Beyond Conventional Losses: Skeleton-Based Loss for Preserving Connectivity in Crack Segmentation
Abstract
1. Introduction
- Investigates the use of the Center Line Dice (clDice) loss function for road crack segmentation, which effectively captures thin, elongated crack structures by focusing on their topological skeletons;
- Proposes a hybrid loss strategy by combining clDice with generic region-based losses, enabling a balance between shape preservation and accurate pixel-wise overlap;
- Determines the optimal hyperparameters for clDice through a comprehensive search across skeletonization iterations k and loss weights to ensure balanced convergence and peak performance;
- Compares segmentation performance using the customized U-Net++ and the transformer-based SegFormer architectures, demonstrating the effectiveness of the proposed loss scheme;
- Analyzes the computational efficiency of clDice against the baseline loss by measuring training and inference time;
- Evaluates the models using a comprehensive set of metrics, including Dice coefficient, IoU, clDice, and Hausdorff Distance;
2. Related Works
3. Dataset
3.1. Edmonton Crack (EdmCrack600)
3.2. CrackForest Dataset
4. Methodology
4.1. U-Net++
4.2. SegFormer
4.3. Soft Skeletonization for clDice Loss
4.3.1. Soft Erosion
- Vertical Erosion ():
- Horizontal Erosion ():
- Final Output:
4.3.2. Soft Dilation
4.3.3. Soft Opening
4.3.4. Soft Skeletonization
Initialization
Iterative Thinning
Final Output
4.3.5. clDice Computation
Topological Precision
Topological Sensitivity
clDice Score
4.3.6. clDice Loss
| Algorithm 1: Soft Skeletonization and clDice Loss |
Input: Predicted mask , Ground truth mask , iteration count T, small constant Output: clDice loss |
Morphological Operators:
Soft Skeletonization :
clDice Computation:
|
5. Experimental Setup
5.1. Determination of Optimal Skeletonization Iterations
5.2. Training Methodology
5.3. Loss Function
5.4. Evaluation Metrics
5.4.1. Dice Coefficient
5.4.2. Intersection over Union (IoU)
5.4.3. Center Line Dice (clDice)
5.4.4. Hausdorff Distance
6. Experimental Result
6.1. Quantitative Validation of Skeletonization Iterations
6.1.1. SegFormer with clDice-Based Losses
6.1.2. U-Net++ with clDice-Based Losses
Overall Analysis and Selection of k
6.2. Comparison Experiment Results
6.2.1. Comparison Result on EdmCrack600 Dataset
6.2.2. Comparison Result on CrackForest Dataset
7. Discussion and Future Task
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | Artificial Intelligence |
| BCE | Binary Cross-Entropy |
| clDice | Center Line Dice |
| CNN | Convolutional Neural Network |
| CPU | Central Processing Unit |
| GPU | Graphical Processing Unit |
| HD | Hausdorff Distance |
| IoU | Intersection Over Union |
| RAM | Random Access Memory |
Appendix A
clDice Configuration Results Using Segformer and U-Net++ Model on EdmCrack600 and CrackForest Dataset
