Effects of Crop Rotation and Tillage on Winter Wheat Growth and Yield under Cold Dryland Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Details
2.2. Experimental Design and Treatments Management
2.3. Soil Moisture Content
2.4. Physiological Traits
2.5. Crop Water Requirement and Rainfall Productivity
2.6. Grain and Biological Yield
2.7. Data Analysis
3. Results and Discussion
3.1. Soil Moisture Content
3.2. Physiological Traits
3.3. Crop Water Requirement and Rainfall Productivity
3.4. Grain Weight and Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agriculture and Consumer Protection Department (FAO), Rome. 2000. Available online: http://www.fao.org/ag/ca/ (accessed on 20 March 2004).
- UNCCD. United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification; International Organization for Migration: Paris, France, 1994. [Google Scholar]
- Dehghani, M.; Salehi, S.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Ghamisi, P. Spatial Analysis of Seasonal Precipitation over Iran: Co-Variation with Climate Indices. ISPRS Int. J. Geo-Inf. 2020, 9, 73. [Google Scholar] [CrossRef] [Green Version]
- Jayaraman, S.; Dang, Y.P.; Naorem, A.; Page, K.L.; Dalal, R.C. Conservation Agriculture as a System to Enhance Ecosystem Services. Agriculture 2021, 11, 718. [Google Scholar] [CrossRef]
- Xuea, L.; Khana, S.; Suna, M.; Anwarc, S.; Rena, A.; Gaoa, Z.; Lina, W.; Xuea, J.; Yanga, Z.; Deng, Y. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. Soil Tillage Res. 2019, 191, 66–74. [Google Scholar] [CrossRef]
- Sammi Reddy, K.; Pratibha, G.; Sharma, K.L.; Srinivas, K.; Indoria, A.K.; Kundu, S.; Prasad, J.V.N.S.; Gopinath, K.A.; Singh, V.K. Conservation agriculture in dryland ecosystem: Prospects and opportunities. Indian J Agron. (5th IAC Spec. Issue) 2021, 66, S44–S56. [Google Scholar]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agriculture sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, Y.; Zhang, K.; Jeong, J.; Zeng, Z.; Zang, H. Does crop rotation yield more in China? A meta-analysis. Field Crops Res. 2020, 245, 107659. [Google Scholar] [CrossRef]
- German, R.N.; Thompson, C.E.; Benton, T.G. Relationships among multiple aspects of agriculture’s environmental impact and productivity: A meta-analysis to guide sustainable agriculture. Biol. Rev. 2017, 92, 716–738. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dai, K.; Zhang, D.; Zhang, X.; Wang, Y.; Zhao, Q.; Cai, D.; Hoogmoed, W.B.; Oenema, O. Dryland maize yields and water use efficiency in response to tillage/crop stubble and nutrient management practices in China. Field Crops Res. 2011, 120, 47–57. [Google Scholar] [CrossRef]
- Sharma, K.L.; Grace, J.K.; Srinivas, K.; Ramakrishna, Y.S.; Korwar, G.R.; Shankar, M.G.; Mandal, U.K.; Ramesh, V.; Bindu, H.V.; Madhavi, M.; et al. Influence of tillage and nutrient sources on yield sustainability and soil quality under sorghum–mungbean system in rainfed semi–arid tropics. Commun. Soil Sci. Plant Anal. 2009, 40, 579–602. [Google Scholar] [CrossRef]
