Real-Time Applications of Biophysiological Markers in Virtual-Reality Exposure Therapy: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection
2.3. Data Extraction
2.4. Risk of Bias
3. Results
4. Discussion
4.1. Technologies
4.2. Biophysiological Markers
4.3. Clinical Contexts
4.4. Future Directions
4.5. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jerdan, S.W.; Grindle, M.; van Woerden, H.C.; Kamel Boulos, M.N. Head-Mounted Virtual Reality and Mental Health: Critical Review of Current Research. JMIR Serious Games 2018, 6, e14. [Google Scholar] [CrossRef] [PubMed]
- Imel, Z.E.; Caperton, D.D.; Tanana, M.; Atkins, D.C. Technology-enhanced human interaction in psychotherapy. J. Couns. Psychol. 2017, 64, 385–393. [Google Scholar] [CrossRef]
- Abramowitz, J.S. The Practice of Exposure Therapy: Relevance of Cognitive-Behavioral Theory and Extinction Theory. Behav. Ther. 2013, 44, 548–558. [Google Scholar] [CrossRef]
- Beele, G.; Liesong, P.; Bojanowski, S.; Hildebrand, K.; Weingart, M.; Asbrand, J.; Correll, C.U.; Morina, N.; Uhlhaas, P.J. Virtual Reality Exposure Therapy for Reducing School Anxiety in Adolescents: Pilot Study. JMIR Ment. Health 2024, 11, e56235. [Google Scholar] [CrossRef]
- Hembree, E.A.; Rauch, S.A.M.; Foa, E.B. Beyond the manual: The insider’s guide to Prolonged Exposure therapy for PTSD. Cogn. Behav. Pract. 2003, 10, 22–30. [Google Scholar] [CrossRef]
- Trpkovici, M.; Makai, A.; Prémusz, V.; Ács, P. The possible application of virtual reality for managing anxiety in athletes. Front. Sports Act. Living 2025, 7, 149354. [Google Scholar] [CrossRef] [PubMed]
- Kuleli, D.; Tyson, P.; Davies, N.H.; Zeng, B. Examining the comparative effectiveness of virtual reality and in-vivo exposure therapy on social anxiety and specific phobia: A systematic review & meta-analysis. J. Behav. Cogn. Ther. 2025, 35, 100524. [Google Scholar] [CrossRef]
- Carl, E.; Stein, A.T.; Levihn-Coon, A.; Pogue, J.R.; Rothbaum, B.; Emmelkamp, P.; Asmundson, G.J.G.; Carlbring, P.; Powers, M.B. Virtual reality exposure therapy for anxiety and related disorders: A meta-analysis of randomized controlled trials. J. Anxiety Disord. 2019, 61, 27–36. [Google Scholar] [CrossRef]
- Deacon, B.J.; Farrell, N.R. Therapist Barriers to the Dissemination of Exposure Therapy. In Handbook of Treating Variants and Complications in Anxiety Disorders; Storch, E.A., McKay, D., Eds.; Springer: New York, NY, USA, 2013; pp. 363–373. [Google Scholar]
- Jonathan, N.T.; Bachri, M.R.; Wijaya, E.; Ramdhan, D.; Chowanda, A. The efficacy of virtual reality exposure therapy (VRET) with extra intervention for treating PTSD symptoms. Procedia Comput. Sci. 2023, 216, 252–259. [Google Scholar] [CrossRef]
- Seuling, P.D.; Czernin, N.S.; Schiele, M.A. Virtual Reality exposure therapy in the treatment of public speaking anxiety and social anxiety disorder. Neurosci. Appl. 2024, 3, 104074. [Google Scholar] [CrossRef] [PubMed]
- Hawajri, O.; Jennifer, L.; and Suominen, S. Virtual Reality Exposure Therapy as a Treatment Method Against Anxiety Disorders and Depression-A Structured Literature Review. Issues Ment. Health Nurs. 2023, 44, 245–269. [Google Scholar] [CrossRef]
- Horigome, T.; Kurokawa, S.; Sawada, K.; Kudo, S.; Shiga, K.; Mimura, M.; Kishimoto, T. Virtual reality exposure therapy for social anxiety disorder: A systematic review and meta-analysis. Psychol. Med. 2020, 50, 2487–2497. [Google Scholar] [CrossRef]
- Halbig, A.; Latoschik, M.E. A Systematic Review of Physiological Measurements, Factors, Methods, and Applications in Virtual Reality. Front. Virtual Real. 2021, 2, 694567. [Google Scholar] [CrossRef]
- Martens, M.A.; Antley, A.; Freeman, D.; Slater, M.; Harrison, P.J.; Tunbridge, E.M. It feels real: Physiological responses to a stressful virtual reality environment and its impact on working memory. J. Psychopharmacol. 2019, 33, 1264–1273. [Google Scholar] [CrossRef]
- Wiederhold, B.K.; Jang, D.P.; Kim, S.I.; Wiederhold, M.D. Physiological Monitoring as an Objective Tool in Virtual Reality Therapy. CyberPsychol. Behav. 2002, 5, 77–82. [Google Scholar] [CrossRef]
