Causal Discovery for Patient Classification Using Health-Related Quality of Life Questionnaires
Abstract
:1. Introduction
2. Materials and Methods
2.1. Directed Acyclic Graph
2.2. Causal Binary Classification Algorithm
- Consider two distinct groups of patients (related to the patients’ HRQoL).
- Use a causal structure learning algorithm to estimate the CPDAG for each of the two patient groups, based on their answers to a specific HRQoL questionnaire. These CPDAGs represent the causal structure corresponding to each patient group. Denote these two CPDAGs by CPDAG1 and CPDAG2.
- Consider a new patient for whom we are interested in estimating the group they belong to. Add this new patient (answers to the HRQoL questionnaire) to both the first group of patients and the second group of patients. Estimate the causal structure (CPDAG) corresponding to the expanded first patient group (now additionally including the new patient) and to the expanded second patient group (similarly, additionally including the new patient). Denote these two CPDAGs by CPDAG1New and CPDAG2New.
- Use the Structural Hamming Distance (SHD) [48] to compare the CPDAG1New to the CPDAG1 (SHD(CPDAG1New, CPDAG1)), and the CPDAG2New to the CPDAG2 (SHD(CPDAG2New, CPDAG2)). The SHD compares two CPDAGs and represents the number of operations required to make these CPDAGs match [48], in particular, to add or delete an undirected edge, and add, remove, or reverse the orientation of an edge.
- If SHD(CPDAG1New, CPDAG1) < SHD(CPDAG2New, CPDAG2), the new patient is estimated to belong to the first group.If SHD(CPDAG1New, CPDAG1) > SHD(CPDAG2New, CPDAG2), the new patient is estimated to belong to the second group.If SHD(CPDAG1New, CPDAG1) = SHD(CPDAG2New, CPDAG2), the algorithm cannot conclude to which group the new patient belongs.
2.2.1. Simulation Study Design
- Generate random samples (patients) based on each one of the two DAGs (denoted as DAG1 and DAG2) using the rbn function with the R package bnlearn [49], V. 5.02 (specific details are provided as well at the https://github.com/teomoi/HRQoL-Synthetic-DAGs, accessed on 1 April 2025). The number represented the sample size in each case, namely the number of simulated patients (completed questionnaires), and received the values of 100, 500, 1000, and 5000.
- For each one of the two DAGs, and based, respectively, on the first random samples (out of the ), use the pc.stable function with the bnlearn R package, V. 5.02, to learn the CPDAG from the simulated data using the PC algorithm [50]. The PC algorithm is a constraint-based structure learning algorithm, with PC standing for Peter Spirtes and Clark Glymour [51,52]. These two CPDAGs will be denoted as CPDAG1 and CPDAG2.
- Add the random sample corresponding to DAG1 (denoted as Test1) to both the first random samples (out of the ) of DAG1 and, respectively, to the first random samples (out of the ) of DAG2. Similarly, add the random sample corresponding to DAG2 (denoted as Test2) to both the first random samples of DAG1 and, respectively, to the first random samples of DAG2. This resulted in four datasets, denoted, respectively, as DAG1Test1, DAG2Test1, DAG1Test2, and DAG2Test2, each of which included random samples.
- Use the pc.stable function to learn the CPDAGs from these four datasets, denoted, respectively, as CPDAG1Test1, CPDAG2Test1, CPDAG1Test2, and CPDAG2Test2.
- Use the shd function [49] to assess the differences between the CPDAGs based on the SHD. More specifically, use the SHD to compare the following:
- the CPDAG1Test1 to the CPDAG1 (SHD(CPDAG1Test1, CPDAG1));
- the CPDAG2Test1 to the CPDAG2 (SHD(CPDAG2Test1, CPDAG2));
- the CPDAG1Test2 to the CPDAG1 (SHD(CPDAG1Test2, CPDAG1));
- the CPDAG2Test2 to the CPDAG2 (SHD(CPDAG2Test2, CPDAG2)).
- Repeat steps 1–5 100,000 times.
- Compute the percentage of the cases (out of the 100,000 repetitions) that:
- the SHD(CPDAG1Test1, CPDAG1) was smaller, larger and equal to the SHD(CPDAG2Test1, CPDAG2),
- the SHD(CPDAG1Test2, CPDAG1) was smaller, larger and equal to the SHD(CPDAG2Test2, CPDAG2).
- Compute the adjusted percentage that:
- the SHD(CPDAG1Test1, CPDAG1) was smaller and larger to the SHD(CPDAG2Test1, CPDAG2),
- the SHD(CPDAG1Test2, CPDAG1) was smaller and larger to the SHD(CPDAG2Test2, CPDAG2).