- O’Leary, G.J.; Connor, D.J. Stubble retention and tillage in a semi-arid environment. 1. Soil water accumulation during fallow. Field Crops Res. 1997, 52, 209–219. [Google Scholar] [CrossRef]
- Dolan, M.S.; Clapp, C.E.; Allmaras, R.R.; Baker, J.M.; Molina, J.A.E. Soil organic carbon and nitrogen in a Minnesota soil as related to tillage, residue and nitrogen management. Soil Tillage Res. 2006, 89, 221–231. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long-term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Hemmat, A.; Eskandari, I. Dryland winter wheat response to conservation tillage in a continuous cropping system in northwestern Iran. Soil Tillage Res. 2006, 86, 99–109. [Google Scholar] [CrossRef]
- Jalal-Kamali, M.R.; Najafi-Mirak, T.; Asadi, H.; Aghaei, M. Wheat: Research and Management Strategies in Iran; Agricultural Education Publication: Tehran, Iran, 2012; p. 250. [Google Scholar]
- Monjardino, M.; Hochman, Z.; Horan, H. Yield Potential Determines Australia Wheat Growers’ Capacity to Close Yield Gaps While Mitigating Economic Risk. Agron. Sustain. Dev. 2019, 39, 49. [Google Scholar] [CrossRef]
- ASTM. Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils, D2974-07a; ASTM International: West Conshohocken, PA, USA, 2007. [Google Scholar]
- Rosolem, C.A.; Pivetta, L.A. Mechanical and biological approaches to alleviate soil compaction in tropical soils: Assessed by root growth and activity (Rb uptake) of soybean and maize grown in rotation with cover crops. Soil Use Manag. 2017, 33, 141–152. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Tian, Z.; Lu, Y.; Gao, W.; Ren, T. Structural changes of compacted soil layers in northeast china due to freezing-thawing processes. Sustainability 2020, 12, 1587. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Weil, R.R. Penetration of cover crop roots through compacted soils. Plant Soil. 2010, 331, 31–43. [Google Scholar] [CrossRef]
- Somasundaram, J.; Salikram, M.; Sinha, N.K.; Mohanty, M.; Chaudhary, R.S.; Dalal, R.C.; Mitra, N.G.; Blaise, D.; Coumar, M.V.; Hati, K.M.; et al. Conservation agriculture effects on soil properties and crop productivity in a semiarid region of India. Soil Res. 2019, 57, 187–199. [Google Scholar] [CrossRef]
- Somasundaram, J.; Sinha, N.K.; Dalal, R.C.; Lal, R.; Mohanty, M.; Naorem, A.K.; Hati, K.M.; Chaudhary, R.S.; Biswas, A.K.; Patra, A.K.; et al. No-Till Farming and Conservation Agriculture in South Asia—Issues, Challenges, Prospects and Benefits. Crit. Rev. Plant Sci. 2020, 3, 236–279. [Google Scholar] [CrossRef]
- Asghari Maidani, J.; Karimi, I.; Pourmohamed, A. The effect of different tillage and planting methods on soil moisture and yield of safflower in rotation with wheat in dry areas. Water Soil Sci. 2013, 23, 237–245. (In Persian) [Google Scholar]
- Khorsandi, H.; Ferdowsi, R.; Abdulahi, A.V. Technical and economic evaluation of tillage methods and nitrogen fertilizer consumption in dry wheat. Iran. Dryland Agric. J. 2019, 9, 108–191. (In Persian) [Google Scholar]
