Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies
Abstract
1. Introduction
2. Risk Assessment and Scheduling Techniques for Highway Construction Projects
2.1. Qualitative Risk Assessment
2.2. Quantitative Risk Assessment
2.3. Traditional Scheduling Techniques
3. Critical Review of Risk Assessment and Scheduling Techniques in Construction Project Management
- P-I;
- MCS;
- FST;
- AHP;
- CPM;
- PERT.
3.1. Probability–Impact (P-I)
3.2. MCS
3.3. FST
3.4. AHP
3.5. CPM (Deterministic Scheduling Approach)
3.6. PERT (Probabilistic Scheduling Approach)
3.7. Summary
4. Integrated Approaches
Combining Risk Assessment and Scheduling: Examples of Hybrid Methodologies
5. Conclusions
- Fuzzy Logic and AHP are commonly utilized techniques in risk assessment and analysis. While Fussy logic and AHP provide valuable tools for risk assessment in road construction projects, they require careful adaptation and refinement to address their respective shortcomings and improve decision-making reliability.
- This review demonstrates that no single risk assessment or scheduling technique is universally sufficient to address the multifaceted challenges of highway construction project management. Each method contributes uniquely to capturing uncertainties, managing resources, and supporting informed decision-making. The study underscores the need for context-driven method selection, where the choice of technique is tailored to the specific characteristics of the project, such as its complexity, data availability, and risk profile.
- Integrating risk assessment techniques with scheduling frameworks provides a more realistic and proactive basis for construction planning. Emerging methods, including probabilistic simulations and machine learning-assisted risk models, show promise in enhancing the responsiveness and accuracy of project scheduling. Ultimately, advancing highway construction management requires the continued development of interoperable, hybrid approaches that combine expert judgment with data-intensive tools to manage risk holistically.
- Existing techniques such as CPM, MCS, and PERT exhibit inherent limitations in effectively simulating and managing schedule risks, particularly in handling uncertainties, activity correlations, and sensitivity to risk factors. Given these challenges, BNs offer significant potential to enhance traditional scheduling methods by integrating probabilistic reasoning and dependency modeling. Further investigation into BN-based hybrid models could help overcome current limitations and substantially improve the robustness and reliability of project scheduling.
6. Discussion and Future Research Directions
- Exploration of Multi-Objective Optimization for Time–Cost–Risk Trade-Offs.
- Application of Bayesian Networks in Construction Scheduling.
- Advancing Decision Support through AI and Interoperable Risk-Schedule Systems.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Project Management Institute (PMI). PMBOK® Guide; Project Management Institute (PMI): Pennsylvania, PA, USA, 2017. [Google Scholar]
- Aven, T. Risk Analysis: Assessing Uncertainties Beyond Expected Values and Probabilities; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Vose, D. Risk Analysis: A Quantitative Guide, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hillson, D. Extending the Risk Process to Manage Opportunities. Int. J. Proj. Manag. 2002, 20, 235–240. [Google Scholar] [CrossRef]
- Kaplan, S.; Garrick, B.J. On the Quantitative Definition of Risk. Risk Anal. 1981, 1, 11–27. [Google Scholar] [CrossRef]
- Hubbard, D.W. The Failure of Risk Management: Why It’s Broken and How to Fix It; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Sarah Roper. Level up Construction Risk Management with a Collaborative Approach Linked to the Project Schedule. Available online: https://www.oracle.com/construction-engineering/primavera-cloud-project-management/construction-risk-management-project-schedule/ (accessed on 17 April 2025).
- Ashley, D.B.; Molenaar, K.R.; Diekmann, J.E. Federal Highway Administration. Office of International Programs. Guide to Risk Assessment and Allocation for Highway Construction Management. FHWA-PL-06-032. 2006. Available online: https://international.fhwa.dot.gov/pubs/pl06032/guide_to_risk_assessment_allocation_for_highway.pdf (accessed on 17 April 2025).
- Ruth, M.-W. Management of Risk: Guidance for Practitioners. Office of Government Commerce, 3rd ed.; TSO: London, UK, 2010. [Google Scholar]
- Wolf, J.; Blodgett, W. An Owner’s Approach to Cost Estimating and Quantitative Risk Analysis. In Proceedings of the 60th Annual Meeting of the AACE International, Toronto, ON, Canada, 26–29 June 2016; p. 780. [Google Scholar]