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.695 | 0.570 | 0.720 | 34.800 |
| 0.2 | 0.730 | 0.600 | 0.755 | 31.200 |
| 0.3 | 0.745 | 0.615 | 0.770 | 29.000 |
| 0.4 | 0.760 | 0.630 | 0.790 | 27.500 |
| 0.5 | 0.771 | 0.641 | 0.798 | 23.310 |
| 0.6 | 0.752 | 0.621 | 0.778 | 29.500 |
| 0.7 | 0.763 | 0.632 | 0.788 | 27.800 |
| 0.8 | 0.738 | 0.608 | 0.765 | 30.200 |
| 0.9 | 0.749 | 0.618 | 0.776 | 28.900 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.708 | 0.574 | 0.741 | 28.600 |
| 0.2 | 0.735 | 0.601 | 0.764 | 26.900 |
| 0.3 | 0.749 | 0.613 | 0.776 | 25.950 |
| 0.4 | 0.756 | 0.619 | 0.787 | 24.600 |
| 0.5 | 0.761 | 0.626 | 0.794 | 22.061 |
| 0.6 | 0.747 | 0.610 | 0.772 | 26.300 |
| 0.7 | 0.754 | 0.617 | 0.782 | 25.100 |
| 0.8 | 0.739 | 0.603 | 0.768 | 27.400 |
| 0.9 | 0.752 | 0.615 | 0.779 | 25.700 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.812 | 0.711 | 0.883 | 6.900 |
| 0.2 | 0.835 | 0.734 | 0.902 | 5.950 |
| 0.3 | 0.851 | 0.751 | 0.917 | 5.250 |
| 0.4 | 0.874 | 0.780 | 0.936 | 4.303 |
| 0.5 | 0.864 | 0.768 | 0.929 | 4.720 |
| 0.6 | 0.861 | 0.763 | 0.924 | 5.150 |
| 0.7 | 0.869 | 0.771 | 0.932 | 4.850 |
| 0.8 | 0.855 | 0.759 | 0.921 | 5.350 |
| 0.9 | 0.863 | 0.767 | 0.929 | 4.950 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.796 | 0.698 | 0.874 | 7.300 |
| 0.2 | 0.821 | 0.723 | 0.895 | 6.550 |
| 0.3 | 0.839 | 0.742 | 0.911 | 6.100 |
| 0.4 | 0.862 | 0.761 | 0.925 | 5.803 |
| 0.5 | 0.853 | 0.755 | 0.920 | 5.950 |
| 0.6 | 0.848 | 0.747 | 0.913 | 6.320 |
| 0.7 | 0.855 | 0.754 | 0.919 | 6.080 |
| 0.8 | 0.839 | 0.738 | 0.908 | 6.550 |
| 0.9 | 0.851 | 0.749 | 0.916 | 6.150 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.790 | 0.685 | 0.820 | 33.500 |
| 0.2 | 0.802 | 0.692 | 0.830 | 32.100 |
| 0.3 | 0.810 | 0.698 | 0.838 | 31.200 |
| 0.4 | 0.817 | 0.705 | 0.845 | 30.700 |
| 0.5 | 0.824 | 0.709 | 0.850 | 29.280 |
| 0.6 | 0.815 | 0.701 | 0.842 | 31.800 |
| 0.7 | 0.808 | 0.695 | 0.835 | 32.500 |
| 0.8 | 0.812 | 0.699 | 0.839 | 31.200 |
| 0.9 | 0.806 | 0.693 | 0.833 | 32.900 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.795 | 0.690 | 0.828 | 32.500 |
| 0.2 | 0.810 | 0.700 | 0.838 | 31.200 |
| 0.3 | 0.820 | 0.710 | 0.845 | 30.500 |
| 0.4 | 0.825 | 0.715 | 0.849 | 29.800 |
| 0.5 | 0.830 | 0.720 | 0.852 | 28.263 |
| 0.6 | 0.822 | 0.708 | 0.841 | 31.500 |
| 0.7 | 0.815 | 0.702 | 0.836 | 32.100 |
| 0.8 | 0.827 | 0.716 | 0.848 | 29.900 |
| 0.9 | 0.812 | 0.699 | 0.832 | 31.800 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.890 | 0.820 | 0.940 | 10.500 |
| 0.2 | 0.905 | 0.835 | 0.950 | 9.700 |
| 0.3 | 0.915 | 0.845 | 0.958 | 9.000 |
| 0.4 | 0.921 | 0.855 | 0.964 | 8.222 |
| 0.5 | 0.918 | 0.850 | 0.962 | 8.600 |
| 0.6 | 0.916 | 0.848 | 0.959 | 8.950 |
| 0.7 | 0.913 | 0.845 | 0.957 | 9.200 |
| 0.8 | 0.909 | 0.841 | 0.953 | 9.450 |
| 0.9 | 0.907 | 0.839 | 0.951 | 9.650 |
| Dice | IoU | clDice | Hausdorff Dis. | |
|---|---|---|---|---|
| 0.1 | 0.895 | 0.828 | 0.945 | 9.100 |
