagonistic activity properties relating to surface charge of probiotic Lactobacillus brevis gp104 against Staphylococcus aureus. Microb. Pathog. 2020, 147, 104420. [Google Scholar] [CrossRef] [PubMed]
- Goh, Y.J.; Klaenhammer, T.R. Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 2010, 76, 5005–5012. [Google Scholar] [CrossRef] [PubMed]
- Litwin, C.M.; Calderwood, S. Role of iron in regulation of virulence genes. Clin. Microbiol. Rev. 1993, 6, 137–149. [Google Scholar] [CrossRef]
- Kanmani, P.; Satish Kumar, R.; Yuvaraj, N.; Paari, K.; Pattukumar, V.; Arul, V. Probiotics and its functionally valuable products—A review. Crit. Rev. Food Sci. Nutr. 2013, 53, 641–658. [Google Scholar] [CrossRef]
- Law, S.K.K.; Tan, H.S. The role of quorum sensing, biofilm formation, and iron acquisition as key virulence mechanisms in Acinetobacter baumannii and the corresponding anti-virulence strategies. Microbiol. Res. 2022, 260, 127032. [Google Scholar] [CrossRef]
- Deriu, E.; Liu, J.Z.; Pezeshki, M.; Edwards, R.A.; Ochoa, R.J.; Contreras, H.; Libby, S.J.; Fang, F.C.; Raffatellu, M. Probiotic bacteria reduce Salmonella typhimurium intestinal colonization by competing for iron. Cell Host Microbe. 2013, 14, 26–37. [Google Scholar] [CrossRef]
- Castro-Bravo, N.; Wells, J.M.; Margolles, A.; Ruas-Madiedo, P. Interactions of surface exopolysaccharides from bifidobacterium and lactobacillus within the intestinal environment. Front. Microbiol. 2018, 9, 2426. [Google Scholar] [CrossRef]
- Liévin-Le Moal, V.; Servin, A.L. The front line of enteric host defense against unwelcome intrusion of harmful microorganisms: Mucins, antimicrobial peptides, and microbiota. Clin. Microbiol. Rev. 2006, 19, 315–337. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 1, 319–330. [Google Scholar] [CrossRef]
- Fernandez, J.; Redondo-Blanco, S.; Gutierrez-del-Rio, I.; Miguelez, E.M.; Villar, C.J.; Lombo, F. Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. J. Funct. Foods 2016, 25, 511–522. [Google Scholar] [CrossRef]
- Guilloteau, P.; Martin, L.; Eeckhaut, V.; Ducatelle, R.; Zabielski, R.; Van Immerseel, F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010, 23, 366–384. [Google Scholar] [CrossRef] [PubMed]
- Doron, S.; Gorbach, S.L. Probiotics: Their role in the treatment and prevention of disease. Expert Rev. Anti-Infect. Ther. 2006, 4, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Nugent, S.G.; Kumar, D.; Rampton, D.S.; Evans, D.F. Intestinal luminal pH in inflammatory bowel disease: Possible determinants and implications for therapy with aminosalicylates and other drugs. Gut 2001, 48, 571–577. [Google Scholar] [CrossRef] [PubMed]
- Hunter, B.T. Probiotic Foods for Good Health: Yogurt, Sauerkraut, and other Beneficial Fermented Foods; Basic Health Publications, Inc.: Laguna Beach, CA, USA, 2008. [Google Scholar]
- Turula, H.; Wobus, C.E. The role of the polymeric immunoglobulin receptor and secretory immunoglobulins during mucosal infection and immunity. Viruses 2018, 10, 237. [Google Scholar] [CrossRef] [PubMed]
- Furrie, E.; Macfarlane, S.; Kennedy, A.; Cummings, J.H.; Walsh, S.V.; A O’Neil, D.; Macfarlane, G.T. Synbiotic therapy (Bifidobacterium longum/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: A randomised controlled pilot trial. Gut 2005, 54, 242–249. [Google Scholar] [CrossRef]