- Infrastructure and Projects Authority. Cost Estimating Guidance; Infrastructure and Projects Authority: London, UK, 2021. [Google Scholar]
- Heldman, K. Project Manager’s Spotlight on Risk Management; Harbor Light Press: New York, NY, USA, 2005. [Google Scholar]
- Karaman, A.E.; Köseoğlu, E. Risk Analysis Application in Highway Projects. Düzce Üniversitesi Bilim Ve Teknol. Derg. 2021, 9, 520–533. [Google Scholar] [CrossRef]
- Lv, H.; Shi, Z.; Lie, J. Risk Assessment of Highway Infrastructure REITs Projects Based on the DEMATEL–ISM Approach. Sustainability 2024, 16, 5159. [Google Scholar] [CrossRef]
- Larsen, I.L.; Terjesen, O.; Thorstensen, R.T.; Kanstad, T. Use of Concrete for Road Infrastructure: A SWOT Analysis Related to Sustainability, Industrialisation, and Digitalisation. Nord. Concr. Res. 2019, 60, 31–50. [Google Scholar] [CrossRef]
- N.C. Department of Transportation. Risk Management Guide; N.C. Department of Transportation: Raleigh, NC, USA, 2022. [Google Scholar]
- Le, T.; Caldas, C.H.; Gibson, G.E.; Thole, M. Assessing Scope and Managing Risk in the Highway Project Development Process. J. Constr. Eng. Manag. 2009, 135, 900–910. [Google Scholar] [CrossRef]
- Wu, W.; Ma, M.; Hu, X.; Xu, B. Risk Assessment of High-Grade Highway Construction Based on Com-Bined Weighting and Fuzzy Mathematics. J. Civ. Hydraul. Eng. 2024, 2, 16–30. [Google Scholar] [CrossRef]
- Mohamed, M. A Risk-Based Model for Construction Inspection in Highways. Ph.D. Thesis, University of Kansas, Lawrence, KS, USA, 2022. [Google Scholar]
- Fathi, M.; Shrestha, P.P. Identification of Critical Success and Risk Factors for Public-Private Part-Nership Highway Projects. J. Leg. Aff. Disput. Resolut. Eng. Constr. 2022, 15, 10. [Google Scholar] [CrossRef]
- Pratama, G.A.; Latief, Y.; Sihombing, L.B. A Novel Rough Fuzzy Based Delphi Method for Highway Projects Risk Analysis: The SOE Assignment Scheme Case Study. Int. J. GEOMATE 2022, 23, 110–117. [Google Scholar] [CrossRef]
- Ariyanto, I.N.; Purba, H.H.; Purba, A. A Systematic Review and Analysis of Risk Assessment in Highway Construction Projects. Oper. Res. Eng. Sci. Theory Appl. 2020, 3, 29–47. [Google Scholar] [CrossRef]
- Sharma, K.; Trivedi, M.K. Risk Analysis in Highway Construction Projects Using Failure Mode and Effect Analysis. Int. J. Res. Appl. Sci. Eng. Technol. 2019, 7, 311–318. [Google Scholar] [CrossRef]
- Gain, H.; Mishra, A.K. Risk Analysis in Road Construction Using Failure Mode and Effect Analysis. Nat. Volatiles Essent. Oils 2022, 8, 16202–16217. [Google Scholar] [CrossRef]
- Koulinas, G.K.; Demesouka, O.E.; Marhavilas, P.K.; Orfanos, N.I.; Koulouriotis, D.E. Multicriteria Health and Safety Risk Assessments in Highway Construction Projects. Sustainability 2023, 15, 9241. [Google Scholar] [CrossRef]
- Senić, A.; Dobrodolac, M.; Stojadinović, Z. Development of Risk Quantification Models in Road In-Frastructure Projects. Sustainability 2024, 16, 7694. [Google Scholar] [CrossRef]
- New York State Department of Transportation. Risk Management Guide for Project Development; New York State Department of Transportation: New York, NY, USA, 2008. [Google Scholar]
- Oktaviani, O.; Susetyo, B.; Bintoro, B.P.K. Risk Management Model Using Cause and Effect Analysis in Industrial Building Project. Int. J. Res. Rev. 2021, 8, 227–235. [Google Scholar] [CrossRef]
- Al-Zwainy, F.M.S.; Amer, R. Diagnose the Causes of Cost Deviation in Highway Construction Projects by Using Root Cause Analysis Techniques. Arab. J. Sci. Eng. 2017, 42, 4215–4230. [Google Scholar] [CrossRef]
- Ahmed, M.I.; Rezouki, S.E. Application of Root Cause Analysis Techniques in the Contractor Selection for Highway Projects. IOP Conf. Ser. Mater. Sci. Eng. 2020, 901, 012031. [Google Scholar] [CrossRef]
- Salling, K.B. A New Approach to Feasibility Risk Assessment within Transport Infrastructure Appraisal. Procedia—Soc. Behav. Sci. 2013, 74, 468–477. [Google Scholar] [CrossRef]
- El-Sayegh, S.M.; Mansour, M.H. Risk Assessment and Allocation in Highway Construction Projects in the UAE. J. Manag. Eng. 2015, 31, 04015004. [Google Scholar] [CrossRef]
- Jeon, J.; Zhang, Y.; Yang, L.; Xu, X.; Cai, H.; Tran, D. Risk Breakdown Matrix for Risk-Based Inspec-Tion of Transportation Infrastructure Projects. J. Constr. Eng. Manag. 2023, 149, 04023013. [Google Scholar] [CrossRef]
- Hanum, L.; Putra, A.B.; Prahara, E. Hazard and Risk Analysis Using HIRARC and HAZOP Methods on Erection Girder Work. E3S Web Conf. 2023, 388, 01005. [Google Scholar] [CrossRef]