| 0.2 | 0.910 | 0.843 | 0.952 | 8.400 |
| 0.3 | 0.920 | 0.852 | 0.955 | 7.900 |
| 0.4 | 0.923 | 0.859 | 0.957 | 7.531 |
| 0.5 | 0.922 | 0.857 | 0.956 | 7.700 |
| 0.6 | 0.919 | 0.853 | 0.953 | 8.100 |
| 0.7 | 0.917 | 0.851 | 0.951 | 8.300 |
| 0.8 | 0.914 | 0.848 | 0.949 | 8.550 |
| 0.9 | 0.911 | 0.845 | 0.946 | 8.750 |
References
- Ng, C.P.; Law, T.H.; Jakarni, F.M.; Kulanthayan, S. Road infrastructure development and economic growth. IOP Conf. Ser. Mater. Sci. Eng. 2019, 512, 012045. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Feng, X.; Xiao, L.; Li, W.; Pei, L.; Sun, Z.; Ma, Z.; Shen, H.; Ju, H. Pavement Crack Detection and Segmentation Method Based on Improved Deep Learning Fusion Model. Math. Probl. Eng. 2020, 2020, 1–22. [Google Scholar] [CrossRef]
- Nguyen, S.D.; Tran, T.S.; Tran, V.P.; Lee, H.J.; Piran, M.J.; Le, V.P. Deep Learning-Based Crack Detection: A Survey. Int. J. Pavement Res. Technol. 2023, 16, 943–967. [Google Scholar] [CrossRef]
- Liu, Y.; Yao, J.; Lu, X.; Xie, R.; Li, L. DeepCrack: A deep hierarchical feature learning architecture for crack segmentation. Neurocomputing 2019, 338, 139–153. [Google Scholar] [CrossRef]
- Cha, Y.J.; Choi, W.; Büyüköztürk, O. Deep Learning-Based Crack Damage Detection Using Convolutional Neural Networks. Comput.-Aided Civ. Infrastruct. Eng. 2017, 32, 361–378. [Google Scholar] [CrossRef]
- Ran, R.; Xu, X.; Qiu, S.; Cui, X.; Wu, F. Crack-SegNet: Surface Crack Detection in Complex Background Using Encoder-Decoder Architecture. In ACM International Conference Proceeding Series; Association for Computing Machinery: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Fiani, M.; Gujski, L.M. U-Net-Based CNN Architecture for Road Crack Segmentation. Infrastructures 2023, 8, 90. [Google Scholar] [CrossRef]
- Liu, H.; Yang, J.; Miao, X.; Mertz, C.; Kong, H. CrackFormer Network for Pavement Crack Segmentation. IEEE Trans. Intell. Transp. Syst. 2023, 24, 9240–9252. [Google Scholar] [CrossRef]
- Guo, F.; Liu, J.; Lv, C.; Yu, H. A novel transformer-based network with attention mechanism for automatic pavement crack detection. Constr. Build. Mater. 2023, 391, 131852. [Google Scholar] [CrossRef]
- Wang, R.; Shao, Y.; Li, Q.; Li, L.; Li, J.; Hao, H. A novel transformer-based semantic segmentation framework for structural condition assessment. Struct. Health Monit. Sage J. 2023, 23, 1170–1183. [Google Scholar] [CrossRef]
- Wang, C.; Liu, H.; An, X.; Gong, Z.; Deng, F. SwinCrack: Pavement crack detection using convolutional swin-transformer network. Digit. Signal Process. Rev. J. 2024, 145, 104297. [Google Scholar] [CrossRef]
- Shao, Y.; Li, L.; Li, J.; Yao, X.; Li, Q.; Hao, H. Advancing crack detection with generative AI for structural health monitoring. Struct. Health Monit. 2025, 1–18. [Google Scholar] [CrossRef]
- Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016; Available online: http://www.deeplearningbook.org (accessed on 14 October 2025).