- Sanchez, B.; Delgado, S.; Blanco-Miguez, A.; Lourenco, A.; Gueimonde, M.; Margolles, A. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 2017, 61, 1600240. [Google Scholar] [CrossRef]
- Nair, M.S.; Amalaradjou, M.A.; Venkitanarayanan, K. Antivirulence properties of probiotics in combating microbial pathogenesis. Adv. Appl. Microbiol. 2017, 98, 1–29. [Google Scholar]
- Yousefi, B.; Eslami, M.; Ghasemian, A.; Kokhaei, P.; Farrokhi, A.S.; Darabi, N. Probiotics importance and their immunomodulatory properties. J. Cell. Physiol. 2018, 234, 8008–8018. [Google Scholar] [CrossRef]
- Brandtzaeg, P. Mucosal immunity: Induction, dissemination, and effector functions. Scand. J. Immunol. 2009, 70, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Maldonado Galdeano, C.; Cazorla, S.I.; Lemme Dumit, J.M.; Velez, E.; Perdigon, G. Beneficial effects of probiotic consumption on the immune system. Ann. Nutr. Metab. 2019, 74, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.T.; Cheng, P.C.; Pan, T.M. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biotechnol. 2012, 96, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wu, M. Pattern recognition receptors in health and diseases. Signal Transduct. Target. Ther. 2021, 6, 291. [Google Scholar] [CrossRef] [PubMed]
- Hemmi, H.; Shizuo, A. TLR signalling and the function of dendritic cells. Mech. Epithel. Def. 2005, 86, 120–135. [Google Scholar]
- Granucci, F.; Zanoni, I.; Ricciardi-Castagnoli, P. Central role of dendritic cells in the regulation and deregulation of immune responses. Cell. Mol. Life Sci. 2008, 65, 1683–1697. [Google Scholar] [CrossRef] [PubMed]
- Salva, S.; Tiscornia, I.; Gutiérrez, F.; Alvarez, S.; Bollati-Fogolín, M. Lactobacilli rhamnosus postbiotic-induced immunomod-ulation as safer alternative to the use of live bacteria. Cytokine 2021, 146, 155631. [Google Scholar] [CrossRef] [PubMed]
- Monack, D.M.; Mueller, A.; Falkow, S. Persistent bacterial infections: The interface of the pathogen and the host immune system. Nat. Rev. Microbiol. 2004, 2, 747–765. [Google Scholar] [CrossRef]
- Tlaskalová-Hogenová, H.; Stepánková, R.; Hudcovic, T.; Tucková, L.; Cukrowska, B.; Lodinová-Zádníková, R.; Kozáková, H.; Rossmann, P.; Bártová, J.; Sokol, D.; et al. Commensal Bacteria (Normal Microflora), Mucosal Immunity and Chronic Inflammatory and Autoimmune Diseases. Immunol. Lett. 2004, 93, 97–108. [Google Scholar] [CrossRef]
- Sreekumar, O.; Hosono, A. Immediate effect of Lactobacillus acidophilus on the intestinal flora and fecal enzymes of rats and the in vitro inhibition of Escherichia coli in coculture. J. Dairy Sci. 2000, 83, 931–939. [Google Scholar] [CrossRef]
- Kong, C.; Gao, R.; Yan, X.; Huang, L.; Qin, H. Probiotics Improve Gut Microbiota Dysbiosis in Obese Mice Fed a High-Fat or High-Sucrose Diet. Nutrition 2019, 60, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Tesmer, L.A.; Lundy, S.K.; Sarkar, S.; Fox, D.A. Th17 cells in human disease. Immunol. Rev. 2008, 223, 87–113. [Google Scholar] [CrossRef] [PubMed]