- Arifani, H.A.; Prakoso, W.A. Risk-Based Decision Making in Highway Slope Geometry Design. MATEC Web Conf. 2019, 270, 02001. [Google Scholar] [CrossRef]
- Kameshwar, S.; Misra, S.; Padgett, J.E. Decision Tree-Based Bridge Restoration Models for Extreme Event Performance Assessment of Regional Road Networks. Struct. Infrastruct. Eng. 2019, 16, 431–451. [Google Scholar] [CrossRef]
- Williams, T.M. The Two-Dimensionality of Project Risk. Int. J. Proj. Manag. 1996, 14, 185–186. [Google Scholar] [CrossRef]
- Charette, R.N. Software Engineering Risk Analysis and Management; McGraw-Hill: New York, NY, USA, 1989. [Google Scholar]
- Han, S.H.; Kim, D.Y.; Kim, H.; Jang, W.S. A Web-Based Integrated System for International Project Risk Management. Autom. Constr. 2008, 17, 342–356. [Google Scholar] [CrossRef]
- Baccarini, D.; Archer, R. The Risk Ranking of Projects: A Methodology. Int. J. Proj. Manag. 2001, 19, 139–145. [Google Scholar] [CrossRef]
- Chapman, C.B.; Ward, S.C. Estimation and Evaluation of Uncertainty: A Minimalist First Pass Ap-Proach. Int. J. Proj. Manag. 2000, 18, 369–383. [Google Scholar] [CrossRef]
- Cagno, E.; Caron, F.; Mancini, M. A Multi-Dimensional Analysis of Major Risks in Complex Projects. Risk Manag. 2007, 9, 1–18. [Google Scholar] [CrossRef]
- Franke, A. Risk Analysis in Project Management. Int. J. Proj. Manag. 1987, 5, 29–34. [Google Scholar] [CrossRef]
- Davis-McDaniel, C.; Pang, W.; Deyy, K.; Chowdhury, M. Fault-Tree Model for Bridge Collapse Risk Analysis. J. Infrastruct. Syst. 2011, 19, 326–334. [Google Scholar] [CrossRef]
- Gacevski, V.; Zileska Pancovska, V.; Lazarevska, M. Assessment Of Risks In A Road Tunnel Construction Using Tree Analysis. Sci. J. Civ. Eng. 2022, 11, 7–11. [Google Scholar]
- Yang, C.F.; Jia, Y.B.; Sun, J.S.; Zhou, J. Application of Fault Tree Analysis Method on Hazard Identification in Highway Construction. Adv. Mater. Res. 2012, 446–449, 2466–2469. [Google Scholar] [CrossRef]
- Chen, Z.; Ge, Y.; Wang, K.; Song, J. Evaluating Safety Performance of Highway Alignment Utilizing Fault Tree Analysis and Energy Method. Adv. Mech. Eng. 2019, 11, 1687814019854268. [Google Scholar] [CrossRef]
- Hong, E.-S.; Lee, I.-M.; Shin, H.-S.; Nam, S.-W.; Kong, J.-S. Quantitative Risk Evaluation Based on Event Tree Analysis Technique: Application to the Design of Shield TBM. Tunn. Undergr. Space Technol. 2009, 24, 269–277. [Google Scholar] [CrossRef]
- Andrić, J.M.; Wang, J.; Zou, P.X.W.; Zhang, J.; Zhong, R. Fuzzy Logic-Based Method for Risk Assessment of Belt and Road Infrastructure Projects. J. Constr. Eng. Manag. 2019, 145, 04019082. [Google Scholar] [CrossRef]
- Baek, M.; Mostaan, K.; Ashuri, B. Recommended Practices for the Cost Control of Highway Project Development. In Proceedings of the Construction Research Congress, San Juan, Puerto Rico, 31 May–2 June 2016; pp. 739–748. [Google Scholar] [CrossRef]
- Molenaar, K. Programmatic Cost Risk Analysis for Highway Megaprojects. J. Constr. Eng. Manag. 2005, 131, 343–353. [Google Scholar] [CrossRef]
- Trucco, P.; Cagno, E.; Ruggeri, F.; Grande, O. A Bayesian Belief Network Modelling of Organisational Factors in Risk Analysis: A Case Study in Maritime Transportation. Reliab. Eng. Syst. Saf. 2008, 93, 845–856. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Kays, H.M.I.; Sadri, A.M. Centrality-Based Lane Interventions in Road Networks for Improved Level of Service: The Case of Downtown Boise, Idaho. Appl. Netw. Sci. 2023, 8, 2. [Google Scholar] [CrossRef]
- Deng, Y.-J.; Yang, Y.-F.; Ma, R.-G. Highway Network Structure Characteristics Based on Complex Network Theory. China J. Highw. Transp. 2010, 23, 98–104. [Google Scholar]
- Sasidharan, M.; Usman, K.; Ngezahayo, E.; Burrow, D.M. Evidence on Impact Evaluation of Road Transport Networks Using Network Theory; K4D Helpdesk Report; Institute of Development Studies: Brighton, UK, 2019. [Google Scholar]
- Dm, O.; Moses, M. Analyzing the Risks in Highway Projects Using the Markov Chain Approach. Am. J. Appl. Math. Stat. 2019, 7, 59–64. [Google Scholar] [CrossRef]
- Besenczi, R.; Bátfai, N.; Jeszenszky, P.; Major, R.; Monori, F.; Ispány, M. Large-Scale Simulation of Traffic Flow Using Markov Model. PLoS ONE 2021, 16, e0246062. [Google Scholar] [CrossRef]
- Salman, B.; Gursoy, B. Markov Chain Pavement Deterioration Prediction Models for Local Street Networks. Built Environ. Proj. Asset Manag. 2022, 12, 853–870. [Google Scholar] [CrossRef]
- Wingate, P.F.J. Use Of Critical Path Method On Road Construction Projects; Road Research Laboratory, Ministry of Transport: Wokingham, UK, 1966. [Google Scholar]