- Rahman, M.A.; Wang, Y. Optimizing intersection-over-union in deep neural networks for image segmentation. In Advances in Visual Computing; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Fan, Y.; Hu, Z.; Li, Q.; Sun, Y.; Chen, J.; Zhu, Q. CrackNet: A Hybrid Model for Crack Segmentation with Dynamic Loss Function. Sensors 2024, 24, 7134. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 Fourth International Conference on 3D Vision (3DV), Stanford, CA, USA, 25–28 October 2016. [Google Scholar] [CrossRef]
- Prasetyo, A.; Purnama, I.; Mulyanto, E. Improving Crack Detection Precision of Concrete Structures Using U-Net Architecture and Novel DBCE Loss Function. IEEE Access 2025, 13, 20903–20922. [Google Scholar] [CrossRef]
- Shit, S.; Paetzold, J.C.; Sekuboyina, A.; Ezhov, I.; Unger, A.; Zhylka, A.; Pluim, J.P.W.; Bauer, U.; Menze, B.H. clDice—A novel topology-preserving loss function for tubular structure segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021. [Google Scholar] [CrossRef]
- Golewski, G.L. The Phenomenon of Cracking in Cement Concretes and Reinforced Concrete Structures: The Mechanism of Cracks Formation, Causes of Their Initiation, Types and Places of Occurrence, and Methods of Detection—A Review. Buildings 2023, 13, 765. [Google Scholar] [CrossRef]
- Zhou, D.; Fang, J.; Song, X.; Guan, C.; Yin, J.; Dai, Y.; Yang, R. IoU Loss for 2D/3D Object Detection. In Proceedings of the International Conference on 3D Vision (3DV), Quebec City, QC, Canada, 16–19 September 2019. [Google Scholar] [CrossRef]
- Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. arXiv 2018, arXiv:1807.10165. [Google Scholar] [CrossRef]
- Xie, E.; Wang, W.; Yu, Z.; Anandkumar, A.; Alvarez, J.M.; Luo, P. SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers. In Advances in Neural Information Processing Systems (NeurIPS); Curran Associates Inc.: Red Hook, NY, USA, 2021. [Google Scholar]
- Mei, Q.; Gül, M. A cost effective solution for pavement crack inspection using cameras and deep neural networks. Constr. Build. Mater. 2020, 256, 119397. [Google Scholar] [CrossRef]
- Shi, Y.; Cui, L.; Qi, Z.; Meng, F.; Chen, Z. Automatic road crack detection using random structured forests. IEEE Trans. Intell. Transp. Syst. 2016, 17, 3434–3445. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Huttenlocher, D.P.; Klanderman, G.A.; Rucklidge, W.J. Comparing Images Using the Hausdorff Distance. IEEE Trans. Pattern Anal. Mach. Intell. 1993, 15, 850–863. [Google Scholar] [CrossRef]
- Zou, Q.; Zhang, Z.; Li, Q.; Qi, X.; Wang, Q.; Wang, S. DeepCrack: Learning hierarchical convolutional features for crack detection. IEEE Trans. Image Process. 2019, 28, 1498–1512. [Google Scholar] [CrossRef]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015. [Google Scholar] [CrossRef]
- Fan, R.; Bocus, M.J.; Zhu, Y. Road Crack Detection Using Deep Convolutional Neural Network and Adaptive Thresholding. arXiv 2019, arXiv:1904.08582. [Google Scholar] [CrossRef]
- Lau, S.L.H.; Chong, E.K.P.; Yang, X.; Wang, X. Automated pavement crack segmentation using U-Net-based convolutional neural network. IEEE Access 2020, 8, 114892–114899. [Google Scholar] [CrossRef]
- Clough, J.R.; Byrne, N.; Oksuz, I.; Zimmer, V.A.; Schnabel, J.A.; King, A.P. A Topological Loss Function for Deep-Learning Based Image Segmentation Using Persistent Homology. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8766–8778. [Google Scholar] [CrossRef]