- Shariati, A.; Fallah, F.; Pormohammad, A.; Taghipour, A.; Safari, H.; Chirani, A.S.; Sabour, S.; AlizadehSani, M.; Azimi, T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J. Cell. Physiol. 2018, 234, 8550–8569. [Google Scholar] [CrossRef] [PubMed]
- Tuo, Y.; Song, X.; Song, Y.; Liu, W.; Tang, Y.; Gao, Y.; Jiang, S.; Qian, F.; Mu, G. Screening probiotics from lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. J. Dairy. Sci. 2018, 101, 4822–4829. [Google Scholar] [CrossRef] [PubMed]
- Botes, M. Survival of Probiotic Lactic Acid Bacteria in the Intestinal Tract, Their Adhesion to Epithelial Cells and Their Ability to Compete with Pathogenic Microorganisms; Diss. Stellenbosch; Stellenbosch University: Stellenbosch, South Africa, 2008. [Google Scholar]
- Kainulainen, V.; Tang, Y.; Spillmann, T.; Kilpinen, S.; Reunanen, J.; Saris, P.E.; Satokari, R. The canine isolate Lactobacillus acidophilus LAB20 adheres to intestinal epithelium and attenuates LPS-induced IL-8 secretion of enterocytes in vitro. BMC Microbiol. 2015, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 2003, 8, 223–246. [Google Scholar]
- Aleebrahim-Dehkordi, E.; Molavi, B.; Mokhtari, M.; Deravi, N.; Fathi, M.; Fazel, T.; Mohebalizadeh, M.; Koochaki, P.; Shobeiri, P.; Hasanpour-Dehkordi, A. T helper type (Th1/Th2) responses to SARS-CoV-2 and influenza A (H1N1) virus: From cytokines produced to immune responses. Transpl. Immunol. 2022, 70, 101495. [Google Scholar] [CrossRef]
- Takeda, K.; Suzuki, T.; Shimada, S.I.; Shida, K.; Nanno, M.; Okumura, K. Interleukin-12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 2006, 146, 109–115. [Google Scholar] [CrossRef]
- Javanshir, N.; Hosseini, G.N.G.; Sadeghi, M.; Esmaeili, R.; Satarikia, F.; Ahmadian, G.; Allahyari, N. Evaluation of the Function of Probiotics, Emphasizing the Role of their Binding to the Intestinal Epithelium in the Stability and their Effects on the Immune System. Biol. Proced. Online 2021, 23, 1–17. [Google Scholar] [CrossRef]
- Harper, A.; Vijayakumar, V.; Ouwehand, A.C.; Ter Haar, J.; Obis, D.; Espadaler, J.; Binda, S.; Desiraju, S.; Day, R. Viral infections, the microbiome, and probiotics. Front. Cell. Infect. Microbiol. 2020, 10, 596166. [Google Scholar] [CrossRef]
- Di Luccia, B.; Acampora, V.; Saggese, A.; Calabrò, V.; Vivo, M.; Angrisano, T.; Baccigalupi, L.; Ricca, E.; Pollice, A. Modulation of intestinal epithelial cell proliferation and apoptosis by Lactobacillus gasseri SF1183. Sci. Rep. 2022, 12, 20248. [Google Scholar] [CrossRef] [PubMed]
- Gill, H.S.; Kay, J.R. Probiotic supplementation to enhance natural immunity in the elderly: Effects of a newly characterized immunostimulatory strain Lactobacillus rhamnosus HN001 (DR20™) on leucocyte phagocytosis. Nutr. Res. 2001, 21, 183–189. [Google Scholar] [CrossRef]
- Maneerat, S.; Lehtinen, M.J.; Childs, C.E.; Forssten, S.D.; Alhoniemi, E.; Tiphaine, M.; Yaqoob, P.; Ouwehand, A.C.; Rastall, R.A. Consumption of Bifidobacterium lactis Bi-07 by healthy elderly adults enhances phagocytic activity of monocytes and granulocytes. J. Nutr. Sci. 2014, 2, e44. [Google Scholar] [CrossRef] [PubMed]
- Rigo-Adrover, M.D.M.; Franch, À.; Castell, M.; Pérez-Cano, F.J. Preclinical immunomodulation by the probiotic Bifidobacterium breve M-16V in early life. PLoS ONE 2016, 11, e0166082. [Google Scholar] [CrossRef] [PubMed]