- Bordley, R.C.; Tennent, R.C. Application Of Critical Path Method To A Highway Right-Of-Way Operation. Respectively, Office of Right-of-Way and Location, and Office of Research and Development; U.S. Bureau of Public Roads: Washington, DC, USA, 1964. [Google Scholar]
- Mehany, M.S.H.M.; Grigg, N.S. Standardization of Highway Construction Delay Claim Analysis: A Highway Bridge Case Study. JTM 2015, 25, 25–41. [Google Scholar] [CrossRef]
- Aras, R.M.; Surkis, J. PERT and CPM Techniques in Project Management. J. Constr. Div. 1964, 90, 1–25. [Google Scholar] [CrossRef]
- Onifade, M.K.; Oluwaseyi, A.J.; Babawale, A.B. Application of Project Evaluation and Review Technique (PERT) in Road Construction Projects in Nigeria. Eur. Proj. Manag. J. 2017, 7, 3–13. [Google Scholar]
- Grunow, R.N. PERT and Its Application to Highway Management. In Highway Research Record; Highway Research Board: Washington, DC, USA, 1963. [Google Scholar]
- Kumar, S.P.; Krishnamoorthi, A. Planning And Analysis of Highway Bridge Using Microsoft Project And Primavera 6. Int. Res. J. Eng. Technol. (IRJET) 2020, 7, 2221–2225. [Google Scholar]
- Herbsman, Z.J. Evaluation of Scheduling Techniques for Highway Construction Projects. Transp. Res. Rec. 1987, 1126, 110–120. [Google Scholar]
- Harris, F.C.; Evans, J.B. Road Construction--Simulation Game For Site Managers. J. Constr. Div. 1977, 103, 405–414. [Google Scholar] [CrossRef]
- Khachi, M.; Mosa, A.; Al-Dahlaki, M. Software For Line Of Balance In Projects Of Highways. J. Eng. Sustain. Dev. 2018, 2018, 119–130. [Google Scholar] [CrossRef]
- Hegazy, T. Critical Path Method–Line of Balance Model for Efficient Scheduling of Repetitive Construction Projects. Transp. Res. Rec. 2001, 1761, 124–129. [Google Scholar] [CrossRef]
- Viana Vargas, R. Modelling Line Of Balance Schedules With Start-Finish Relationships; PMI Global Congress 2015—EMEA: Las Vegas, NV, USA, 2015. [Google Scholar]
- Lutz, J.D.; Halpin, D.W. Analyzing Linear Construction Operations Using Simulation and Line of Balance. In Transportation Research Record; Transportation Research Board: Washington, DC, USA, 1992. [Google Scholar]
- Arditi, D.; Tokdemir, O.B.; Suh, K. Effect of Learning on Line-of-Balance Scheduling. Int. J. Proj. Manag. 2001, 19, 265–277. [Google Scholar] [CrossRef]
- Uthai, T. An Application of Line of Balance and Building Information Modeling for Optimal Resource and Schedule: A Case Study of an Elevated Highway Construction. Master’s Thesis, Chulalongkorn University, Bangkok, Thailand, 2019. [Google Scholar] [CrossRef]
- Romadhona, S.; Kurniawan, F.; Tistogondo, J. Project Scheduling Analysis Using the Precedence Diagram Method (PDM) Case Study: Surabaya’s City Outer East Ring Road Construction Project (Segment 1). Int. J. Eng. Sci. Inf. Technol. 2021, 1, 53–61. [Google Scholar] [CrossRef]
- Santoso, R.G. Tinjauan Jadwal Dan Biaya Proyek Dengan Metode Pdm (Precedence Diagram Method) Pada Pembangunan Jalan Bebas Hambatan. Bachelor’s Thesis, Universitas Pendidikan Indonesia, Bandung City, Indonesia, 2019. [Google Scholar]
- Novitasari, A.D.; Sandora, R.; Lestari, R.L. Project Scheduling Analysis Using Precedence Diagram Method (PDM). JEMIS (J. Eng. Manag. Ind. Syst. ) 2019, 6, 36–45. [Google Scholar] [CrossRef]
- Ruiz, R. Scheduling Heuristics. In Handbook of Heuristics; Springer: Cham, Switzerland, 2016; pp. 1–24. [Google Scholar] [CrossRef]
- Davis, E.W.; Patterson, J.H. A Comparison of Heuristic and Optimum Solutions in Resource-Constrained Project Scheduling. Manag. Sci. 1975, 21, 944–955. [Google Scholar] [CrossRef]
- David, H.; Rowings, J.E. Linear Scheduling Model: The Development of a Linear Scheduling Model with Microcomputer Applications for Highway Construction Project Control. Available online: https://www.proquest.com/openview/500523b58889e45e94b3eda81549d75a/1?cbl=18750&diss=y&pq-origsite=gscholar (accessed on 19 March 2025).
- Yogesh, G.; Chappidi, H. A Study on Linear Scheduling Methods in Road Construction Projects. Mater. Today Proc. 2021, 47, 5475–5478. [Google Scholar] [CrossRef]
- Johnston, D.W. Linear Scheduling Method for Highway Construction. J. Constr. Div. 1981, 107, 247–261. [Google Scholar] [CrossRef]
- Thaheem, M.J.; Marco, A.; Barlish, K. A Review of Quantitative Analysis Techniques for Con-Struction Project Risk Management. In Proceedings of the Creative Construction Conference 2012, Budapest, Hungary, 30 June–3 July 2012; pp. 656–667. [Google Scholar]
- Renuka, S.M.; Umarani, C.; Kamal, S. A Review on Critical Risk Factors in the Life Cycle of Construction Projects. J. Civ. Eng. Res. 2014, 4, 31–36. Available online: http://article.sapub.org/10.5923.c.jce.201401.07.html (accessed on 17 April 2025).