- Menten, M.J.; Paetzold, J.C.; Zimmer, V.A.; Shit, S.; Ezhov, I.; Holland, R.; Probst, M.; Schnabel, J.A.; Rueckert, D. A skeletonization algorithm for gradient-based optimization. arXiv 2023, arXiv:2309.02527. [Google Scholar] [CrossRef]
- Rakshitha, R.; Srinath, S.; Kumar, N.V.; Rashmi, S.; Poornima, B.V. Enhancing crack pixel segmentation: Comparative assessment of feature combinations and model interpretability. In Innovative Infrastructure Solutions; Springer: Berlin/Heidelberg, Germany, 2024. [Google Scholar] [CrossRef]
- Fatali, R.; Safarli, G.; Zant, S.E.; Amhaz, R. A Comparative Study of YOLO V4 and V5 Architectures on Pavement Cracks Using Region-Based Detection. In Complex Computational Ecosystems; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Mei, Q.; Gül, M.; Azim, M.R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection. In Automation in Construction; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Augustauskas, R.; Lipnickas, A. Improved Pixel-Level Pavement-Defect Segmentation Using a Deep Autoencoder. Sensors 2020, 20, 2557. [Google Scholar] [CrossRef] [PubMed]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention—MICCAI; Springer: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A Survey on Image Data Augmentation for Deep Learning. J. Big Data Springer Open 2019, 6, 60. [Google Scholar] [CrossRef]
- Loshchilov, I.; Hutter, F. Decoupled Weight Decay Regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar] [CrossRef]








| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.737 | 0.597 | 0.772 | 36.369 |
| 10 | 0.745 | 0.608 | 0.778 | 34.000 |
| 15 | 0.753 | 0.618 | 0.785 | 30.500 |
| 20 | 0.762 | 0.630 | 0.792 | 27.000 |
| 25 | 0.768 | 0.638 | 0.796 | 24.000 |
| 30 | 0.771 | 0.641 | 0.798 | 23.310 |
| 35 | 0.769 | 0.643 | 0.796 | 23.355 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.735 | 0.596 | 0.781 | 36.160 |
| 10 | 0.740 | 0.603 | 0.783 | 34.000 |
| 15 | 0.746 | 0.611 | 0.787 | 30.000 |
| 20 | 0.752 | 0.619 | 0.791 | 26.500 |
| 25 | 0.758 | 0.627 | 0.794 | 24.000 |
| 30 | 0.761 | 0.626 | 0.794 | 22.061 |
| 35 | 0.760 | 0.627 | 0.793 | 22.500 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.830 | 0.714 | 0.901 | 15.051 |
| 10 | 0.840 | 0.729 | 0.907 | 15.393 |
| 15 | 0.852 | 0.745 | 0.918 | 12.000 |
| 20 | 0.861 | 0.758 | 0.926 | 9.000 |
| 25 | 0.870 | 0.772 | 0.932 | 6.500 |
| 30 | 0.874 | 0.780 | 0.936 | 4.303 |
| 35 | 0.873 | 0.781 | 0.933 | 5.040 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.841 | 0.731 | 0.909 | 11.917 |
| 10 | 0.844 | 0.736 | 0.913 | 10.500 |
| 15 | 0.849 | 0.743 | 0.917 | 9.000 |
| 20 | 0.854 | 0.750 | 0.920 | 7.500 |
| 25 | 0.859 | 0.757 | 0.923 | 6.500 |
| 30 | 0.862 | 0.761 | 0.925 | 5.803 |
| 35 | 0.860 | 0.758 | 0.923 | 5.800 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.775 | 0.642 | 0.814 | 32.710 |
| 10 | 0.781 | 0.648 | 0.821 | 31.940 |
| 15 | 0.788 | 0.655 | 0.829 | 31.910 |
| 20 | 0.797 | 0.665 | 0.837 | 30.523 |
| 25 | 0.810 | 0.697 | 0.844 | 29.900 |
| 30 | 0.824 | 0.709 | 0.850 | 29.280 |
| 35 | 0.823 | 0.709 | 0.849 | 29.281 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.795 | 0.669 | 0.829 | 30.764 |
| 10 | 0.805 | 0.681 | 0.838 | 30.108 |
| 15 | 0.815 | 0.693 | 0.845 | 29.610 |
| 20 | 0.822 | 0.702 | 0.849 | 29.224 |
| 25 | 0.828 | 0.715 | 0.851 | 28.576 |
| 30 | 0.830 | 0.720 | 0.852 | 28.263 |
| 35 | 0.831 | 0.712 | 0.850 | 28.267 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.904 | 0.829 | 0.941 | 10.908 |
| 10 | 0.910 | 0.837 | 0.951 | 9.502 |
| 15 | 0.915 | 0.845 | 0.957 | 9.588 |
| 20 | 0.918 | 0.850 | 0.960 | 8.600 |
| 25 | 0.920 | 0.853 | 0.962 | 8.375 |
