Unraveling Microbial Endosymbiosis Dynamics in Plant-Parasitic Nematodes with a Genome Skimming Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nematode Populations and Sampling
2.2. DNA Extraction, Library Preparation, and Genome Sequencing
2.3. Metagenomic Assembly and Blob Plot Generation
2.4. Screening Metagenomic Assemblies for Bacterial Endosymbionts
2.5. Targeted Blasting and Endosymbiont Genome Isolation
- -
- “No evidence” = no contigs in the assembly matched the target endosymbiont.
- -
- “Weak evidence” = some contigs in the assembly matched the target endosymbiont, the total assembly size was >10%, but <65% of expected genome size and the missing BUSCO percentage was >25%.
- -
- “Strong evidence” = contigs in the assembly matched the target endosymbiont, with a total assembly size > 65% of expected genome size; the missing BUSCO percentage was <25%.
2.6. Genomic Analyses of Bacterial Endosymbionts
3. Results
3.1. Metagenomic Assembly Statistics
3.2. Detection of Bacterial Endosymbionts
3.3. Endosymbiont Assembly Isolation and Assessment—Wolbachia
3.4. Endosymbiont Assembly Isolation and Assessment—Cardinium
3.5. Genomic Analyses of Bacterial Endosymbionts
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Denver, D.R.; Brown, A.M.V.; Howe, D.K.; Peetz, A.B.; Zasada, I.A. Genome skimming: A rapid approach to gaining diverse biological insights into multicellular pathogens. PLoS Pathog. 2016, 12, e1005713. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Jones, M.; Koutsovoulos, G.; Clarke, M.; Blaxter, M. Blobology: Exploring raw genome data for contaminants, symbionts, and parasites using taxon-annotated GC-coverage plots. Front. Genet. 2013, 4, 237. [Google Scholar] [CrossRef] [PubMed]
- Abad, P.; Gouzy, J.; Aury, J.M.; Castagnone-Sereno, P.; Danchin, E.G.J.; Deleury, E.; Perfus-Barbeoch, L.; Anthouard, V.; Artiguenave, F.; Blok, V.C.; et al. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008, 26, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Bird, D.M.; Kaloshian, I. Are roots special? Nematodes have their say. Physiol. Mol. Plant Pathol. 2003, 62, 115–123. [Google Scholar] [CrossRef]
- Decraemer, W.; Hunt, D.J. Structure and classification. In Plant Nematology; Perry, R.N., Moens, M., Eds.; CAB International: Wallingford, UK, 2006; pp. 3–32. [Google Scholar]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-López, R.; Palomares-Rius, J.E.; Wesemael, W.M.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef]
- Chitwood, D.J. Research on plant-parasitic nematode biology conducted by the United States Department of Agriculture—Agricultural Research Service. Pest Manag. Sci. 2003, 59, 748–753. [Google Scholar] [CrossRef]
- Zasada, I.A.; Halbrendt, J.M.; Kokalis-burelle, N.; LaMondia, J.; Mckenry, M.V.; Noling, J.W. Managing nematodes without methyl bromide. Annu. Rev. Phytopathol. 2010, 48, 311–328. [Google Scholar] [CrossRef]
- Atibalentja, N.; Noel, G.R. Bacterial endosymbionts of plant-parasitic nematodes. Symbiosis 2008, 46, 87–93. [Google Scholar]
- Bekal, S.; Borneman, J.; Springer, M.S.; Giblin-Davis, R.M.; Becker, J.O. Phenotypic and molecular analysis of a Pasteuria strain parasitic to the sting nematode 1. J. Nematol. 2001, 33, 110–115. [Google Scholar]