- Skrtic, M.; Horvatinčić, K. Project Risk Management: Comparative Analysis of Methods for Project Risks Assessment. Coll. Antropol. 2014, 38, 125–134. [Google Scholar]
- Ouache, R.; Adham, A.A.J.; Rasydan, A. Technical Methods for the Risk Assessment at an Industry System. Rev. Paper. Int. J. Eng. Res. Technol. (IJERT) 2014, 3, 549–556. [Google Scholar]
- Doubravský, K.; Doskočil, R. Comparison of Approaches for Calculating the Probability of a Project Completion. J. East. Eur. Res. Bus. Econ. 2015, 2015, 638688. [Google Scholar] [CrossRef]
- Jannadi, O.A.; Almishari, S. Risk Assessment in Construction. J. Constr. Eng. Manag. 2003, 129, 492–500. [Google Scholar] [CrossRef]
- Dikmen, I.; Birgonul, M.T.; Han, S. Using Fuzzy Risk Assessment to Rate Cost Overrun Risk in International Construction Projects. Int. J. Proj. Manag. 2007, 25, 494–505. [Google Scholar] [CrossRef]
- Vose, D. Quantitative Risk Analysis: A Guide to Monte Carlo Simulation Modelling; Wiley: Chichester, UK; New York, NY, USA, 1996. [Google Scholar]
- Ross, S.M. Simulation, 5th ed.; Elsevier: San Diego, CA, USA, 2013. [Google Scholar]
- Rubinstein, R.; Kroese, D. Simulation and the Monte Carlo Method, 2nd ed.; Rubinstein, R.Y., Kroese, D.P., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 707, p. 371. ISBN 9780470177945. [Google Scholar] [CrossRef]
- George, S.F. Monte Carlo Concepts, Algorithms and Applications; Springer: Berlin/Heidelberg, Germany, 1996. [Google Scholar]
- Owen, A.B. Monte Carlo and Quasi-Monte Carlo for Statistics. In Monte Carlo and Quasi-Monte Carlo Methods 2008; L’ Ecuyer, P., Owen, A.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–18. [Google Scholar] [CrossRef]
- Guyonnet, D.; Bourgine, B.; Dubois, D.; Fargier, H.; Co⁁me, B.; Chilès, J.-P. Hybrid Approach for Addressing Uncertainty in Risk Assessments. J. Environ. Eng. 2003, 129, 68–78. [Google Scholar] [CrossRef]
- Öztaş, A.; Ökmen, Ö. Risk Analysis in Fixed-Price Design–Build Construction Projects. Build. Environ. 2004, 39, 229–237. [Google Scholar] [CrossRef]
- Baudrit, C.; Dubois, D.; Guyonnet, D. Joint Propagation and Exploitation of Probabilistic and Possibilistic Information in Risk Assessment. Fuzzy Syst. IEEE Trans. 2006, 14, 593–608. [Google Scholar] [CrossRef]
- Sadeghi, N.; Fayek, A.R.; Pedrycz, W. Fuzzy Monte Carlo Simulation and Risk Assessment in Construction. Comput.-Aided Civ. Infrastruct. Eng. 2010, 25, 238–252. [Google Scholar] [CrossRef]
- Ferson, S. What Monte Carlo Methods Cannot Do. Hum. Ecol. Risk Assess. Int. J. 2008, 2, 990–1007. [Google Scholar] [CrossRef]
- van Dorp, J.R.; Duffey, M.R. Statistical Dependence in Risk Analysis for Project Networks Using Monte Carlo Methods. Int. J. Prod. Econ. 1999, 58, 17–29. [Google Scholar] [CrossRef]
- Wang, W.-C.; Demsetz, L.A. Model for Evaluating Networks under Correlated Uncertainty—NETCOR. J. Constr. Eng. Manag. 2000, 126, 458–466. [Google Scholar] [CrossRef]
- Zimmermann, H.-J. Fuzzy Set Theory—And Its Applications; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Kangari, R.; Riggs, L.S. Construction Risk Assessment by Linguistics. IEEE Trans. Eng. Manag. 1989, 36, 126–131. [Google Scholar] [CrossRef]
- Paek, J.H.; Lee, Y.W.; Ock, J.H. Pricing Construction Risk: Fuzzy Set Application. J. Constr. Eng. Manag. 1993, 119, 743–756. [Google Scholar] [CrossRef]
- Wirba, E.N.; Tah, J.H.M.; Howes, R. Risk Interdependencies and Natural Language Computations. Eng. Constr. Archit. Manag. 1996, 3, 251–269. [Google Scholar] [CrossRef]
- Tah, J.H.M.; Carr, V.A. Proposal for Construction Project Risk Assessment Using Fuzzy Logic. Constr. Manag. Econ. 2000, 18, 491–500. [Google Scholar] [CrossRef]
- Thomas, A.V.; Kalidindi, S.N.; Ganesh, L.S. Modelling and Assessment of Critical Risks in BOT Road Projects. Constr. Manag. Econ. 2006, 24, 407–424. [Google Scholar] [CrossRef]
- Jin, X.-H.; Doloi, H. Modelling Risk Allocation in Privately Financed Infrastructure Projects Using Fuzzy Logic. Comput.-Aided Civ. Infrastruct. Eng. 2009, 24, 509–524. [Google Scholar] [CrossRef]
- Sotoudeh-Anvari, A. A Critical Review on Theoretical Drawbacks and Mathematical Incorrect Assumptions in Fuzzy OR Methods: Review from 2010 to 2020. Appl. Soft Comput. 2020, 93, 106354. [Google Scholar] [CrossRef]
- Toth, H. From Fuzzy-Set Theory to Fuzzy Set-Theory: Some Critical Remarks on Existing Concepts. Fuzzy Sets Syst. 1987, 23, 219–237. [Google Scholar] [CrossRef]
- Guth, M.A.S. Some Uses and Limitations of Fuzzy Logic in Artificial Intelligence Reasoning for Reactor Control. Nucl. Eng. Des. 1989, 113, 99–109. [Google Scholar] [CrossRef]
- Dey, P.K. Project Risk Management: A Combined Analytic Hierarchy Process and Decision Tree Approach. Cost Eng. 2002, 44, 13–27. [Google Scholar]