- Hanshans, C.; Amler, T.; Zauner, J.; Bröll, L. Inducing and measuring acute stress in virtual reality: Evaluation of canonical physiological stress markers and measuring methods. J. Environ. Psychol. 2024, 94, 102107. [Google Scholar] [CrossRef]
- Diemer, J.; Mühlberger, A.; Pauli, P.; Zwanzger, P. Virtual reality exposure in anxiety disorders: Impact on psychophysiological reactivity. World J. Biol. Psychiatry 2014, 15, 427–442. [Google Scholar] [CrossRef]
- Rahman, M.A.; Brown, D.J.; Mahmud, M.; Harris, M.; Shopland, N.; Heym, N.; Sumich, A.; Turabee, Z.B.; Standen, B.; Downes, D.; et al. Enhancing biofeedback-driven self-guided virtual reality exposure therapy through arousal detection from multimodal data using machine learning. Brain Inform. 2023, 10, 14. [Google Scholar] [CrossRef]
- Šalkevicius, J.; Damaševičius, R.; Maskeliunas, R.; Laukienė, I. Anxiety Level Recognition for Virtual Reality Therapy System Using Physiological Signals. Electronics 2019, 8, 1039. [Google Scholar] [CrossRef]
- Norrholm, S.D.; Jovanovic, T.; Gerardi, M.; Breazeale, K.G.; Price, M.; Davis, M.; Duncan, E.; Ressler, K.J.; Bradley, B.; Rizzo, A.; et al. Baseline psychophysiological and cortisol reactivity as a predictor of PTSD treatment outcome in virtual reality exposure therapy. Behav. Res. Ther. 2016, 82, 28–37. [Google Scholar] [CrossRef]
- Volovik, M.G.; Belova, A.N.; Kuznetsov, A.N.; Polevaia, A.V.; Vorobyova, O.V.; Khalak, M.E. Use of Virtual Reality Techniques to Rehabilitate Military Veterans with Post-Traumatic Stress Disorder (Review). Sovrem Tekhnologii Med. 2023, 15, 74–85. [Google Scholar] [CrossRef]
- Mazgelytė, E.; Rekienė, V.; Dereškevičiūtė, E.; Petrėnas, T.; Songailienė, J.; Utkus, A.; Chomentauskas, G.; Karčiauskaitė, D. Effects of Virtual Reality-Based Relaxation Techniques on Psychological, Physiological, and Biochemical Stress Indicators. Healthcare 2021, 9, 1729. [Google Scholar] [CrossRef]
- Katz, A.C.; Norr, A.; Buck, M.; Benjamin, F.; Emily, E.-S.; Amanda, K.-W.; Patricia, Z.; Kimberlee, S.; Derek, J.; Holloway, K.; et al. Changes in physiological reactivity in response to the trauma memory during prolonged exposure and virtual reality exposure therapy for posttraumatic stress disorder. Psychol. Trauma Theory Res. Pract. Policy 2020, 12, 756–764. [Google Scholar] [CrossRef] [PubMed]
- Richesin, M.T.; Baldwin, D.R.; Wicks, L.A. Art making and virtual reality: A comparison study of physiological and psychological outcomes. Arts Psychother. 2021, 75, 101823. [Google Scholar] [CrossRef]
- Sakib, M.N.; Yadav, M.; Chaspari, T.; Behzadan, A.H. Coupling virtual reality and physiological markers to improve public speaking performance. In Proceedings of the 19th International Conference on Construction Applications of Virtual Reality (CONVR2019), Bangkok, Thailand, 13–15 November 2019; pp. 171–180. [Google Scholar]
- Chand, K.; Chandra, S.; Dutt, V. Raga Bhairavi in virtual reality reduces stress-related psychophysiological markers. Sci. Rep. 2024, 14, 24816. [Google Scholar] [CrossRef]
- Kothgassner, O.D.; Goreis, A.; Bauda, I.; Ziegenaus, A.; Glenk, L.M.; Felnhofer, A. Virtual reality biofeedback interventions for treating anxiety: A systematic review, meta-analysis and future perspective. Wien. Klin. Wochenschr. 2022, 134, 49–59. [Google Scholar] [CrossRef]
- Lüddecke, R.; Felnhofer, A. Virtual Reality Biofeedback in Health: A Scoping Review. Appl. Psychophysiol. Biofeedback 2022, 47, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Chittaro, L.; Serafini, M.; Vulcano, Y. Virtual reality experiences for breathing and relaxation training: The effects of real vs. placebo biofeedback. Int. J. Hum.-Comput. Stud. 2024, 188, 103275. [Google Scholar] [CrossRef]
- Kerr, J.I.; Weibel, R.P.; Naegelin, M.; Ferrario, A.; Schinazi, V.R.; La Marca, R.; Hoelscher, C.; Nater, U.M.; von Wangenheim, F. The effectiveness and user experience of a biofeedback intervention program for stress management supported by virtual reality and mobile technology: A randomized controlled study. BMC Digital Health 2023, 1, 42. [Google Scholar] [CrossRef]
- Lindner, P. Better, Virtually: The Past, Present, and Future of Virtual Reality Cognitive Behavior Therapy. Int. J. Cogn. Ther. 2021, 14, 23–46. [Google Scholar] [CrossRef]