- Baker, J.M.; Ochsner, T.E.; Venterea, R.T.; Griffis, T.J. Tillage and soil carbon sequestration—What do we really know? Agric. Ecosyst. Environ. 2007, 118, 1–5. [Google Scholar] [CrossRef]
- Wang, X.B.; Cai, D.X.; Hoogmoed, W.B.; Oenema, O.; Perdok, U.D. Developments in Conservation Tillage in Rainfed Regions of North China. Soil Tillage Res. 2007, 93, 239–250. [Google Scholar] [CrossRef]
- Meena, R.K.; Vashisth, A.; Das, T.K.; Meena, S.L. Effect of tillage practices on productivity of wheat (Triticum aestivum L.). Ann. Agric. Sci. 2018, 39, 12–19. [Google Scholar]
- Fuentes, M.; Govaerts, B.; De Leon, F.; Hidalgo, C.; Dendooven, L.; Sayre, K.D.; Etchevers, J.; Etchevers, D. Fourteen years of applying zero and conventional tillage, crop rotation, and residue management systems and their effect on physical and chemical soil quality. Eur. J. Agron. 2009, 30, 228–237. [Google Scholar] [CrossRef]
- Tracy, S.R.; Black, C.R.; Roberts, J.A.; Mooney, S.J. Soil compaction: A review of past and present techniques for investigating effects on root growth. J. Sci. Food Agric. 2011, 91, 1528–1537. [Google Scholar] [CrossRef]
- Bojarszczuk, J. The Influence of Soil Tillage System on Changes in Gas Exchange Parameters of Pisum sativum L. Agronomy 2021, 11, 1000. [Google Scholar] [CrossRef]
- Zibilske, L.M.; Bradford, J.M.; Smart, J.R. Conservation Tillage Induced Changes in Organic Carbon, Total Nitrogen and Available Phosphorus in a Semi-Arid Alkaline Subtropical Soil. Soil Tillage Res. 2002, 66, 153–163. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, Y.; Yao, F.; Wang, P.; Guo, W.; Li, L.; Yang, L. Advances in estimation methods of vegetation water content based on optical remote sensing techniques. Sci. China Technol. Sci. 2010, 53, 1159–1167. [Google Scholar] [CrossRef]
- Pagnani, G.; Angelica, G.; D’Egidio, S.; Visioli, G.; Stagnari, F.; Pisante, M. Effect of Soil Tillage and Crop Sequence on Grain Yield and Quality of Durum Wheat in Mediterranean Areas. Agronomy 2019, 9, 488. [Google Scholar] [CrossRef] [Green Version]
- El-Mejahed, K.; Sander, D.H. Rotation, tillage, and fertilizer effects on Wheat-based rain-fed crop rotation in semiarid Morocco. Proceeding of the third European conference of grain legumes. In Opportunities for High-Quality, Healthy and Added-Value Crops to Meet European Demands; AEP, European Association for Grain Legume Research: Valladolid, Spain, 1998. [Google Scholar]
- Hobbs, P.R.; Sayre, K.; Gupta, R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 543–555. [Google Scholar] [CrossRef] [PubMed]
- Gupta, R.; Gopal, R.; Jat, M.L.; Jat, R.K.; Sidhu, H.S.; Minhas, P.S.; Malik, R.K. Wheat Productivity in Indo-Gangetic Plains of India during 2010: Terminal Heat Stress and Mitigating Strategies. In Conservation Agriculture Newsletter, Getting Agriculture to Work for People and the Environment; PACA: New Delhi, India, 2010. [Google Scholar]