2.2.2. Application Design
2.2.3. Computational Time
3. Results
3.1. Simulation Study
3.2. Application
4. Discussion
5. Limitations and Future Perspectives
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ware, J.E.; Sherbourne, C.D. The MOS 36-Item Short-Form Health Survey (SF-36): I. Conceptual Framework and Item Selection. Med. Care 1992, 30, 473–483. [Google Scholar] [CrossRef] [PubMed]
- The Whoqol Group. Development of the World Health Organization WHOQOL-BREF Quality of Life Assessment. Psychol. Med. 1998, 28, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.F.; Tulsky, D.S.; Gray, G.; Sarafian, B.; Linn, E.; Bonomi, A.; Silberman, M.; Yellen, S.B.; Winicour, P.; Brannon, J.; et al. The Functional Assessment of Cancer Therapy Scale: Development and Validation of the General Measure. J. Clin. Oncol. 1993, 11, 570–579. [Google Scholar] [CrossRef]
- Aaronson, N.K.; Ahmedzai, S.; Bergman, B.; Bullinger, M.; Cull, A.; Duez, N.J.; Filiberti, A.; Flechtner, H.; Fleishman, S.B.; de Haes, J.C.; et al. The European Organization for Research and Treatment of Cancer QLQ-C30: A Quality-of-Life Instrument for Use in International Clinical Trials in Oncology. JNCI J. Natl. Cancer Inst. 1993, 85, 365–376. [Google Scholar] [CrossRef]
- Herdman, M.; Gudex, C.; Lloyd, A.; Janssen, M.F.; Kind, P.; Parkin, D.; Bonsel, G.; Badia, X. Development and Preliminary Testing of the New Five-Level Version of EQ-5D (EQ-5D-5L). Qual. Life Res. 2011, 20, 1727–1736. [Google Scholar] [CrossRef]
- Bakas, T.; McLennon, S.M.; Carpenter, J.S.; Buelow, J.M.; Otte, J.L.; Hanna, K.M.; Ellett, M.L.; Hadler, K.A.; Welch, J.L. Systematic Review of Health-Related Quality of Life Models. Health Qual. Life Outcomes 2012, 10, 134. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, L.; Wei, Q.; Ou, R.; Hou, Y.; Liu, K.; Lin, J.; Yang, T.; Shang, H. Health-related Quality of Life in Patients with Multiple System Atrophy Using the EQ-5D-5L. Brain Behav. 2022, 12, e2774. [Google Scholar] [CrossRef] [PubMed]
- Cherchir, F.; Oueslati, I.; Yazidi, M.; Chaker, F.; Chihaoui, M. Assessment of Quality of Life in Patients with Permanent Hypoparathyroidism Receiving Conventional Treatment. J. Diabetes Metab. Disord. 2023, 22, 1617–1623. [Google Scholar] [CrossRef]
- Brzoska, P. Assessment of Quality of Life in Individuals with Chronic Headache. Psychometric Properties of the WHOQOL-BREF. BMC Neurol. 2020, 20, 267. [Google Scholar] [CrossRef]
- Bat-Erdene, E.; Hiramoto, T.; Tumurbaatar, E.; Tumur-Ochir, G.; Jamiyandorj, O.; Yamamoto, E.; Hamajima, N.; Oka, T.; Jadamba, T.; Lkhagvasuren, B. Quality of Life in the General Population of Mongolia: Normative Data on WHOQOL-BREF. PLoS ONE 2023, 18, e0291427. [Google Scholar] [CrossRef]
- Floris, F.; Comitini, F.; Leoni, G.; Moi, P.; Morittu, M.; Orecchia, V.; Perra, M.; Pilia, M.P.; Zappu, A.; Casini, M.R.; et al. Quality of Life in Sardinian Patients with Transfusion-Dependent Thalassemia: A Cross-Sectional Study. Qual. Life Res. 2018, 27, 2533–2539. [Google Scholar] [CrossRef] [PubMed]
- Pamuk, G.E.; Harmandar, F.; Ermantaş, N.; Harmandar, O.; Turgut, B.; Demir, M.; Vural, Ö. EORTC QLQ-C30 Assessment in Turkish Patients with Hematological Malignancies: Association with Anxiety and Depression. Ann. Hematol. 2008, 87, 305–310. [Google Scholar] [CrossRef] [PubMed]
- Dean, G.E.; Redeker, N.S.; Wang, Y.-J.; Rogers, A.E.; Dickerson, S.S.; Steinbrenner, L.M.; Gooneratne, N.S. Sleep, Mood, and Quality of Life in Patients Receiving Treatment for Lung Cancer. In Oncology Nursing Forum; NIH Public Access: Bethesda, MD, USA, 2013; Volume 40, pp. 441–451. [Google Scholar]
- Dean, G.E.; Sabbah, E.A.; Yingrengreung, S.; Ziegler, P.; Chen, H.; Steinbrenner, L.M.; Dickerson, S.S. Sleeping with the Enemy: Sleep and Quality of Life in Patients with Lung Cancer. Cancer Nurs. 2015, 38, 60–70. [Google Scholar] [CrossRef]