- Bălan, O.; Moldoveanu, A.; Leordeanu, M. A Machine Learning Approach to Automatic Phobia Therapy with Virtual Reality; Springer International Publishing: Cham, Switzerland, 2021; pp. 607–636. [Google Scholar]
- Petrescu, L.; Petrescu, C.; Mitruț, O.; Moise, G.; Moldoveanu, A.; Moldoveanu, F.; Leordeanu, M. Integrating Biosignals Measurement in Virtual Reality Environments for Anxiety Detection. Sensors 2020, 20, 7088. [Google Scholar] [CrossRef]
- Premkumar, P.; Heym, N.; Brown, D.J.; Battersby, S.; Sumich, A.; Huntington, B.; Daly, R.; Zysk, E. The Effectiveness of Self-Guided Virtual-Reality Exposure Therapy for Public-Speaking Anxiety. Front. Psychiatry 2021, 12, 694610. [Google Scholar] [CrossRef]
- Shin, B.; Oh, J.; Kim, B.-H.; Kim, H.E.; Kim, H.; Kim, S.; Kim, J.-J. Effectiveness of Self-Guided Virtual Reality–Based Cognitive Behavioral Therapy for Panic Disorder: Randomized Controlled Trial. JMIR Ment. Health 2021, 8, e30590. [Google Scholar] [CrossRef]
- Donker, T.; Cornelisz, I.; van Klaveren, C.; van Straten, A.; Carlbring, P.; Cuijpers, P.; van Gelder, J.-L. Effectiveness of Self-guided App-Based Virtual Reality Cognitive Behavior Therapy for Acrophobia: A Randomized Clinical Trial. JAMA Psychiatry 2019, 76, 682–690. [Google Scholar] [CrossRef]
- Peer Review of Electronic Search Strategies: 2015 Guideline Explanation and Elaboration (PRESS E&E); Canada’s Drug Agency: Ottawa, ON, Canada. 2015. Available online: https://www.cda-amc.ca/sites/default/files/pdf/CP0015_PRESS_Update_Report_2016.pdf (accessed on 17 June 2025).
- Covidence Systematic Review Software, Veritas Health Innovation: Melbourne, Australia. Available online: www.covidence.org (accessed on 16 June 2025).
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-IV; American Psychiatric Association: Washington, DC, USA, 1994; Volume 4. [Google Scholar]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Savović, J.; Page, M.J.; Elbers, R.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in a randomized trial. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.5; Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; Cochrane: London, UK, 2024. Available online: https://www.cochrane.org/authors/handbooks-and-manuals/handbook (accessed on 16 June 2025).
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef]
- Bălan, O.; Moise, G.; Moldoveanu, A.; Leordeanu, M.; Moldoveanu, F. An Investigation of Various Machine and Deep Learning Techniques Applied in Automatic Fear Level Detection and Acrophobia Virtual Therapy. Sensors 2020, 20, 496. [Google Scholar] [CrossRef]
- Gaggioli, A.; Pallavicini, F.; Morganti, L.; Serino, S.; Scaratti, C.; Briguglio, M.; Crifaci, G.; Vetrano, N.; Giulintano, A.; Bernava, G.; et al. Experiential Virtual Scenarios With Real-Time Monitoring (Interreality) for the Management of Psychological Stress: A Block Randomized Controlled Trial. J. Med. Internet Res. 2014, 16, e167. [Google Scholar] [CrossRef]
- Gorini, A.; Pallavicini, F.; Algeri, D.; Repetto, C.; Gaggioli, A.; Riva, G. Virtual reality in the treatment of generalized anxiety disorders. Stud. Health Technol. Inform. 2010, 154, 39–43. [Google Scholar]
- Kritikos, J.; Alevizopoulos, G.; Koutsouris, D. Personalized Virtual Reality Human-Computer Interaction for Psychiatric and Neurological Illnesses: A Dynamically Adaptive Virtual Reality Environment That Changes According to Real-Time Feedback From Electrophysiological Signal Responses. Front. Hum. Neurosci. 2021, 15, 596980. [Google Scholar] [CrossRef]
- Mevlevioğlu, D.; Tabirca, S.; Murphy, D. Real-Time Classification of Anxiety in Virtual Reality Therapy Using Biosensors and a Convolutional Neural Network. Biosensors 2024, 14, 131. [Google Scholar] [CrossRef]
- Pallavicini, F.; Algeri, D.; Repetto, C.; Gorini, A.; Riva, G. Biofeedback virtual reality and mobile phones in the treatment of generalized anxiety disorder (GAD): A phase-2 controlled clinical trial. J. Cyber Ther. Rehabil. 2009, 2, 315–327. [Google Scholar]