- Beach, H.M.; Laing, K.W.; Walle, M.V.; Martin, R.C. The Current State and Future Directions of Organic No-Till Farming with Cover Crops in Canada, with Case Study Support. Sustainability 2018, 10, 373. [Google Scholar] [CrossRef] [Green Version]
- Mousavi Fazl, M.; Barzegar, A.; Asudar, M. Effect of tillage methods on wheat root development and density, In The 9th Soil Science Congress of Iran. Soil Cons. Watershed Res. Ins. 2004, 9, 320–321. [Google Scholar]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Sys. 2022, 6, 87. [Google Scholar] [CrossRef]
Month | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | ||||
---|---|---|---|---|---|---|---|---|
P (mm) | D (°C) | P (mm) | D (°C) | P (mm) | D (°C) | P (mm) | D (°C) | |
October | 0 | 11.92 | 0.2 | 11.43 | 9.7 | 13.76 | 22 | 13.47 |
November | 27 | 6.62 | 36 | 8.55 | 47 | 5.57 | 4 | 4.44 |
December | 61 | −2.94 | 48 | −0.83 | 91 | 2.39 | 28 | 1.02 |
January | 19 | −7.14 | 29 | 1.4 | 41 | −2.51 | 68 | −3.24 |
February | 21 | −6.76 | 85 | −0.99 | 86 | −1.26 | 25 | −6.19 |
March | 22 | −1.34 | 80 | 4.34 | 56 | 0.27 | 59 | 2.74 |
April | 75 | 6.05 | 55 | 8.66 | 116 | 5.22 | 80 | 5.08 |
May | 35 | 13.12 | 67 | 10.41 | 43 | 9.62 | 42 | 11.40 |
June | 2 | 17.80 | 23 | 16.78 | 4.2 | 18.14 | 0 | 18.35 |
July | 1 | 23.67 | 0 | 24.62 | 0 | 22.70 | 13 | 21.63 |
August | 0 | 24.70 | 0 | 24.83 | 0.5 | 23.66 | 2 | 22.53 |
September | 0 | 21.84 | 1.8 | 20.04 | 0 | 19.23 | 3 | 19.95 |
Year | 263 | 8.96 | 425 | 10.77 | 494.4 | 9.73 | 346 | 9.26 |
Soil Depth (cm) | Soil Texture (%) | pH | K | P | TN | OC | CaCO3 | SP | ||
---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | (Mg kg−1) | (%) | ||||||
0–30 | 40 | 43 | 17 | 7.8 | 661 | 9.1 | 0.14 | 0.72 | 7.4 | 52 |
SOV | df | Soil Moisture % |
---|---|---|
Replication | 2 | 0.081 |
Rotation | 2 | 1.386 * |
E1 | 4 | 0.151 |
Tillage | 2 | 29.90 ** |
Rotation × Tillage | 4 | 0.058 ns |
E2 | 12 | 0.324 |
Genotype (G) | 1 | 0.274 ns |
Rotation × Genotype | 2 | 1.707 * |
Tillage × Genotype | 2 | 0.117 ns |
Rotation × Tillage × Genotype | 4 | 0.127 ns |
E3 | 18 | 0.301 |
SOV | Df | NDVI | E | gs | RWC | GW | GY | BY | RP | CWR |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 2 | 152 ns | 0.04 ns | 1.26 ns | 39.8 ns | 50.16 * | 3612 * | 28,725 * | 635.40 * | 27,957 * |
EY | 6 | 19.54 | 0.08 | 44.1 | 204.8 | 3.16 | 19 | 124.33 | 1.20 | 0.32 |
Rotation (R) | 2 | 18.64 ** | 0.02 * | 38.5 * | 24.15 * | 29.57 * | 781 * | 487.28 * | 46.77 * | 2.32 ns |
Y × R | 4 | 0.44 * | 0.0001 ns | 0.0001 ns | 0.0001 ns | 1.24 * | 79 * | 20.78 ns | 4.37 * | 5.03 * |
E | 12 | 0.02 | 0.0001 | 0.196 | 0.13 | 0.13 | 3 | 8.49 | 0.20 | 0.22 |
Tillage (T) | 2 | 103 ns | 1.58 * | 93.20 * | 47.31 * | 50.66 * | 225 ns | 3708 ns | 6.98 ns | 13.35 ns |
Y × T | 4 | 28.95 * | 0.03 ** | 6.86 * | 18.81 * | 4.83 * | 374 * | 3282 ** | 23.82 * | 6.91 * |
R × T | 4 | 0.22 ns | 0.0006 ns | 6.47 * | 0.54 ** | 2.35 ns | 6 ns | 67.40 * | 0.41 ns | 9.54 ns |
Y × R × T | 8 | 0.55 ns | 0.0006 ns | 0.0001 ns | 0.0001 ns | 0.93 * | 3 ns | 22.37 ns | 0.19 ns | 8.67 * |