- Sayre, R.M.; Starr, M.P. Pasteuria penetrans (ex Thome, 1940) nom. rev., comb, n., sp. n., a mycelial and endospore-forming bacterium parasitic in plant-parasitic nematodes. Proc. Helm. Soc. Wash. 1985, 52, 149–165. [Google Scholar]
- Bird, D.M.C.K.; Opperman, C.H.; Davies, K.G. Interactions between bacteria and plant-parasitic nematodes: Now and then. Int. J. Parasitol. 2003, 33, 1269–1276. [Google Scholar] [CrossRef] [PubMed]
- Atibalentja, N.; Noel, G.R.; Domier, L.L. Phylogenetic position of the North American isolate of Pasteuria that parasitizes the soybean cyst nematode, Heterodera glycines, as inferred from 16S rDNA sequence analysis. J. Syst. Evol. Biol. 2000, 50, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Gives, P.M.; Davies, K.G.; Morgan, M.; Behnke, J.M. Attachment tests of Pasteuria panetrans to the cuticle of plant and animal parasitic nematodes, free living nematodes and srf mutants of Caenorhabditis elegans. J. Helminthol. 1999, 73, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.V. Endosymbionts of plant-parasitic nematodes. Annu. Rev. Phytopathol. 2018, 56, 225–242. [Google Scholar] [CrossRef]
- Vandekerckhove, T.T.M.; Coomans, A.; Cornelis, K.; Baert, P.; Gillis, M. Use of the Verrucomicrobia-specific probe EUB338-III and fluorescent in situ hybridization for detection of “Candidatus Xiphinematobacter” cells in nematode hosts. Appl. Environ. Microbiol. 2002, 68, 3121–3125. [Google Scholar] [CrossRef] [PubMed]
- Brown, A.M.V.; Howe, D.K.; Wasala, S.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Comparative genomics of a plant-parasitic nematode endosymbiont suggest a role in nutritional symbiosis. Genome Biol. Evol. 2015, 7, 2727–2746. [Google Scholar] [CrossRef]
- Walsh, J.A.; Shepherd, A.M.; Lee, D.L. The distribution and effect of intracellular Rickettsia-like microorganisms infecting second-stage juveniles of the potato cyst-nematode Globodera rostochiensis. J. Zool. Lond. 1983, 199, 395–419. [Google Scholar] [CrossRef]
- Endo, B.Y. The ultrastructure and distribution of an intracellular bacterium-like microorganism in tissue of larvae of the soybean cyst nematode Heterodera glycines. J. Ultrastruct. Res. 1979, 67, 1–14. [Google Scholar] [CrossRef]
- Brown, A.M.V.; Wasala, S.K.; Howe, D.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Comparative genomics of Wolbachia–Cardinium dual endosymbiosis in a plant-parasitic nematode. Front. Microbiol. 2018, 9, 2482. [Google Scholar] [CrossRef]
- Wasala, S.K.; Brown, A.M.V.; Kang, J.; Howe, D.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Variable abundance and distribution of Wolbachia and Cardinium endosymbionts in plant-parasitic nematode field populations. Front. Microbiol. 2019, 10, 964. [Google Scholar] [CrossRef]
- Haegeman, A.; Vanholme, B.; Jacob, J.; Vandekerckhove, T.T.M.; Claeys, M.; Borgonie, G.; Gheysen, G. An endosymbiotic bacterium in a plant-parasitic nematode: Member of a new Wolbachia supergroup. Int. J. Parasitol. 2009, 39, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.; Mediannikov, O.; Raoult, D.; Greub, G. Endosymbiotic bacteria associated with nematodes, ticks and amoebae. Immunol. Med. Microbiol. 2012, 64, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Kajtoch, L.; Kolasa, M.; Kubisz, D.; Gutows, J.M.; Scibior, R.; Mazur, M.A.; Holecová, M. Using host species traits to understand the Wolbachia infection distribution across terrestrial beetles. Sci. Rep. 2019, 9, 847. [Google Scholar] [CrossRef] [PubMed]