- Dargahi, N.; Johnson, J.; Donkor, O.; Vasiljevic, T.; Apostolopoulos, V. Immunomodulatory effects of probiotics: Can they be used to treat allergies and autoimmune diseases? Maturitas 2019, 119, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I. Lactobacillus acidophilus modulates inflammatory activity by regulating the TLR4 and NF-κB expression in porcine peripheral blood mononuclear cells after lipopolysaccharide challenge. Br. J. Nutr. 2016, 115, 567–575. [Google Scholar] [CrossRef]
- Escamilla, J.; Lane, M.A.; Maitin, V. Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutr. Cancer 2012, 64, 871–878. [Google Scholar] [CrossRef] [PubMed]
- Pandya, A.J.; Ghodke, K.M. Goat and sheep milk products other than cheeses and yoghurt. Small Rumin. Res. 2007, 68, 193–206. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Kovačević, D.B.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Fraser, G.E. Vegetarian diets: What do we know of their effects on common chronic diseases? Am. J. Clin. Nutr. 2009, 89, 1607S–1612S. [Google Scholar] [CrossRef]
- Dinkçi, N.; Akdeniz, V.; Akalin, A.S. Survival of probiotics in functional foods during shelf life. In Food Quality and Shelf Life; Academic Press: Cambridge, MA, USA, 2019; pp. 201–233. [Google Scholar]
- Betoret, N.; Puente, L.; Díaz, M.J.; Pagán, M.J.; García, M.J.; Gras, M.L.; Martínez-Monzó, J.; Fito, P. Development of probiotic-enriched. dried fruits by vacuum impregnation. J. Food Eng. 2003, 56, 273–277. [Google Scholar] [CrossRef]
- Tsen, J.; Lin, Y.; King, V.A. Response surface methodology optimization of immobilised Lactobacillus acidophilus banana puree fermentation. Int. J. Food Sci. Tech. 2009, 44, 120–127. [Google Scholar] [CrossRef]
- Wang, C.; Ng, C.; Su, H.; Tzeng, W.; Shyu, Y. Probiotic potential of noni juice fermented with lactic acid bacteria and bifidobacteria. Int. J. Food Sci. Nutr. 2009, 60, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, Z.E.; Mousavi, S.M.; Razavi, S.H.; Emam-Djomeh, Z.; Kiani, H. Fermentation of pomegranate juice by probiotic lactic acid bacteria. World J. Microbiol. Biotechnol. 2011, 27, 123–128. [Google Scholar] [CrossRef]
- Fonteles, T.; Costa, M.; de Jesus, A.; Rodrigues, S. Optimization of the Fermentation of Cantaloupe Juice by Lactobacillus casei NRRL B442. Food Bioprocess Technol. 2012, 5, 2819–2826. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Probiotication of tomato juice by lactic acid bacteria. J. Microbiol. 2004, 42, 315–318. [Google Scholar]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Fermentation of beet juice by beneficial lactic acid bacteria. Lebensm. Wiss. Technol. 2005, 38, 73–75. [Google Scholar] [CrossRef]
- Kabeir, B.M.; Yazid, A.M.; Hakim, M.N.; Khahatan, A.; Shaborin, A.; Mustafa, S. Survival of Bifidobacterium pseudocatenulatum G4 during the storage of fermented peanut milk (PM) and skim milk (SM) products. Afr. J. Food Sci. 2009, 3, 151–155. [Google Scholar]
- Yoon, K.Y.; Woodams, E.E.; Hang, Y.D. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour. Technol. 2006, 97, 1427–1430. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Sada, A.; Orlando, P. Synbiotic potential of carrot juice supplemented with Lactobacillus spp. and inulin or fructooligosaccharides. J. Sci. Food Agric. 2008, 88, 2271–2276. [Google Scholar] [CrossRef]