- Bekele, E.; Wade, J.; Bian, D.; Fan, J.; Swanson, A.; Warren, Z.; Sarkar, N. Multimodal adaptive social interaction in virtual environment (MASI-VR) for children with Autism spectrum disorders (ASD). In Proceedings of the 2016 IEEE Virtual Reality (VR), Greenville, SC, USA, 19–23 March 2016; pp. 121–130. [Google Scholar]
- Kasimova, L.N.; Kuznetsov, A.N.; Kropinova, I.I.; Kuznetsov, D.V.; Volovik, M.G.; Svyatogor, M.V.; Sychugov, E.M.; Borovskoy, G.Y.; Khalak, M.E. Comprehensive Assessment of Combatants’ Psychological and Psychophysiological State in Exposure Therapy of Post-Traumatic Stress Disorder Using Virtual Reality. Sovrem Tekhnologii Med. 2024, 16, 35–42. [Google Scholar] [CrossRef]
- Klein Haneveld, L.; Dekkers, T.; Bouman, Y.H.A.; Scholten, H.; Weerdmeester, J.; Kelders, S.M.; Kip, H. The Effect of the Virtual Reality-Based Biofeedback Intervention DEEP on Stress, Emotional Tension, and Anger in Forensic Psychiatric Inpatients: Mixed Methods Single-Case Experimental Design. JMIR Form. Res. 2025, 9, e65206. [Google Scholar] [CrossRef]
- Marques, B.; Moreira, D.; Neves, M.; Bras, S.; Fernandes, J.M.; Potel, M. Battle Against Your Fears: Virtual Reality Serious Games and Physiological Analysis for Phobia Treatment. IEEE Comput. Graph. Appl. 2025, 45, 67–75. [Google Scholar] [CrossRef]
- Pratviel, Y.; Bouny, P.; Deschodt-Arsac, V. Immersion in a relaxing virtual reality environment is associated with similar effects on stress and anxiety as heart rate variability biofeedback. Front. Virtual Real. 2024, 5, 1358981. [Google Scholar] [CrossRef]
- Premkumar, P.; Heym, N.; Myers, J.A.C.; Formby, P.; Battersby, S.; Sumich, A.L.; Brown, D.J. Augmenting self-guided virtual-reality exposure therapy for social anxiety with biofeedback: A randomised controlled trial. Front. Psychiatry 2024, 15, 1467141. [Google Scholar] [CrossRef]
- Wechsler, T.F.; Kocur, M.; Schumacher, S.; Rubenbauer, M.; Ruider, A.; Brockelmann, M.; Lankes, M.; Wolff, C.; Mühlberger, A. Looking fear in the eye: Gamified virtual reality exposure towards spiders for children using attention based feedback. Clin. Child. Psychol. Psychiatry 2024, 29, 1121–1136. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Gu, Y.; Hu, X. Brief Interactive Virtual Reality Mindfulness Training with Real-Time Biofeedback for Anxiety Reduction: A Pilot Study. Appl. Psychophysiol. Biofeedback 2025, 1–13. [Google Scholar] [CrossRef]
- Zeng, S.; Chen, L.; Lan, S. Research on the extension of respiratory interaction modalities in virtual reality technology and innovative methods for healing anxiety disorders. Sci. Rep. 2025, 15, 7936. [Google Scholar] [CrossRef] [PubMed]
- Planert, J.; Hildebrand, A.S.; Machulska, A.; Roesmann, K.; Neubert, M.; Pilgramm, S.; Pilgramm, J.; Klucken, T. Blended Mobile-Based Interventions With Integrated Virtual Reality Exposure Therapy for Anxiety Disorders: Thematic Analysis of Patient Perspectives. JMIR Hum. Factors 2025, 12, e60957. [Google Scholar] [CrossRef]
- Weerdmeester, J.; Van Rooij, M.M.; Granic, I. Visualization, self-efficacy, and locus of control in a virtual reality biofeedback video game for anxiety regulation. Cyberpsychol. Behav. Soc. Netw. 2022, 25, 360–368. [Google Scholar] [CrossRef]
- Kniffin, T.C.; Carlson, C.R.; Ellzey, A.; Eisenlohr-Moul, T.; Beck, K.B.; McDonald, R.; Jouriles, E.N. Using virtual reality to explore self-regulation in high-risk settings. Trauma Violence Abus. 2014, 15, 310–321. [Google Scholar] [CrossRef]
- Pinheiro, J.; de Almeida, R.S.; Marques, A. Emotional self-regulation, virtual reality and neurofeedback. Comput. Hum. Behav. Rep. 2021, 4, 100101. [Google Scholar] [CrossRef]
- Slater, M. Implicit learning through embodiment in immersive virtual reality. In Virtual, Augmented, and Mixed Realities in Education; Springer International Publishing: Cham, Switzerland, 2017; pp. 19–33. [Google Scholar]
- Bondesan, P.; Canal, A.; Fleury, S.; Boisadan, A.; Richir, S. Implicit learning of professional skills through immersive virtual reality: A media comparison study. In Proceedings of the 2025 IEEE Conference Virtual Reality and 3D User Interfaces (VR), Saint Malo, France, 8–12 March 2025; pp. 442–449. [Google Scholar]