- Flores, H.A.; O’Neill, S.L. Controlling vector-borne diseases by releasing modified mosquitoes. Nat. Rev. Microbiol. 2018, 16, 508–518. [Google Scholar] [CrossRef]
- Turner, J.D.; Sharma, R.; Al Jayoussi, G.; Tyrer, H.E.; Gamble, J.; Hayward, L.; Priestley, R.S.; Murphy, E.A.; Davies, J.; Waterhouse, D.; et al. Albendazole and antibiotics synergize to deliver short-course anti-Wolbachia curative treatments in preclinical models of filariasis. Proc. Natl. Acad. Sci. USA 2017, 114, E9712–E9721. [Google Scholar] [CrossRef] [PubMed]
- Bandi, C.; Anderson, T.J.C.; Genchi, C.; Blaxter, M.L.; Celoria, V. Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. 1998, 265, 2407–2413. [Google Scholar] [CrossRef]
- Hise, A.G.; Gillette-Ferguson, I.; Pearlman, E. Microreview The role of endosymbiotic Wolbachia bacteria in filarial disease. Cell. Microbiol. 2004, 6, 97–104. [Google Scholar] [CrossRef]
- Konecka, E.; Olszanowski, Z. A screen of maternally inherited microbial endosymbionts in oribatid mites (Acari: Oribatida). Microbiology 2015, 161, 1561–1571. [Google Scholar] [CrossRef]
- Simoes, P.M.; Mialdea, G.; Reiss, M.; Sagot, M.-F.; Charlat, S. Wolbachia detection: An assessment of standard PCR Protocols. Mol. Ecol. Resour. 2011, 11, 567–572. [Google Scholar] [CrossRef]
- Gigot, J.; Walters, T.W.; Zasada, I.A. Impact and occurrence of Phytophthora rubi and Pratylenchus penetrans in commercial red raspberry (Rubus ideaus) fields in Northwestern Washington. Int. J. Fruit Sci. 2013, 13, 357–372. [Google Scholar] [CrossRef]
- Beknazarova, M.; Millsteed, S.; Robertson, G.; Whiley, H.; Ross, K. Validation of DESS as a DNA preservation method for the detection of Strongyloides spp. in Canine Feces. Int. J. Environ. Res. Public Health 2017, 14, 624. [Google Scholar] [CrossRef] [PubMed]
- Yoder, M.; De Ley, I.T.A.; King, I.W.K.; Mundo-Ocampo, M.; Mann, J.; Blaxter, M.; Poiras, L.; De Ley, P. DESS: A versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 2006, 8, 367–376. [Google Scholar] [CrossRef]
- Nurk, S.; Meleshko, D.; Korobeynikov, A.; Pevzner, P.A. metaSPAdes: A new versatile metagenomic assembler. Genome Res. 2017, 27, 824–834. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Gurevich, A.; Saveliev, V.; Vyahhi, N.; Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics 2013, 29, 1072–1075. [Google Scholar] [CrossRef] [PubMed]
- Simão, F.A.; Waterhouse, R.M.; Ioannidis, P.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 2015, 31, 3210–3212. [Google Scholar] [CrossRef] [PubMed]
- Darling, A.E.; Mau, B.; Perna, N.T. Progressive Mauve: Multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 2010, 5, e11147. [Google Scholar] [CrossRef]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef]
- Kumar, S.; Koutsovoulos, G.; Kaur, G.; Blaxter, M. Toward 959 nematode genomes Landes Bioscience. Worm 2012, 1, 42–50. [Google Scholar] [CrossRef]
- Brown, A.M.V.; Wasala, S.K.; Howe, D.K.; Peetz, A.B.; Zasada, I.A.; Denver, D.R. Genomic evidence for plant-parasitic nematodes as the earliest Wolbachia hosts. Sci. Rep. 2016, 6, 34955. [Google Scholar] [CrossRef]