- Heenan, C.N.; Adams, M.C.; Hosken, R.W.; Fleet, G.H. Survival and sensory acceptability of probiotic microorganisms in a nonfermented frozen vegetarian dessert. LWT Food Sci. Technol. 2004, 37, 461–466. [Google Scholar] [CrossRef]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. αGalactosidase and proteolytic activities of selected probiotic and dairy cultures in fermented soymilk. Food Chem. 2007, 104, 10–20. [Google Scholar] [CrossRef]
- Yeo, S.; Liong, M. Effect of prebiotics on viability and growth characteristics of probiotics in soymilk. J. Sci. Food Agric. 2010, 90, 267–275. [Google Scholar] [CrossRef]
- Beasley, S.; Tuorila, H.; Saris, P.E.J. Fermented soymilk with a monoculture of Lactococcus lactis. Int. J. Food Microbiol. 2003, 81, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Helland, M.H.; Wicklund, T.; Narvhus, J.A. Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. Int. Dairy J. 2004, 14, 957–965. [Google Scholar] [CrossRef]
- Wongkhalaung, C.; Malai, B. Development of a yogurt-type product from saccharified rice. Agric. Nat. Resour. 2000, 34, 107–116. [Google Scholar]
- Angelov, A.; Gotcheva, V.; Kuncheva, R.; Hristozova, T. Development of a new oat-based probiotic drink. Int. J. Food Microbiol. 2006, 112, 75–80. [Google Scholar] [CrossRef]
- Mårtensson, O.; Öste, R.; Holst, O. The effect of yoghurt culture on the survival of probiotic bacteria in oat-based, non-dairy products. Food Res. Int. 2002, 35, 775–784. [Google Scholar] [CrossRef]
- Kedia, G.; Wang, R.; Patel, H.; Pandiella, S.S. Use of mixed cultures for the fermentation of cereal-based substrates with potential probiotic properties. Process Biochem. 2007, 42, 65–70. [Google Scholar] [CrossRef]
- Ewe, J.A.; Wan-Abdullah, W.N.; Liong, M.T. Viability and growth characteristics of Lactobacillus in soymilk supplemented with Bvitamins. Int. J. Food Sci. Nutr. 2010, 61, 87–107. [Google Scholar] [CrossRef]
- Valerio, F.; De Bellis, P.; Lonigro, S.L.; Morelli, L.; Visconti, A.; Lavermicocca, P. In vitro and in vivo survival and transit tolerance of potentially probiotic strains carried by artichokes in the gastrointestinal tract. Appl. Environ. Microbiol. 2006, 72, 3042–3045. [Google Scholar] [CrossRef] [PubMed]
- Beganovic, J.; Frece, J.; Kos, B.; Lebos Pavunc, A.; Habjanic, K.; Suskovic, J. Functionality of the S-layer protein from the probiotic strain Lactobacillus helveticus M92. Antonie Van Leeuwenhoek 2011, 100, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Lavermicocca, P. Highlights on new food research. Dig. Liver Dis. 2006, 38 (Suppl. S2), S295–S299. [Google Scholar] [CrossRef] [PubMed]
- Puente, D.L.; Betoret, V.N.; Cortés, R.M. Evolution of probiotic content and color of apples impregnated with lactic acid bacteria. Vitae 2009, 16, 297–303. [Google Scholar] [CrossRef]
- Kourkoutas, Y.; Xolias, V.; Kallis, M.; Bezirtzoglou, E.; Kanellaki, M. Lactobacillus casei cell immobilization on fruit pieces for probiotic additive, fermented milk and lactic acid production. Process Biochem. 2005, 40, 411–416. [Google Scholar] [CrossRef]