- Houzangbe, S.; Christmann, O.; Gorisse, G.; Richir, S. Effects of Voluntary Heart Rate Control on User Engagement in Virtual Reality. In Proceedings of the 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), Osaka, Japan, 23–27 March 2019; pp. 982–983. [Google Scholar]
- Sukhija, A.; Goyal, H.; Sharma, B.; Angra, S. Accountability of Immersive Technologies in Healthcare: A Review. In Proceedings of the 2024 IEEE International Conference on Computing, Power and Communication Technologies (IC2PCT), Greater Noida, India, 9–10 February 2024; pp. 1898–1902. [Google Scholar]
- Schulteis, M.; Rothbaum, B.O. Ethical issues for the use of virtual reality in the psychological sciences. In Ethical issues in clinical Neuropsychology; Swets & Zeitlinger Publishers: Lisse, The Netherlands, 2002; pp. 243–277. [Google Scholar]
- Rudschies, C.; Schneider, I. Ethical, legal, and social implications (ELSI) of virtual agents and virtual reality in healthcare. Soc. Sci. Med. 2024, 340, 116483. [Google Scholar] [CrossRef] [PubMed]
- Hasan, S.; Alhaj, H.; Hassoulas, A. The Efficacy and Therapeutic Alliance of Augmented Reality Exposure Therapy in Treating Adults With Phobic Disorders: Systematic Review. JMIR Ment. Health 2023, 10, e51318. [Google Scholar] [CrossRef]
- Meyerbröker, K.; Morina, N.; Kerkhof, G.A.; Emmelkamp, P.M. Potential predictors of virtual reality exposure therapy for fear of flying: Anxiety sensitivity, self-efficacy and the therapeutic alliance. Cogn. Ther. Res. 2022, 46, 646–654. [Google Scholar] [CrossRef]
- Tremain, H.; McEnery, C.; Fletcher, K.; Murray, G. The therapeutic alliance in digital mental health interventions for serious mental illnesses: Narrative review. JMIR Ment. Health 2020, 7, e17204. [Google Scholar] [CrossRef]
- Meyerbröker, K.; Emmelkamp, P.M. Therapeutic processes in virtual reality exposure therapy: The role of cognitions and the therapeutic alliance. CyberTher. Rehabil. 2008, 1, 247–257. [Google Scholar]
- Varšová, K.; Juřík, V. Fostering therapeutic alliance and long-term benefits through virtual collaboration in VRET. In Proceedings of the International Psychological Applications Conference and Trends 2024, Porto, Portugal, 20–22 April 2024. [Google Scholar]
- Andersson, G.; Bergström, J.; Buhrman, M.; Carlbring, P.; Holländare, F.; Kaldo, V.; Nilsson-Ihrfelt, E.; Paxling, B.; Ström, L.; Waara, J. Development of a new approach to guided self-help via the Internet: The Swedish experience. J. Technol. Hum. Serv. 2008, 26, 161–181. [Google Scholar] [CrossRef]
- Marks, I.M.; Kenwright, M.; McDonough, M.; Whittaker, M.; Mataix-Cols, D. Saving clinicians’ time by delegating routine aspects of therapy to a computer: A randomized controlled trial in phobia/panic disorder. Psychol. Med. 2004, 34, 9–17. [Google Scholar] [CrossRef]
- Fagernäs, S.; Hamilton, W.; Espinoza, N.; Miloff, A.; Carlbring, P.; Lindner, P. What do users think about Virtual Reality relaxation applications? A mixed methods study of online user reviews using natural language processing. Internet Interv. 2021, 24, 100370. [Google Scholar] [CrossRef] [PubMed]
- Bernaerts, S.; Bonroy, B.; Daems, J.; Sels, R.; Struyf, D.; Gies, I.; van de Veerdonk, W. Virtual Reality for Distraction and Relaxation in a Pediatric Hospital Setting: An Interventional Study With a Mixed-Methods Design. Front. Digit. Health 2022, 4, 866119. [Google Scholar] [CrossRef]
- Seabrook, E.; Kelly, R.; Foley, F.; Theiler, S.; Thomas, N.; Wadley, G.; Nedeljkovic, M. Understanding How Virtual Reality Can Support Mindfulness Practice: Mixed Methods Study. J. Med. Internet Res. 2020, 22, e16106. [Google Scholar] [CrossRef]
- Khusainov, R.; Azzi, D.; Achumba, I.E.; Bersch, S.D. Real-time human ambulation, activity, and physiological monitoring: Taxonomy of issues, techniques, applications, challenges and limitations. Sensors 2013, 13, 12852–12902. [Google Scholar] [CrossRef]
- Weibel, R.P.; Grübel, J.; Zhao, H.; Thrash, T.; Meloni, D.; Hölscher, C.; Schinazi, V.R. Virtual reality experiments with physiological measures. J. Vis. Exp. JoVE 2018, 138, 58318. [Google Scholar]
- Tadayyoni, H.; Ramirez Campos, M.S.; Quevedo, A.J.U.; Murphy, B.A. Biomarkers of Immersion in Virtual Reality Based on Features Extracted from the EEG Signals: A Machine Learning Approach. Brain Sci. 2024, 14, 470. [Google Scholar] [CrossRef] [PubMed]