- Holterman, M.; Karssen, G.; Van Den Elsen, S.; Van Megen, H.; Bakker, J.; Helder, J. Small subunit rDNA-based phylogeny of the Tylenchida sheds light on relationships among some high-impact plant-parasitic nematodes and the evolution of plant feeding. Nematology 2009, 99, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Hughes, G.L.; Rasgon, J.L. Transinfection: A method to investigate Wolbachia-host interactions and control arthropod-borne disease. Insect Mol. Biol. 2014, 23, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Li, S.J.; Ahmed, M.; Lv, N.; Shi, P.Q.; Wang, X.M.; Huang, J.L.; Qiu, B.L. Plantmediated horizontal transmission of Wolbachia between whiteflies. ISME J. 2017, 11, 1019–1028. [Google Scholar] [CrossRef]
- Koutsovoulos, G.; Makepeace, B.; Tanya, V.N.; Blaxter, M. Palaeosymbiosis revealed by genomic fossils of Wolbachia in a Strongyloidean nematode. PLoS Genet. 2014, 10, e1004397. [Google Scholar] [CrossRef] [PubMed]
- Diouf, M.; Miambi, E.; Mora, P.; Frechault, S.; Robert, A.; Rouland-Lefèvre, C.; Hervé, V. Variations in the relative abundance of Wolbachia in the gut of Nasutitermes arborum across life stages and castes. FEMS Microbiol. Lett. 2018, 365, fny046. [Google Scholar] [CrossRef] [PubMed]
- Fenn, K.; Blaxter, M. Quantification of Wolbachia bacteria in Brugia malayi through the nematode lifecycle. Mol. Biochem. Parasitol. 2004, 137, 361–364. [Google Scholar] [CrossRef] [PubMed]
Nematode Species | Location(s) | Source(s) | Number of Samples |
---|---|---|---|
Bursaphelenchus cocophilus | Costa Rica | Juveniles from field | 1 |
Globodera. pallida | Idaho | Eggs from field | 7 |
Heterodera glycines | Alabama, Missouri | Eggs from culture | 4 |
Meloidogyne incognita | Alabama, California, New York, Missouri | Eggs from culture | 4 |
Nacobbus aberrans | Chile | Juveniles from field | 1 |
Rotylenchulus reniformis | Alabama, Florida, Mississippi, Hawaii | Eggs from culture, Juveniles from field | 5 |
Radopholus similis | Florida, Colombia, Costa Rica, Uganda, Nigeria | Adults and juveniles from field | 7 |
Pratylenchus penetrans | Costa Rica, Oregon, Chile | Adults and juveniles from field | 7 |
Pratylenchus coffeae | Costa Rica | Adults and juveniles from field | 3 |
Pratylenchus neglectus | Montana, Oregon, Chile | Adults and juveniles from greenhouse culture, and field | 9 |
Pratylenchus thornei | Oregon, Chile | Adults and juveniles from field | 2 |
Pratylenchus vulnus | California, Georgia | Adults and juveniles from field | 2 |
Endosymbiont | Nematode Species | Population and Location | Assembly Size (Total Length) (Mb) | Contigs | N50 (bp) | GC % |
---|---|---|---|---|---|---|
Wolbachia | Radopholus similis | Rs_5 Uganda | 0.93 (927,058 bp) | 62 | 29,283 | 32.98 |
Rs_14 Colombia | 0.96 (956,972 bp) | 99 | 22,841 | 32.76 | ||
Rs_N1 Nigeria | 0.96 (957,370 bp) | 68 | 34,063 | 33.27 | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 0.97 (971,259 bp) | 606 | 2460 | 32.30 | |
* Pp_GH2 Oregon | 1.03 (1,030,112 bp) | 90 | 147,283 | 32.51 | ||
Cardinium | Heterodera glycines | Hg_Al Alabama | 1.11 (1,106,435 bp) | 81 | 40,823 | 38.15 |
Hg_Aud Missouri | 1.48 (1,476,097 bp) | 56 | 1,182,516 | 39.66 | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 0.78 (775,416 bp) | 739 | 1152 | 35.98 | |
* Pp_GH2 Oregon | 0.88 (880,451 bp) | 621 | 1542 | 34.59 |
Endo-Symbiont | Host | Population | Complete BUSCOs | Complete and Single-Copy BUSCOs | Complete and Duplicated BUSCOs | Fragmented BUSCOs | Missing BUSCOs |
---|---|---|---|---|---|---|---|
Wolbachia | Radopholus similis | Rs_5 Uganda | 100 (80.6%) | 100 (80.6%) | 0 | 8 (6.5%) | 16 (12.9%) |