- Alegre, I.; Viñas, I.; Usall, J.; Anguera, M.; Abadias, M. Microbiological and physicochemical quality of fresh-cut apple enriched with the probiotic strain Lactobacillus rhamnosus GG. Food Microbiol. 2011, 28, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.S.; Rojas-Graü, M.A.; Rodríguez, F.J.; Ramírez, J.; Carmona, A.; Martin-Belloso, O. Alginate- and gellan-based edible films for probiotic coatings on fresh-cut fruits. J. Food Sci. 2007, 72, E190–E196. [Google Scholar] [CrossRef] [PubMed]
- Moayednia, N.; Ehsani, M.R.; Emamdjomeh, Z.; Mazaheri Asadi, M.; Mizani, M.; Mazaheri, A.F. Effect of Refrigeration on Viability of Immobilized Probiotic Bacteria in Alginate Coat of Strawberry. IDOSI publication. World Appl. Sci. J. 2010, 10, 472–476. [Google Scholar]
- Tsen, J.; Lin, Y.; An-Erl King, V. Fermentation of banana media by using κ-carrageenan immobilized Lactobacillus acidophilus. Int. J. Food Microbiol. 2004, 91, 215–220. [Google Scholar] [CrossRef]
- Tsen, J.; Lin, Y.; Huang, H.; King, V.A. Studies on the fermentation of tomato juice by using carrageenan immobilized Lactobacillus acidophilus. J. Food Process. Preserv. 2008, 32, 178–189. [Google Scholar] [CrossRef]
- Ding, W.K.; Shah, N.P. Survival of free and microencapsulated probiotic bacteria in orange and apple juices. Int. Food Res. J. 2008, 15, 219–232. [Google Scholar]
- King, V.A.; Huang, H.; Tsen, J. Fermentation of tomato juice by cell immobilized Lactobacillus acidophilus. Mid-Taiwan J. Med. 2007, 12, 1–7. [Google Scholar]
- Tsen, J.; Lin, Y.; King, V.A. Banana puree fermentation by Lactobacillus acidophilus immunobilized in Ca-alginate. J. Gen. Appl. Microbiol. 2003, 49, 357–361. [Google Scholar] [CrossRef] [PubMed]
- Marteau, P.; Fergus, S. Basic aspects and pharmacology of probiotics: An overview of pharmacokinetics, mechanisms of action and side-effects. Best Pract. Res. Clin. Gastroenterol. 2003, 17, 725–740. [Google Scholar] [CrossRef]
Probiotic | Immunomodulatory Effect | Reference |
---|---|---|
Lactobacillus gasseri | Modulation of intestinal epithelial cell proliferation and apoptosis | Di Luccia et al., 2022 [105] |
Lactobacillus rhamnosus | Enhances phagocytic capacity | Sheih et al., 2001 [106] |
Bifidobacterium lactis | Enhances phagocytic capacity | Maneerat et al., 2013 [107] |
Bifidobacterium breve | enhances B cell proliferation with increased IgA | Rigo-Adrover et al., 2016 [108] |
Streptococcus thermophilus | Stimulation of cytokine production in clonal macrophage and T-cell models | Dargahi et al., 2016 [109] |
Lactobacillus acidophilus | Stimulation of cytokine production in clonal macrophage and T-cell models | Lee et al., 2016 [110] |
Lactobacillus casei | Modulation of IgG secretory cells | Escamilla et al., 2012 [111] |
Food Type | Food Matrix | Probiotic Microorganism | Growth Level | Reference |
---|---|---|---|---|
Fruit based | Apple juice, apple soaked in apple juice, apple soaked in dried apple juice | L. casei spp. rhamnosus | 1.9 × 108 CFU/mL 4.5 × 105 CFU/g 1.8 × 108 CFU/g | Betoret et al. (2003) [116] |
Homogenized banana pulp | L. acidophilus CCRC 10695b free cells and cells immobilized on κ-beads carrageenan and Ca-alginate | 8698–9716 log CFU/mL | Tsen et al. (2009) [117] | |