- Kober, S.E.; Neuper, C. Using auditory event-related EEG potentials to assess presence in virtual reality. Int. J. Hum.-Comput. Stud. 2012, 70, 577–587. [Google Scholar] [CrossRef]
- Savalle, E.; Pillette, L.; Won, K.; Argelaguet, F.; Lécuyer, A.; Macé, M.J.-M. Towards electrophysiological measurement of presence in virtual reality through auditory oddball stimuli. J. Neural Eng. 2024, 21, 046015. [Google Scholar] [CrossRef]
- Li, M.; Yu, P.; Shen, Y. A spatial and temporal transformer-based EEG emotion recognition in VR environment. Front. Hum. Neurosci. 2025, 19, 1517273. [Google Scholar] [CrossRef] [PubMed]
- Marcolin, F.; Olivetti, E.C.; Jimenez, I.A.C.; Passavanti, G.; Moos, S.; Vezzetti, E.; Celeghin, A. Stress assessment with EEG and machine learning in affective VR environments. Neurocomputing 2025, 638, 130185. [Google Scholar] [CrossRef]
- Niknam, S.; Duraisamy, S.; Botev, J.; Leiva, L.A. Brain Signatures of Time Perception in Virtual Reality. IEEE Trans. Vis. Comput. Graph. 2025, 31, 2535–2545. [Google Scholar] [CrossRef]
- Tehrani, B.M.; Wang, J.; Truax, D. Assessment of mental fatigue using electroencephalography (EEG) and virtual reality (VR) for construction fall hazard prevention. Eng. Constr. Archit. Manag. 2021, 29, 3593–3616. [Google Scholar] [CrossRef]
- Soufineyestani, M.; Dowling, D.; Khan, A. Electroencephalography (EEG) Technology Applications and Available Devices. Appl. Sci. 2020, 10, 7453. [Google Scholar] [CrossRef]
- Horvers, A.; Tombeng, N.; Bosse, T.; Lazonder, A.W.; Molenaar, I. Detecting Emotions through Electrodermal Activity in Learning Contexts: A Systematic Review. Sensors 2021, 21, 7869. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Ley, M.; Hanke, S. Emotion Recognition from Physiological Signal Analysis: A Review. Electron. Notes Theor. Comput. Sci. 2019, 343, 35–55. [Google Scholar] [CrossRef]
- Younis, E.M.; Zaki, S.M.; Kanjo, E.; Houssein, E.H. Evaluating ensemble learning methods for multi-modal emotion recognition using sensor data fusion. Sensors 2022, 22, 5611. [Google Scholar] [CrossRef]
- Zhu, X.; Song, J.; Liu, T.; Huang, S.; Yao, B. Electrodermal activity and its molecular mechanisms: Unraveling insights into skin diseases. Innov. Life 2024, 2, 100085. [Google Scholar] [CrossRef]
- Ragland, N.; Asarpota Asnani, A.; Roy, A.; Allen, D. Viewing a hot virtual reality augments thermoregulatory responses, lowering body temperature during prolonged exercise. Physiology 2025, 40, 1427. [Google Scholar] [CrossRef]
- Kocur, M.; Jackermeier, L.; Schwind, V.; Henze, N. The Effects of Avatar and Environment on Thermal Perception and Skin Temperature in Virtual Reality. In Proceedings of the CHI Conference on Human Factors in Computing Systems, Hamburg, Germany, 23–28 April 2023; p. 15. [Google Scholar]
- Rupp, M.A. Is it getting hot in here? The effects of VR headset microclimate temperature on perceived thermal discomfort, VR sickness, and skin temperature. Appl. Ergon. 2024, 114, 104128. [Google Scholar] [CrossRef]
- Jin, X.; Chai, S.; Tang, J.; Zhou, X.; Wang, K. Eye-Tracking in AR/VR: A Technological Review and Future Directions. IEEE Open J. Immersive Disp. 2024, 1, 146–154. [Google Scholar] [CrossRef]
- Alharbi, H. Explainable feature selection and deep learning based emotion recognition in virtual reality using eye tracker and physiological data. Front. Med. 2024, 11, 1438720. [Google Scholar] [CrossRef] [PubMed]
- Dillen, A.; Omidi, M.; Ghaffari, F.; Vanderborght, B.; Roelands, B.; Romain, O.; Nowé, A.; De Pauw, K. A shared robot control system combining augmented reality and motor imagery brain-computer interfaces with eye tracking. J. Neural Eng. 2024, 21, 056028. [Google Scholar] [CrossRef]
- Hickson, S.; Dufour, N.; Sud, A.; Kwatra, V.; Essa, I. Eyemotion: Classifying Facial Expressions in VR Using Eye-Tracking Cameras. In Proceedings of the 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa Village, HI, USA, 7–11 January 2019; pp. 1626–1635. [Google Scholar]