Rs_14 Colombia | 101 (81.5%) | 101 (81.5%) | 0 | 7 (5.6%) | 16 (12.9%) | ||
Rs_N1 Nigeria | 101 (81.5%) | 101 (81.5%) | 0 | 7 (5.6%) | 16 (12.9%) | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 63 (50.8%) | 63 (50.8%) | 0 | 36 (29%) | 25 (20.2%) | |
* Pp_GH2 Oregon | 103 (83.1%) | 102 (82.3%) | 1 (0.8%) | 5 (4%) | 16 (12.9%) | ||
Pp_Wol_Ref | 104 (83.9%) | 104 (83.9%) | 0 | 5 (4%) | 15 (12.1%) | ||
Cardinium | Heterodera glycines | Hg_Al Alabama | 89 (71.8%) | 89 (71.8%) | 0 | 5 (4%) | 30 (24.2%) |
Hg_Aud Missouri | 72 (58.1%) | 71 (57.3%) | 1 (0.8%) | 11 (8.9%) | 41 (33.0%) | ||
Hg_Car_Ref | 88 (71.0%) | 88 (71.0%) | 0 | 5 (4.0%) | 31 (25.0%) | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 45 (36.3%) | 45 (36.3%) | 0 | 31 (25%) | 48 (38.7%) | |
* Pp_GH2 Oregon | 43 (34.7%) | 43 (34.7%) | 0 | 28 (22.6%) | 53 (42.7%) | ||
Pp_Car_Ref | 88 (70.9%) | 83 (66.9%) | 5 (4%) | 4 (3.2%) | 32 (25.9%) |
Endo-Symbiont | Host | Population | Complete BUSCOs | Complete and Single-Copy BUSCOs | Complete and Duplicated BUSCOs | Fragmented BUSCOs | Missing BUSCOs |
---|---|---|---|---|---|---|---|
Wolbachia | Radopholus similis | Rs_5 Uganda | 314 (72.7%) | 314 (72.7%) | 0 | 10 (2.3%) | 108 (25%) |
Rs_14 Colombia | 314 (72.7%) | 312 (72.2%) | 2 (0.5%) | 12 (2.8%) | 106 (24.5%) | ||
Rs_N1 Nigeria | 316 (73.1%) | 316 (73.1%) | 0 | 10 (2.3%) | 106 (24.5%) | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 232 (53.7%) | 232 (53.7%) | 0 | 68 (15.7%) | 132 (30.6%) | |
* Pp_GH2 Oregon | 315 (72.9%) | 314 (72.7%) | 1 (0.2%) | 11 (2.5%) | 106 (24.6%) | ||
Pp_Wol_Ref | 335 (77.5%) | 334 (77.3%) | 1 (0.2%) | 8 (1.9%) | 89 (20.6%) | ||
Cardinium | Heterodera glycines | Hg_Al Alabama | 298 (38.8%) | 297 (38.7%) | 1 (0.1%) | 8 (1%) | 462 (60.2%) |
Hg_Aud Missouri | 291 (37.9%) | 289 (37.6%) | 2 (0.3%) | 12 (1.6%) | 465 (60.5%) | ||
Hg_Car_Ref | 297 (38.6%) | 296 (38.5%) | 1 (0.1%) | 8 (1%) | 463 (60.4%) | ||
Pratylenchus penetrans | Pp_Cr Costa Rica | 109 (14.2%) | 109 (14.2%) | 0 | 49 (6.4%) | 610 (79.4%) | |
* Pp_GH2 Oregon | 57 (7.4%) | 56 (7.3%) | 1 (0.1%) | 36 (4.7%) | 675 (87.9%) | ||
Pp_Car_Ref | 291 (37.9%) | 268 (34.9%) | 23 (3%) | 12 (1.6%) | 465 (60.5%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasala, S.K.; Hesse, C.; Wram, C.L.; Howe, D.K.; Zasada, I.A.; Denver, D.R. Unraveling Microbial Endosymbiosis Dynamics in Plant-Parasitic Nematodes with a Genome Skimming Strategy. Appl. Microbiol. 2023, 3, 1229-1248. https://doi.org/10.3390/applmicrobiol3040085
Wasala SK, Hesse C, Wram CL, Howe DK, Zasada IA, Denver DR. Unraveling Microbial Endosymbiosis Dynamics in Plant-Parasitic Nematodes with a Genome Skimming Strategy. Applied Microbiology. 2023; 3(4):1229-1248. https://doi.org/10.3390/applmicrobiol3040085
Chicago/Turabian StyleWasala, Sulochana K., Cedar Hesse, Catherine L. Wram, Dana K. Howe, Inga A. Zasada, and Dee R. Denver. 2023. "Unraveling Microbial Endosymbiosis Dynamics in Plant-Parasitic Nematodes with a Genome Skimming Strategy" Applied Microbiology 3, no. 4: 1229-1248. https://doi.org/10.3390/applmicrobiol3040085
APA StyleWasala, S. K., Hesse, C., Wram, C. L., Howe, D. K., Zasada, I. A., & Denver, D. R. (2023). Unraveling Microbial Endosymbiosis Dynamics in Plant-Parasitic Nematodes with a Genome Skimming Strategy. Applied Microbiology, 3(4), 1229-1248. https://doi.org/10.3390/applmicrobiol3040085