noni juice | Lactobacillus casei and Lactobacillus plantarum and Bifidobacterium longum | close to 109 CFU/mL | Wang et al. (2009) [118] | |
Granada juice | L. paracasei, L. acidophilus, L. delbruekii and L. plantarum | 2.9–9 × 108, 3.07–9 × 108, 3.6–9 × 108 and 3.9–9 × 108 CFU/mL respectively | Mousavi et al. (2011) [119] | |
Melon juice | L. casei B-442 | 8.93 log CFU/mL (20 h fermentation) 8.3 log CFU/mL at end of 42 days of storage | Vidal Fonteles et al. (2011) [120] | |
Vegetable based | Juice for drinking | L. acidophilus LA 39 L. casei A4, L. delbrueckii D7, L. plantarum C3 | 1.0–9.0 × 109 CFU/mL after 72 h of fermentation | Yoon et al. (2004) [121] |
Red beet juice | L. acidophilus LA 39, L. casei A4, L. delbrueckii D7, L. plantarum C3 | 9.2 × 108–27.8 × 108 CFU/mL | Yoon et al. (2005) [122] | |
Peanut milk | B. pseudocatenulatum G4 | 7.12–8.39 log CFU/mL | Mustafa et al. (2009) [123] | |
Cabbage juice | Lactobacillus casei A4, Lactobacillus debrueckii D7, and Lactobacillus plantarum C3 | 17.5 ± 7.05 × 108 72 h | Yoon et al. (2006) [124] | |
Carrot juice with fructooligosaccharides | Lactobacillus delbrueckii subsp. bulgaricus (classified as DSM 20081 and ATCC 11842) | 5.0–5.2 × 109 CFU/mL | Nazzaro et al. (2008) [125] | |
Lactobacillus rhamnosus (DSM 20711) | 4.8–5.2 × 109 CFU/mL | |||
Other grains and cereals | Nonfermented soy frozen dessert | Lactobacillus acidophilus MJLA1, L. rhamnosus 100-C and Bifidobacterium lactis BDBB2 L. paracaseissp. paracasei Lp-01 and B. lactis Bb-12 Saccharomyces boulardii 74012 | >107 CFU/g after 28 weeks −20 °C | Heenan et al. (2004) [126] |
Soy milk | L. delbrueckiissp. bulgaricus Lb1466 | 7.88 log CFU/mL | Donkor et al. (2007) [127] | |
S. thermophilus St1342 | 8.24 log CFU/mL | |||
L. acidophilus L10 | 7.37 log CFU/mL | |||
L. acidophilus La4962 | 8.81 log CFU/mL | |||
B. lactis B94 | 8.44 log CFU/mL | |||
B. longum Bl536 | 9.54 log CFU/mL | |||
L. casei L26 | 9.13 log CFU/mL | |||
L. casei Lc279 | 8.88 log CFU/mL | |||
Soy milk supplemented fructooligosaccharides (FOS), inulin, mannitol, maltodextrin and pectin | Lactobacillussp. FTDC 2113, Lactobacillus acidophilus FTDC 8033, Lactobacillus Acidophilus ATCC 4356, Lactobacillus casei ATCC 393, Bifidobacterium FTDC 8943 and Bifidobacterium longum FTDC 8643 | All strains showed viability exceeding 7 log CFU/mL after 24 h. | Yeo and Liong, (2010) [128] | |
Soy milk with strawberry puree | L. lactis ATCC11545 and L. lactis LL3. | After fermentation and for 3 weeks at 6 °C the counts were greater than 8 log CFU/mL | Beasley et al. (2003) [129] | |
Cereal pudding (corn and rice flour) | Lactobacillus acidophilus La5 and 1748, Bifidobacterium animalis Bb12, and Lactobacillus rhamnosus GG | highest growth of L. rhamnosus GG 8 log CFU/g, in 12 noon | Helland et al. (2005) [130] | |
Rice enzymatically treated with saccharolytic enzymes and formulated with 3% casein, 3% soybean oil and 0.4% calcium lactate, pectin and strawberry | Lactobacillus acidophilus and L. casei subsp. Rhamnosus | 7.6 × 107 CFU/g. | WoonyaratanakoRnkit and Wongkhalaung (2000) [131] | |