E | 36 | 1.06 | 0.0097 | 0.64 | 0.16 | 0.31 | 3 | 18.28 | 0.25 | 0.35 |
Genotype (G) | 1 | 2.93 * | 0.0024 * | 73.16 * | 1.60 * | 20.05 * | 570 ** | 120.60 ** | 35.66 * | 582.1 ** |
Y × G | 2 | 5.68 * | 0.0001 ns | 0.0001 ns | 0.0001 ns | 1.38 * | 15 * | 1.54 ns | 1.89 * | 64.11 ** |
R × G | 2 | 0.82 * | 0.0012 * | 1.70 ** | 0.68 * | 0.72 * | 13 ** | 0.30 ns | 0.87 * | 0.24 ns |
T × G | 2 | 1.46 * | 0.0004 ns | 1.78 ** | 0.50 ** | 0.96 ** | 9 ** | 1.12 ns | 0.55 * | 0.37 ns |
Y × R × G | 4 | 0.07 ns | 0.0001 ns | 0.0001 ns | 0.0001 ns | 0.05 ns | 0.9 ns | 1.60 ns | 0.08 ns | 0.87 * |
Y × T × G | 4 | 0.03 ns | 0.0001 ns | 0.0001 ns | 0.0001 ns | 0.13 ns | 0.5 ns | 2.32 ns | 0.04 ns | 1.67 * |
R × T × G | 4 | 0.59 ns | 0.0009 * | 0.29 ns | 0.91 * | 0.40 ns | 3 ns | 17.12 * | 0.22 * | 1.74 ns |
Y × R × T × G | 8 | 0.38 * | 0.0001 ns | 0.0001 ns | 0.0001 ns | 0.65 ** | 2 ** | 2.37 ns | 0.13 ** | 1.34 * |
E | 54 | 152 | 0.0002 | 1.26 | 0.1056 | 0.23 | 0.8 | 3.23 | 0.053 | 0.30 |
Crop Rotation | Tillage | Genotype | RWC % | E (mm) | BY (kg ha−1) |
---|---|---|---|---|---|
C–W | CT | Baran | 0.53 | 0.45 | 7103.1 |
Azar2 | 0.52 | 0.44 | 7015.4 | ||
MT | Baran | 0.53 | 0.6 | 6776 | |
Azar2 | 0.54 | 0.61 | 6731.4 | ||
NT | Baran | 0.58 | 0.78 | 6630.8 | |
Azar2 | 0.58 | 0.79 | 6589.7 | ||
S–W | CT | Baran | 0.48 | 0.4 | 7049.2 |
Azar2 | 0.51 | 0.43 | 6937.4 | ||
MT | Baran | 0.51 | 0.58 | 6671 | |
Azar2 | 0.52 | 0.6 | 6678.4 | ||
NT | Baran | 0.56 | 0.76 | 6463.7 | |
Azar2 | 0.57 | 0.77 | 6420.4 | ||
V–W | CT | Baran | 0.53 | 0.45 | 7221.6 |
Azar2 | 0.55 | 0.47 | 7233.9 | ||
MT | Baran | 0.57 | 0.63 | 6791.6 | |
Azar2 | 0.56 | 0.63 | 6695 | ||
NT | Baran | 0.6 | 0.8 | 6751.1 | |
Azar2 | 0.59 | 0.79 | 6665.1 | ||
LSD 5% | 0.02 | 0.055 | 89.89 |
Year | Tillage | gs (mmol m−2S−1) | E (mm) | BY (Kg ha−1) |
---|---|---|---|---|
2017–2018 | CT | 13.74 | 0.4656 | 8427.9 |
MT | 14.55 | 0.5961 | 7351.3 | |
NT | 15.67 | 0.7622 | 7126.1 | |
2018–2019 | CT | 13.66 | 0.5066 | 6736.2 |
MT | 14.47 | 0.6371 | 6498.6 | |
NT | 15.59 | 0.8032 | 6228.8 | |
2019–2020 | CT | 12.77 | 0.3666 | 6116.2 |
MT | 15.06 | 0.6032 | 6321.9 | |
NT | 16.78 | 0.8002 | 6405.5 | |
LSD 5% | 3.13 | 0.13 | 172.2 |
Year | Crop Rotation | Tillage | CWR (mm) | RP (Kg m−3) | NDVI | |||
---|---|---|---|---|---|---|---|---|
Baran | Azar2 | Baran | Azar2 | Baran | Azar2 | |||
2017–2018 | C–W | CT | 241.6 | 240.4 | 0.52 | 0.49 | 0.54 | 0.52 |
MT | 241.2 | 239.2 | 0.47 | 0.44 | 0.56 | 0.55 | ||
NT | 236.1 | 233.2 | 0.44 | 0.42 | 0.57 | 0.52 | ||
S–W | CT | 241.7 | 240.5 | 0.49 | 0.46 | 0.51 | 0.47 | |
MT | 241.5 | 236.4 | 0.42 | 0.41 | 0.54 | 0.51 | ||
NT | 241.1 | 239.3 | 0.41 | 0.4 | 0.53 | 0.51 | ||
V–W | CT | 241.2 | 238.5 | 0.57 | 0.55 | 0.56 | 0.52 | |
MT | 241.3 | 238.6 | 0.52 | 0.5 | 0.58 | 0.54 | ||
NT | 241 | 238.8 | 0.51 | 0.49 | 0.61 | 0.55 | ||
2018–2019 | C–W | CT | 238.8 | 233.6 | 0.48 | 0.44 | 0.58 | 0.56 |
MT | 236.5 | 234.3 | 0.46 | 0.43 | 0.61 | 0.62 | ||
NT | 236.5 | 234.1 | 0.43 | 0.4 | 0.63 | 0.64 | ||