- Mughrabi, M.H.; Mutasim, A.K.; Stuerzlinger, W.; Batmaz, A.U. My Eyes Hurt: Effects of Jitter in 3D Gaze Tracking. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 310–315. [Google Scholar]
- Shu, L.; Xie, J.; Yang, M.; Li, Z.; Li, Z.; Liao, D.; Xu, X.; Yang, X. A Review of Emotion Recognition Using Physiological Signals. Sensors 2018, 18, 2074. [Google Scholar] [CrossRef]
- Zamkah, A.; Hui, T.; Andrews, S.; Dey, N.; Shi, F.; Sherratt, R.S. Identification of suitable biomarkers for stress and emotion detection for future personal affective wearable sensors. Biosensors 2020, 10, 40. [Google Scholar] [CrossRef]
- Kjærstad, H.L.; Jespersen, A.E.; Bech, J.L.; Weidemann, S.; Bjertrup, A.J.; Jacobsen, E.H.; Simonsen, S.; Glenthøj, L.B.; Nordentoft, M.; Reveles, K.; et al. Optimizing differential diagnostics and identifying transdiagnostic treatment targets using virtual reality. Eur. Neuropsychopharmacol. 2025, 92, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Korpal, P.; Jankowiak, K. Physiological and self-report measures in emotion studies: Methodological considerations. Pol. Psychol. Bull. 2018, 49, 475–481. [Google Scholar] [CrossRef]
- Bouchard, S.; Dumoulin, S.; Robillard, G.; Guitard, T.; Klinger, É.; Forget, H.; Loranger, C.; Roucaut, F.X. Virtual reality compared with in vivo exposure in the treatment of social anxiety disorder: A three-arm randomised controlled trial. Br. J. Psychiatry 2017, 210, 276–283. [Google Scholar] [CrossRef]
- Baghaei, N.; Chitale, V.; Hlasnik, A.; Stemmet, L.; Liang, H.N.; Porter, R. Virtual Reality for Supporting the Treatment of Depression and Anxiety: Scoping Review. JMIR Ment. Health 2021, 8, e29681. [Google Scholar] [CrossRef]
- Lan, L.; Sikov, J.; Lejeune, J.; Ji, C.; Brown, H.; Bullock, K.; Spencer, A.E. A Systematic Review of using Virtual and Augmented Reality for the Diagnosis and Treatment of Psychotic Disorders. Curr. Treat. Options Psychiatry 2023, 10, 87–107. [Google Scholar] [CrossRef]
- Failla, C.; Chilà, P.; Vetrano, N.; Doria, G.; Scarcella, I.; Minutoli, R.; Scandurra, A.; Gismondo, S.; Marino, F.; Pioggia, G. Virtual reality for autism: Unlocking learning and growth. Front. Psychol. 2024, 15, 1417717. [Google Scholar] [CrossRef] [PubMed]
- Kouijzer, M.; Kip, H.; Bouman, Y.H.A.; Kelders, S.M. Implementation of virtual reality in healthcare: A scoping review on the implementation process of virtual reality in various healthcare settings. Implement. Sci. Commun. 2023, 4, 67. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.; Taverner, T.; Gromala, D.; Tao, G.; Cordingley, E.; Sun, C. Virtual Reality Clinical Research: Promises and Challenges. JMIR Serious Games 2018, 6, e10839. [Google Scholar] [CrossRef]
- Baniasadi, T.; Ayyoubzadeh, S.M.; Mohammadzadeh, N. Challenges and Practical Considerations in Applying Virtual Reality in Medical Education and Treatment. Oman Med. J. 2020, 35, e125. [Google Scholar] [CrossRef]
- Wieczorek, A.; Schrank, F.; Renner, K.H.; Wagner, M. Psychological and physiological health outcomes of virtual reality-based mindfulness interventions: A systematic review and evidence mapping of empirical studies. Digit. Health 2024, 10, 20552076241272604. [Google Scholar] [CrossRef] [PubMed]
First Author Year Country | Study Type | Technology | Diagnostics | Groups | Participants % Female | Age M (SD) in Years | Physiological Measures | Real-Time Intervention |
---|---|---|---|---|---|---|---|---|
Bălan, O. 2020 Romania [44] | Exp. | SVM, kNN, LDA, RF, deep neural network models | Acrophobia | TG | n = 8 75% | 22–50 | EDA HR EEG | Fear detection to adapt therapy to each patient. |
Bekele, E. 2016 United States [50] | Exp. | Biopac (BioNomadix) Emotiv EPOC headset Unity 3D | ASD | TG | n = 6 0% | 15.77 (1.9) | Eye tracker EEG HR Skin temperature Respiration EDA | Gaze scanning reveals concealed full emotional expression. * |
CG | n = 6 0% | 15.20 (1.7) | ||||||
Gaggioli, A. 2014 Italy [45] | RCT | NeuroVR2 | Work-related stress in nurses and teachers | TG | n = 40 57.5% | 46.3 (7.7) | HR EEG HRV Respiration Gesture recognition | Monitoring dashboard for therapists. Relaxation elements adjust. * |
CG | n = 42 71.4% | 42.9 (10.5) | ||||||
WL | n = 39 51.3% | 39.6 (9.7) | ||||||