- Tavana, M.; Soltanifar, M.; Santos-Arteaga, F.J. Analytical Hierarchy Process: Revolution and Evolution. Ann. Oper. Res. 2021, 326, 879–907. [Google Scholar] [CrossRef]
- Mustafa, M.A.; Al-Bahar, J.F. Project Risk Assessment Using the Analytic Hierarchy Process. IEEE Trans. Eng. Manag. 1991, 38, 46–52. [Google Scholar] [CrossRef]
- Ogunlana, S.O. Planning for Project Control through Risk Analysis: A Petroleum Pipeline-Laying Project. Int. J. Proj. Manag. 1994, 12, 23–33. [Google Scholar]
- Hastak, M.; Shaked, A. ICRAM-1: Model for International Construction Risk Assessment. J. Manag. Eng. 2000, 16, 59–69. [Google Scholar] [CrossRef]
- Irem Dikmen, I.D. An Analytic Hierarchy Process Based Model for Risk and Opportunity Assessment of International Construction Projects. Can. J. Civ. Eng. 2006, 33, 58–68. [Google Scholar] [CrossRef]
- Zayed, T.; Amer, M.; Pan, J. Assessing Risk and Uncertainty Inherent in Chinese Highway Projects Using AHP. Int. J. Proj. Manag. 2008, 26, 408–419. [Google Scholar] [CrossRef]
- Taherdoost, H. Decision Making Using the Analytic Hierarchy Process (AHP); A Step by Step Approach. Int. J. Econ. Manag. Syst. 2017, 2, 244–246. [Google Scholar]
- Dey, P.K. Managing Project Risk Using Combined Analytic Hierarchy Process and Risk Map. Appl. Soft Comput. 2010, 10, 990–1000. [Google Scholar] [CrossRef]
- Zhang, G.; Zou, P.X. Fuzzy Analytical Hierarchy Process Risk Assessment Approach for Joint Venture Construction Projects in China. J. Constr. Eng. Manag. 2007, 133, 771–779. [Google Scholar] [CrossRef]
- Galloway, P.D. Survey of the Construction Industry Relative to the Use of CPM Scheduling for Construction Projects. J. Constr. Eng. Manag. 2006, 132, 697–711. [Google Scholar] [CrossRef]
- Senior, B. Critical Path Method Implementation Drawbacks: A Discussion Using Action Theory. Bachelor’s Thesis, Colorado State University, Fort Collins, CO, USA, 2009. [Google Scholar]
- Bhatt, R.; Thakker, R.; Sukhadia, O.; Kunadia, S.; Kumar, A.; Kiran, M.B. Challenges In Implementation of Critical Path Method—A Review. In Proceedings of the 1st Australian International Conference on Industrial Engineering and Operations Management, Sydney, Australia, 21–22 December 2022. [Google Scholar] [CrossRef]
- Ragel, L.J.B.; Subia, G.S.; Mina, J.C.; Campos, R.B., Jr. Limitations Of Pert/Cpm In Construction Management Planning: Inputs To Mathematics In Architecture Education. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 5218–5223. [Google Scholar] [CrossRef]
- Ming, L.; Heng, L. Resource-Activity Critical-Path Method for Construction Planning. J. Constr. Eng. Manag. 2003, 129, 412–420. [Google Scholar] [CrossRef]
- Zhong, D.H.; Zhang, J.S. New Method for Calculating Path Float in Program Evaluation and Review Technique (PERT). J. Constr. Eng. Manag. 2003, 129, 501–506. [Google Scholar] [CrossRef]
- Malcolm, D.G.; Roseboom, J.H.; Clark, C.E.; Fazar, W. Application of a Technique for Research and Development Program Evaluation. Oper. Res. 1959, 7, 646–669. [Google Scholar] [CrossRef]
- Miller, R.W. Program Cost Uncertainty: Prediction and Control Using PERT Techniques. Acad. Manag. Proc. 2011, 1962, 124–132. [Google Scholar] [CrossRef]
- Van Slyke, R.M. Monte Carlo Methods and the PERT Problem. Oper. Res. 1963, 11, 839–860. [Google Scholar] [CrossRef]
- Kuklan, H.; Erdem, E.; Nasri, F.; Paknejad, M.J. Project Planning and Control: An Enhanced PERT Network. Int. J. Proj. Manag. 1993, 11, 87–92. [Google Scholar] [CrossRef]
- Kirytopoulos, K.A.; Leopoulos, V.N.; Diamantas, V.K. PERT vs. Monte Carlo Simulation along with the Suitable Distribution Effect. Int. J. Proj. Organ. Manag. 2008, 1, 24. [Google Scholar] [CrossRef]
- Ganame, P.; Chaudhari, P. Construction Building Schedule Risk Analysis Using Monte-Carlo Simulation. Int. Res. J. Eng. Technol. 2015, 2, 1402–1406. [Google Scholar]
- Hendradewa, A.P. Schedule Risk Analysis by Different Phases of Construction Project Using CPM-PERT and Monte-Carlo Simulation. IOP Conf. Ser.Mater. Sci. Eng. 2019, 528, 012035. [Google Scholar] [CrossRef]
- Razaque, A.; Bach, C.; Salama, N.; Alotaibi, A. Fostering Project Scheduling and Controlling Risk Management. arXiv 2012, arXiv:1210.2021. [Google Scholar] [CrossRef]
- David, H.T. Schedule Risk Analysis Simplified|PMI. PM Netw. 1996, 10, 25–32. [Google Scholar]
- Acebes, F.; Poza, D.; Gonzalez-Varona, J.M.; Pajares, J.; Lopez-Paredes, A. On the Project Risk Baseline: Integrating Aleatory Uncertainty into Project Scheduling. Comput. Ind. Eng. 2021, 160, 107537. [Google Scholar] [CrossRef]
- Isah, M.A.; Kim, B.-S. Integrating Schedule Risk Analysis with Multi-Skilled Resource Scheduling to Improve Resource-Constrained Project Scheduling Problems. Appl. Sci. 2021, 11, 650. [Google Scholar] [CrossRef]