Drink based on oat flour (5.5%); saccharose (1.5%); combination aspartame, sodium cycle, and saccharin | Lactobacillus plantarum B28 | 7.5 × 1010 CFU/mL 6–8 h | Angelov et al. (2006) [132] | |
Dilutions of commercial oat flours Adavena® M40 (M40 product) and Adavena® G40 (G40 product) | Lactobacillus reuteri ATCC 55730, Lactobacillus acidophilus DSM 20079 and Bifidobacterium bifidum DSM 20456 | L. reuteri ATCC 55730 maintained the highest feasibility (108 CFU/mL) after 30 days at 6 °C | Martensson et al. (2002) [133] | |
Drink based on malt | Lactobacillus reuteri, | 8.41 log CFU/mL. 30 h | Kedia et al. (2007) [134] | |
Soy milk supplemented with group vitamins b | Lactobacillus acidophilus ATCC 314, L. acidophilus FTDC 8833, L. acidophilus FTDC 8633 Y and L. gasseri FTDC 8131 | Greater 7 log CFU/mL | Ewe et al. (2010) [135] |
Incorporation Method | Probiotic Strain | Matrix Medium | Reference |
---|---|---|---|
Surface adhesion via fermentation | L. plantarum (ITM21B) L. paracasei (IMPC2.1) | Artichoke | Valerio et al. (2006) [136] |
L. plantarum strain (L4), L. mesenteroides (LMG 7954) | Cabbage (fermented cabbage) | Beganovic et al. (2011) [137] | |
L. paracasei (IMPC2.1) | Table olives | Lavermicocca et al. (2005) [138] | |
Vacuum impregnation | S. cerevisiae (CECT 1347) L. casei spp. rhamnosus (ECT 245) | Apple | Betoret et al. (2003) [116] |
L. rhamnosus (CECT 275) | Puente et al. (2009) [139] | ||
Immersion of matrix in solution with microorganisms and incubation | L. casei | Apple and quince | Kourkoutas et al. (2005) [140] |
L. rhamnosus (GG) | Apple | Alegre et al. (2011) [141] | |
B. lactis (Bb-12) | Apple/papaya | Tapia et al. (2007) [142] | |
Coatings based on alginates and gellan (edible films) | L. acidophilus (La-5) B. lactis (Bb-12) | Strawberry | Moayednia et al. (2010) [143] |
Incorporation as immobilized cells | L. acidophilus (BCRC 10695) | Apple puree | Tsen et al. (2004) [144] |
Tomato juice | Tsen et al. (2008) [145] | ||
L. rhamnosus, B. longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis (Bi-04, Bi-07) | Orange and apple juice | Ding and Shah, (2008) [146] | |
L. acidophilus (BCRC 10695) | Tomato juice | King et al. (2007) [147] | |
Banana’s mashed | Tsen et al. (2003) [148] | ||
Fermentation | L. acidophilus (LA 39), L. plantarum (C3), L. delbrueckii (D7), L. casei strain (A4) | Red beet juice | Yoon et al. (2005) [122] |
L. delbrueckii (DSM 20081), L. rhamnosus (DSM20711) | Carrot juice | Nazzaro et al. (2008) [125] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleman, R.S.; Yadav, A. Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Appl. Microbiol. 2024, 4, 47-69. https://doi.org/10.3390/applmicrobiol4010004
Aleman RS, Yadav A. Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Applied Microbiology. 2024; 4(1):47-69. https://doi.org/10.3390/applmicrobiol4010004
Chicago/Turabian StyleAleman, Ricardo S., and Ajitesh Yadav. 2024. "Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods" Applied Microbiology 4, no. 1: 47-69. https://doi.org/10.3390/applmicrobiol4010004
APA StyleAleman, R. S., & Yadav, A. (2024). Systematic Review of Probiotics and Their Potential for Developing Functional Nondairy Foods. Applied Microbiology, 4(1), 47-69. https://doi.org/10.3390/applmicrobiol4010004