| 30 | 0.921 | 0.855 | 0.964 | 8.222 |
| 35 | 0.921 | 0.856 | 0.961 | 8.300 |
| k | Metric | |||
|---|---|---|---|---|
| Dice | IoU | clDice | Hasd. Dist. | |
| 5 | 0.837 | 0.727 | 0.898 | 29.336 |
| 10 | 0.864 | 0.771 | 0.911 | 17.083 |
| 15 | 0.885 | 0.800 | 0.945 | 11.001 |
| 20 | 0.902 | 0.825 | 0.949 | 9.000 |
| 25 | 0.915 | 0.845 | 0.952 | 8.000 |
| 30 | 0.923 | 0.859 | 0.957 | 7.531 |
| 35 | 0.919 | 0.851 | 0.958 | 7.686 |
| Model | Loss Function | Metric | Computational Time | ||||
|---|---|---|---|---|---|---|---|
| Dice | IoU | clDice |
Hasd. Dist. |
Training (Minutes) |
Inference (Seconds) | ||
| SegFormer | BCE | 0.660 | 0.520 | 0.651 | 38.665 | 20.491 | 1.134 |
| Dice | 0.720 | 0.583 | 0.755 | 37.669 | 20.431 | 1.098 | |
| IoU | 0.738 | 0.599 | 0.773 | 35.853 | 20.444 | 1.146 | |
| Dice + BCE | 0.737 | 0.597 | 0.773 | 34.246 | 20.385 | 1.107 | |
| IoU + BCE | 0.739 | 0.600 | 0.782 | 26.744 | 20.603 | 1.098 | |
| clDice + Dice | 0.771 | 0.641 | 0.798 | 23.310 | 20.368 | 1.112 | |
| clDice + IoU | 0.761 | 0.626 | 0.794 | 22.061 | 20.293 | 1.183 | |
| U-Net++ | BCE | 0.781 | 0.650 | 0.813 | 40.577 | 20.233 | 0.389 |
| Dice | 0.811 | 0.691 | 0.838 | 34.417 | 20.260 | 0.392 | |
| IoU | 0.803 | 0.682 | 0.836 | 29.435 | 20.259 | 0.422 | |
| Dice + BCE | 0.819 | 0.701 | 0.853 | 30.226 | 20.180 | 0.393 | |
| IoU + BCE | 0.813 | 0.693 | 0.842 | 31.429 | 20.171 | 0.399 | |
| clDice + Dice | 0.824 | 0.709 | 0.850 | 29.280 | 20.017 | 0.409 | |
| clDice + IoU | 0.830 | 0.720 | 0.852 | 28.263 | 20.233 | 0.401 | |
| Model | Loss Function | Metric | Computational Time | ||||
|---|---|---|---|---|---|---|---|
| Dice | IoU | clDice |
Hasd. Dist. |
Training (Minutes) |
Inference (Seconds) | ||
| SegFormer | BCE | 0.811 | 0.689 | 0.873 | 13.187 | 3.118 | 0.224 |
| Dice | 0.841 | 0.732 | 0.900 | 12.640 | 3.099 | 0.222 | |
| IoU | 0.842 | 0.735 | 0.900 | 11.887 | 3.101 | 0.221 | |
| Dice + BCE | 0.843 | 0.733 | 0.905 | 11.650 | 3.083 | 0.222 | |
| IoU + BCE | 0.844 | 0.736 | 0.910 | 5.769 | 3.092 | 0.221 | |
| clDice + Dice | 0.874 | 0.780 | 0.936 | 4.303 | 3.228 | 0.225 | |
| clDice + IoU | 0.862 | 0.761 | 0.925 | 5.803 | 3.181 | 0.221 | |
| U-Net++ | BCE | 0.895 | 0.817 | 0.940 | 9.073 | 2.714 | 0.088 |
| Dice | 0.900 | 0.821 | 0.941 | 8.414 | 2.786 | 0.078 | |
| IoU | 0.891 | 0.806 | 0.936 | 10.268 | 2.738 | 0.078 | |
| Dice + BCE | 0.912 | 0.843 | 0.942 | 10.868 | 2.724 | 0.079 | |
| IoU + BCE | 0.907 | 0.823 | 0.948 | 7.713 | 2.715 | 0.087 | |
| clDice + Dice | 0.921 | 0.855 | 0.964 | 8.222 | 1.352 | 0.098 | |
| clDice + IoU | 0.923 | 0.859 | 0.957 | 7.531 | 2.847 | 0.080 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, V.; Yutaka, O.; Fukai, H. Beyond Conventional Losses: Skeleton-Based Loss for Preserving Connectivity in Crack Segmentation. Future Transp. 2025, 5, 177. https://doi.org/10.3390/futuretransp5040177
Pereira V, Yutaka O, Fukai H. Beyond Conventional Losses: Skeleton-Based Loss for Preserving Connectivity in Crack Segmentation. Future Transportation. 2025; 5(4):177. https://doi.org/10.3390/futuretransp5040177
Chicago/Turabian StylePereira, Vosco, Oseko Yutaka, and Hidekazu Fukai. 2025. "Beyond Conventional Losses: Skeleton-Based Loss for Preserving Connectivity in Crack Segmentation" Future Transportation 5, no. 4: 177. https://doi.org/10.3390/futuretransp5040177
APA StylePereira, V., Yutaka, O., & Fukai, H. (2025). Beyond Conventional Losses: Skeleton-Based Loss for Preserving Connectivity in Crack Segmentation. Future Transportation, 5(4), 177. https://doi.org/10.3390/futuretransp5040177