- Moselhi, O.; Esfahan, N.R. Compression of Project Schedules Using the Analytical Hierarchy Process. J. Multi-Criteria Decis. Anal. 2012, 19, 67–78. [Google Scholar] [CrossRef]
- Zeng, J.; An, M.; Smith, N.J. Application of a Fuzzy Based Decision Making Methodology to Construction Project Risk Assessment. Int. J. Proj. Manag. 2007, 25, 589–600. [Google Scholar] [CrossRef]
- Subramanyan, H.; Sawant, P.H.; Bhatt, V. Construction Project Risk Assessment: Development of Model Based on Investigation of Opinion of Construction Project Experts from India. J. Constr. Eng. Manag. 2012, 138, 409–421. [Google Scholar] [CrossRef]
- Enny, M.M.; Purba, H.H. Construction Project Risk Analysis Based on Fuzzy Analytical Hierarchy Process (F-AHP): A Literature Review. Adv. Res. Civ. Eng. 2021, 3, 1–20. [Google Scholar]
- Tüysüz, F.; Kahraman, C. Project Risk Evaluation Using a Fuzzy Analytic Hierarchy Process: An Application to Information Technology Projects. Int. J. Intell. Syst. 2006, 21, 559–584. [Google Scholar] [CrossRef]
- Zhu, K.-J.; Jing, Y.; Chang, D.-Y. A Discussion on Extent Analysis Method and Applications of Fuzzy AHP. Eur. J. Oper. Res. 1999, 116, 450–456. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Luo, Y.; Hua, Z. On the Extent Analysis Method for Fuzzy AHP and Its Applications. Eur. J. Oper. Res. 2008, 186, 735–747. [Google Scholar] [CrossRef]
- Shapiro, A.; Koissi, M.-C.; Risk Assessment Applications of Fuzzy Logic. Casualty Actuarial Society, Canadian Institute of Actuaries, Society of Actuaries. 2015. Available online: https://www.soa.org/globalassets/assets/files/research/projects/2015-risk-assess-apps-fuzzy-logic.pdf (accessed on 24 April 2025).
- Chang, D.-Y. Applications of the extent analysis method on fuzzy AHP. Eur. J. Oper. Res. 1996, 95, 649–655. [Google Scholar] [CrossRef]
- Fan, C.-F.; Yu, Y.-C. BBN-Based Software Project Risk Management. J. Syst. Softw. 2004, 73, 193–203. [Google Scholar] [CrossRef]
- Vahid, K.; Fenton, N.E.; Neil, M. Project Scheduling: Improved Approach to Incorporate Uncertainty Using Bayesian Networks. Proj. Manag. J. 2007, 38, 39–49. [Google Scholar] [CrossRef]
- Trucco, P.; Leva, M.C. BN Applications in Operational Risk Analysis: Scope, Limitations and Methodological Requirements. In Bayesian Networks; Premchaiswadi, W., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0556-5. Available online: http://www.intechopen.com/books/bayesian-networks/bn-applications-in-operational-risk-analysis-scope-limitations-and-methodological-requirements (accessed on 24 April 2025).
- Kyrimi, E.; McLachlan, S.; Dube, K.; Neves, M.R.; Fahmi, A.; Fenton, N. A Comprehensive Scoping Review of Bayesian Networks in Healthcare: Past, Present and Future. Artif. Intell. Med. 2021, 117, 102108. [Google Scholar] [CrossRef]
- Lorterapong, P.; Moselhi, O. Project-Network Analysis Using Fuzzy Sets Theory. J. Constr. Eng. Manag. 1996, 122, 308–318. [Google Scholar] [CrossRef]
- Long, L.D.; Ohsato, A. Fuzzy Critical Chain Method for Project Scheduling under Resource Constraints and Uncertainty. Int. J. Proj. Manag. 2008, 26, 688–698. [Google Scholar] [CrossRef]
- Song, J.; Martens, A.; Vanhoucke, M. Using Schedule Risk Analysis with Resource Constraints for Project Control. Eur. J. Oper. Res. 2021, 288, 736–752. [Google Scholar] [CrossRef]
Technique | Description | Studies Applying in Road/Highway Project Risk Assessment |
---|---|---|
Risk Matrix | Categorizes risks by likelihood and impact. | FHWA [8], Karaman et al. [13], Lv et al. [14] |
SWOT Analysis | Analyzes Strengths, Weaknesses, Opportunities, and Threats. | Larsen et al. [15] |
Checklists | Predefined list of risks based on experience. | FHWA [8], NCDOT [16], Le et al. [17] |
Delphi Method | Iterative expert-based risk identification. | Lv et al. [14], Wu et al. [18], Mohamed [19], Fathi & Shrestha [20], Pratama et al. [21] |
Expert Judgment | Leverages expert opinions for risk prioritization. | Karaman et al. [13], Lv et al. [14], Pratama et al. [21], Ariyanto et al. [22], Sharma & Trivedi [23], Gain & Mishra [24], Koulinas et al. [25], Senić et al. [26] |
Brainstorming | Group-based generation of risks. | FHWA [8], NYSDOT [27] |
Cause-and-Effect Diagram | Identifies root causes of risks. | * Oktaviani et al. [28] |
Root Cause Analysis | Identifies fundamental causes of risks. | Al-Zwainy & Amer [29], Ahmed & Rezouki [30] |
Scenario Analysis | Explores hypothetical risk scenarios. | Salling [31] |
Failure Mode and Effects Analysis | Evaluates potential failure modes and impacts. | Lv et al. [14], Sharma & Trivedi [23], Gain & Mishra [24] |
Risk Categorization | Group risks into categories for analysis. | Ariyanto et al. [22], Koulinas et al. [25], Senić et al. [26] |
Risk Breakdown Structure | Organizes risks hierarchically. | El-Sayegh & Mansour [32], Jeon et al. [33] |
HAZOP (hazard and operability study) | Structured evaluation of hazards. | Hanum et al. [34] |