Gorini, A. 2010 Italy [46] | RCT | ESIEA VR and 3DVIA Virtools 4.1 | GAD | TG | n = 4 % nr | 18–50 | EDA HR | Relaxation elements adjust. * |
CG | n = 8 % nr | |||||||
WL | n = 8 % nr | |||||||
Kasimova, L. 2024 Russia [51] | Exp. | HTC Vive Focus 3 Callibri sensor | PTSD | TG | n = 31 0% | 35.61 (9.13) | HRV | Monitoring dashboard to correct the transmitted stimulus. |
CG | n = 38 0% | 24.68 (5.71) | ||||||
Klein Haneveld, L. 2025 The Netherlands [52] | Exp. | Oculus Rift | Aggression in forensic psychiatric inpatients | TG | n = 6 0% | 33.4 (9.3) | Respiration | Adaptation of flora in underwater world. * |
Kritikos, J. 2021 Greece [47] | RCT | Oculus Rift Arduino Unity 3D | Arachnophobia | TG | n = 18 50% | 18–72 | EDA | Number of spiders, size, speed, direction, bouncing. |
Marques, B. 2025 Portugal [53] | Exp. | Unity 3D Plux Biosignals | Arachnophobia and acrophobia | TG | n = 23 % nr | nr | HR Respiration | Monitoring dashboard to correct the transmitted stimulus. |
Mevlevioğlu, D. 2024 Ireland [48] | Exp. | Unity 3D | Subclinical anxiety | TG | n = 29 38% | 18–55 | EDA HR EEG | Anxiety level classification. Monitoring dashboard for therapists. |
Pallavicini, F. 2009 Italy [49] | RCT | GeForce GTX Titan X graphics card, Intel Core i7-5820 K processor. | GAD | TG | n = 4 75% | 41–51 | HR EDA | Relaxation elements adjust. * |
CG | n = 4 75% | |||||||
Pratviel, Y. 2024 France [54] | Exp. | Photoplethysmography sensor Unity | Stress and anxiety | TG | n = 36 25% | 19.2 (1.3) | HRV | Colour change representing cardiac coherence performance. * |
Premkumar, P. 2024 United Kingdom [55] | RCT | Microsoft Band 2 wristband Muse wireless EEG headband | SAD | TG | n = 38 86.8% | 25.47 (9.72) | HR EEG | Visual display at the back of the classroom. * |
CG | n = 35 62.9% | 30.44 (12.34) | ||||||
Wechsler, T. 2024 Germany [56] | Ext. | Unreal Engine 4 HTC VIVE Pro Eye display and eye tracker | Arachnophobia | TG | n = 11 18.2% | 10.27 (1.10) | Eye tracking | Make spiders dance or shrink. * |
CG | n = 10 80% | 9.40 (1.17) | ||||||
Xu, Q. 2025 China [57] | RCT | Polar H10 Unity 3D HTC VIVE headset | Subclinical anxiety | TG | n = 25 64% | 19.52 (1.92) | HRV | Monitoring dashboard for therapist. Visual transformation of environment. * |
CG | n = 25 72% | 19.76 (2.35) | ||||||
WL | n = 25 52% | 20.68 (2.73) | ||||||
Zeng, S. 2025 China [58] | Exp. | Emotiv EPOC headset Arduino Unreal Engine KY-037 sensor | Subclinical anxiety | TG | n = 24 50% | nr | EEG Respiration | Visual transformation of environment. * |
CG | n = 14 50% |
D1 | D2 | D3 | D4 | D5 | Overall | |
---|---|---|---|---|---|---|
Gaggioli [45] | ||||||
Gorini [46] | ||||||
Kritikos [47] | ||||||
Pallavicini [49] | ||||||
Premkumar [55] | ||||||
Xu [57] |
D1 | D2 | D3 | D4 | D5 | D6 | D7 | Overall | |
---|---|---|---|---|---|---|---|---|
Bălan [44] | ||||||||
Bekele [50] | ||||||||
Kasimova [59] | ||||||||
Klein Haneveld [52] | ||||||||
Marques [53] | ||||||||
Mevlevioğlu [48] | ||||||||
Pratviel [54] | ||||||||
Wechsler [56] | ||||||||
Zeng [58] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fradette, M.-J.; Azrak, J.; Cousineau, F.; Désilets, M.; Dumais, A. Real-Time Applications of Biophysiological Markers in Virtual-Reality Exposure Therapy: A Systematic Review. BioMedInformatics 2025, 5, 48. https://doi.org/10.3390/biomedinformatics5030048
Fradette M-J, Azrak J, Cousineau F, Désilets M, Dumais A. Real-Time Applications of Biophysiological Markers in Virtual-Reality Exposure Therapy: A Systematic Review. BioMedInformatics. 2025; 5(3):48. https://doi.org/10.3390/biomedinformatics5030048
Chicago/Turabian StyleFradette, Marie-Jeanne, Julie Azrak, Florence Cousineau, Marie Désilets, and Alexandre Dumais. 2025. "Real-Time Applications of Biophysiological Markers in Virtual-Reality Exposure Therapy: A Systematic Review" BioMedInformatics 5, no. 3: 48. https://doi.org/10.3390/biomedinformatics5030048
APA StyleFradette, M.-J., Azrak, J., Cousineau, F., Désilets, M., & Dumais, A. (2025). Real-Time Applications of Biophysiological Markers in Virtual-Reality Exposure Therapy: A Systematic Review. BioMedInformatics, 5(3), 48. https://doi.org/10.3390/biomedinformatics5030048