S–W | CT | 236.5 | 234.1 | 0.46 | 0.44 | 0.55 | 0.56 | |
MT | 236.5 | 234 | 0.43 | 0.42 | 0.58 | 0.61 | ||
NT | 236.5 | 233.7 | 0.39 | 0.37 | 0.62 | 0.62 | ||
V–W | CT | 236.5 | 234.5 | 0.5 | 0.46 | 0.59 | 0.6 | |
MT | 236.5 | 234.2 | 0.48 | 0.45 | 0.63 | 0.64 | ||
NT | 236.5 | 234.2 | 0.43 | 0.41 | 0.65 | 0.62 | ||
2019–2020 | C–W | CT | 201.4 | 195 | 0.64 | 0.58 | 0.42 | 0.4 |
MT | 201.4 | 195.1 | 0.67 | 0.62 | 0.5 | 0.51 | ||
NT | 201.4 | 195.1 | 0.7 | 0.66 | 0.59 | 0.6 | ||
S–W | CT | 201.4 | 195.3 | 0.61 | 0.57 | 0.39 | 0.4 | |
MT | 201.4 | 194.5 | 0.62 | 0.61 | 0.47 | 0.5 | ||
NT | 201.4 | 195.1 | 0.65 | 0.61 | 0.58 | 0.58 | ||
V–W | CT | 201.4 | 195.5 | 0.66 | 0.6 | 0.43 | 0.44 | |
MT | 201.4 | 195.3 | 0.7 | 0.64 | 0.52 | 0.53 | ||
NT | 201.4 | 194.6 | 0.71 | 0.68 | 0.61 | 0.58 | ||
LSD 5% | 0.213 | 0.023 | 0.066 |
Year | Crop Rotation | Tillage | 1000 GW (g) | GY (Kg ha−1) | ||
---|---|---|---|---|---|---|
Baran | Azar2 | Baran | Azar2 | |||
2017–2018 | C–W | CT | 35.333 | 35.333 | 2208.7 | 2104 |
MT | 35 | 35 | 2015.3 | 1899 | ||
NT | 36.333 | 35.667 | 1891.7 | 1804.3 | ||
S–W | CT | 34.667 | 34 | 2088 | 1989 | |
MT | 34.667 | 34.333 | 1819 | 1751 | ||
NT | 34.333 | 34 | 1755.7 | 1732 | ||
V–W | CT | 35.667 | 36 | 2442.3 | 2342.3 | |
MT | 36 | 34.667 | 2211.7 | 2158 | ||
NT | 38 | 38 | 2164 | 2101.3 | ||
2018–2019 | C–W | CT | 34.333 | 34 | 2422.3 | 2205.3 |
MT | 35 | 34.333 | 2307 | 2154.3 | ||
NT | 36.333 | 35.667 | 2137.7 | 1998 | ||
S–W | CT | 34 | 33.333 | 2314.3 | 2193 | |
MT | 34.667 | 33 | 2150 | 2126.7 | ||
NT | 35.333 | 34.333 | 1971.3 | 1833 | ||
V–W | CT | 35 | 34.333 | 2473 | 2295.3 | |
MT | 35 | 34.667 | 2398.3 | 2227.3 | ||
NT | 37.333 | 35.333 | 2159.7 | 2056.7 | ||
2019–2020 | C–W | CT | 35.667 | 35.333 | 2117.3 | 1900.3 |
MT | 36.667 | 36 | 2198 | 2045.3 | ||
NT | 39 | 38.333 | 2315.7 | 2176 | ||
S–W | CT | 35.333 | 34.667 | 2009.3 | 1888 | |
MT | 36.333 | 34.667 | 2041 | 2017.7 | ||
NT | 38 | 37 | 2149.3 | 2011 | ||
V–W | CT | 36.333 | 35.667 | 2168 | 1990.3 | |
MT | 36.667 | 36.333 | 2289.3 | 2118.3 | ||
NT | 40 | 38 | 2337.7 | 2234.7 | ||
LSD 5% | 1.07 | 90.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lotfi, R.; Pessarakli, M. Effects of Crop Rotation and Tillage on Winter Wheat Growth and Yield under Cold Dryland Conditions. Crops 2023, 3, 88-100. https://doi.org/10.3390/crops3020009
Lotfi R, Pessarakli M. Effects of Crop Rotation and Tillage on Winter Wheat Growth and Yield under Cold Dryland Conditions. Crops. 2023; 3(2):88-100. https://doi.org/10.3390/crops3020009
Chicago/Turabian StyleLotfi, Ramin, and Mohammad Pessarakli. 2023. "Effects of Crop Rotation and Tillage on Winter Wheat Growth and Yield under Cold Dryland Conditions" Crops 3, no. 2: 88-100. https://doi.org/10.3390/crops3020009
APA StyleLotfi, R., & Pessarakli, M. (2023). Effects of Crop Rotation and Tillage on Winter Wheat Growth and Yield under Cold Dryland Conditions. Crops, 3(2), 88-100. https://doi.org/10.3390/crops3020009