Technique | Description | Studies Applying in Road/Highway Project Risk Assessment |
---|---|---|
Monte Carlo Simulation | Uses random sampling to model uncertainties and generate probability distributions. | Salling [31], Arifani & Prakoso [35], Kameshwar et al. [36] |
Expected Monetary Value | Calculates the weighted average of possible financial outcomes based on probabilities. | Arifani and Prakoso [35] |
Probability–Impact | Quantifies risks using combined probability and impact scores. | Hillson [4], Karaman et al. [13], Ward [17], El-Sayegh & Mansour [32], Williams [37], Charette [38], Han et al. [39], Baccarini & Archer [40], Chapman and Ward [41], Cagno et al. [42], Franke [43] |
Fault Tree Analysis (FTA) | Analyzes system failures through a top-down logical diagram. | Davis-McDaniel et al. [44], Gacevski et al. [45], Chun [46], Chen et al. [47] |
Event Tree Analysis (ETA) | Analyzes scenarios branching from an initiating event. | Hong [48] |
Decision Tree Analysis | Branching diagram of decisions and risks. | Arifani & Prakoso [35], Kameshwar et al. [36] |
Analytic Hierarchy Process | Prioritize risks using pairwise comparisons in a structured process. | Lv et al. [14], Wu et al. [18], Ariyanto et al. [22], Koulinas et al. [25] |
Sensitivity Analysis | Examines how input changes affect project outcomes. | (Salling, 2013) [31] |
Fuzzy Set Theory | Handles vague data using Fuzzy Logic to quantify risks. | Mohamed [19], Pratama et al. [21], Andrić et al. [49] |
Cost Risk Analysis | Quantifies variability in project budgets to estimate cost overruns. | Baek et al. [50], Molenaar [51] |
Bayesian Networks | Model dependencies and calculates conditional probabilities using Bayes’ theorem. | Mohamed [19], * Trucco et al. [52] |
Network Theory | Model dependencies and risks in interconnected systems. | Ahmed et al. [53], Deng et al. [54], Sasidharan et al. [55] |
Markov Chains | Uses probabilistic models to predict system transitions based on current state conditions. | Obare & Muraya [56], Besenczi et al. [57], Salman, & Gursoy [58] |
Technique | Description | References |
---|---|---|
CPM | Identifies the longest path to determine minimum duration. | Wingate [59], Bordley & Tennent [60], Mohammed et al. [61], Aras & Surkis [62] |
PERT | Uses three-point estimates for probabilistic durations. | Aras & Surkis [62], Onifade [63], Grunow [64] |
Gantt Charts | Visual bar charts showing tasks, durations, and progress. | Kumar & Krishnamoorthi [65], Herbsman [66], Harris & Evans [67] |
Line of Balance (LoB) | Graphical method for repetitive tasks ensuring continuity. | Khachi [68], Hegazy [69], Vargas & Moreira [70], Lutz & Halpin [71], Arditi et al. [72], Tongthong [73] |
Precedence Diagramming Method (PDM) | Graphically represents task dependencies. | Romadhona et al. [74], Hambatan [75], Novitasari et al. [76] |
Technique | Type | Strengths | Limitations |
---|---|---|---|
P-I Matrix | Qualitative | Simple, intuitive, widely used in early project phases | Over-simplified, lacks dynamic risk behavior modeling |
MCS | Quantitative | Handles uncertainty probabilistically; effective for cost/duration estimation | Assumes independence among variables; computational load; correlation issues |
FST | Hybrid (Quali–Quant) | Captures imprecision and ambiguity in expert judgment | Subjective membership functions; complex validation and implementation |
AHP | Qualitative | Structured decision-making; supports pairwise comparison | Sensitive to bias; fails to capture ambiguity in judgment |
CPM | Deterministic Scheduling | Well-established; clear sequence planning | Rigid, ignores uncertainty; lacks feedback mechanisms |
PERT | Probabilistic Scheduling | Incorporates uncertainty with three-point estimation | Optimism bias; sequence sensitivity; assumes beta distribution |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhasmukhambetova, A.; Evdorides, H.; Davies, R.J. Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies. Future Transp. 2025, 5, 85. https://doi.org/10.3390/futuretransp5030085
Zhasmukhambetova A, Evdorides H, Davies RJ. Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies. Future Transportation. 2025; 5(3):85. https://doi.org/10.3390/futuretransp5030085
Chicago/Turabian StyleZhasmukhambetova, Aigul, Harry Evdorides, and Richard J. Davies. 2025. "Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies" Future Transportation 5, no. 3: 85. https://doi.org/10.3390/futuretransp5030085
APA StyleZhasmukhambetova, A., Evdorides, H., & Davies, R. J. (2025). Integrating Risk Assessment and Scheduling in Highway Construction: A Systematic Review of Techniques, Challenges, and Hybrid Methodologies. Future Transportation, 5(3), 85. https://doi.org/10.3390/futuretransp5030085