- Jackson, I.L.; Isah, A.; Arikpo, A.O. Assessing Health-Related Quality of Life of People with Diabetes in Nigeria Using the EQ-5D-5L: A Cross-Sectional Study. Sci. Rep. 2023, 13, 22536. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, L.; Chen, Z.; Chen, X.; Guo, Y.; Wang, X.; Dong, X.; Wang, T.; Zhang, L.; Qiu, Z.; et al. Health-related Quality of Life Measured by the Short Form 36 in Immune Thrombocytopenic Purpura: A Cross-sectional Survey in China. Eur. J. Haematol. 2007, 78, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Yao, H.; Lin, L.; Ji, J.; Shen, Q. Health-Related Quality of Life and Burden of Fatigue in Chinese Patients with Immune Thrombocytopenia: A Cross-Sectional Study. Indian J. Hematol. Blood Transfus. 2020, 36, 104–111. [Google Scholar] [CrossRef]
- Hossain, M.J.; Islam, M.W.; Munni, U.R.; Gulshan, R.; Mukta, S.A.; Miah, M.S.; Sultana, S.; Karmakar, M.; Ferdous, J.; Islam, M.A. Health-Related Quality of Life among Thalassemia Patients in Bangladesh Using the SF-36 Questionnaire. Sci. Rep. 2023, 13, 7734. [Google Scholar] [CrossRef]
- Efficace, F.; Platzbecker, U.; Breccia, M.; Cottone, F.; Carluccio, P.; Salutari, P.; Di Bona, E.; Borlenghi, E.; Autore, F.; Levato, L.; et al. Long-Term Quality of Life of Patients with Acute Promyelocytic Leukemia Treated with Arsenic Trioxide vs Chemotherapy. Blood Adv. 2021, 5, 4370–4379. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, C.; Spurden, D.; Piercy, J.; Rider, A.; Williams, R.; Mitra, D.; Wild, R.; Corsaro, M.; Kurosky, S.K.; Law, E.H. Health-Related Quality of Life among Patients with HR+/HER2–Early Breast Cancer. Clin. Ther. 2021, 43, 1228–1244. [Google Scholar] [CrossRef]
- Zeng, X.; Sui, M.; Liu, R.; Qian, X.; Li, W.; Zheng, E.; Yang, J.; Li, J.; Huang, W.; Yang, H.; et al. Assessment of the Health Utility of Patients with Leukemia in China. Health Qual. Life Outcomes 2021, 19, 65. [Google Scholar] [CrossRef]
- Youron, P.; Singh, C.; Jindal, N.; Malhotra, P.; Khadwal, A.; Jain, A.; Prakash, G.; Varma, N.; Varma, S.; Lad, D.P. Quality of Life in Patients of Chronic Lymphocytic Leukemia Using the EORTC QLQ-C30 and QLQ-CLL17 Questionnaire. Eur. J. Haematol. 2020, 105, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Claflin, S.; Campbell, J.A.; Norman, R.; Mason, D.F.; Kalincik, T.; Simpson-Yap, S.; Butzkueven, H.; Carroll, W.M.; Palmer, A.J.; Blizzard, C.L.; et al. Using the EQ-5D-5L to Investigate Quality-of-Life Impacts of Disease-Modifying Therapy Policies for People with Multiple Sclerosis (MS) in New Zealand. Eur. J. Health Econ. 2023, 24, 939–950. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Liu, L.; Le, T.D. Practical Approaches to Causal Relationship Exploration; Springer: Cham, Switzerland, 2015; ISBN 978-3-319-14432-0. [Google Scholar] [CrossRef]
- Pearl, J. Causality; Cambridge University Press: Cambridge, UK, 2009; ISBN 052189560X. [Google Scholar]
- Boutsika, A.; Michailidis, M.; Ganopoulou, M.; Dalakouras, A.; Skodra, C.; Xanthopoulou, A.; Stamatakis, G.; Samiotaki, M.; Tanou, G.; Moysiadis, T.; et al. A Wide Foodomics Approach Coupled with Metagenomics Elucidates the Environmental Signature of Potatoes. iScience 2023, 26, 105917. [Google Scholar] [CrossRef] [PubMed]
- Skodra, C.; Michailidis, M.; Moysiadis, T.; Stamatakis, G.; Ganopoulou, M.; Adamakis, I.-D.S.; Angelis, L.; Ganopoulos, I.; Tanou, G.; Samiotaki, M.; et al. Disclosing the Molecular Basis of Salinity Priming in Olive Trees Using Proteogenomic Model Discovery. Plant Physiol. 2023, 191, 1913–1933. [Google Scholar] [CrossRef]
- Ganopoulou, M.; Michailidis, M.; Angelis, L.; Ganopoulos, I.; Molassiotis, A.; Xanthopoulou, A.; Moysiadis, T. Could Causal Discovery in Proteogenomics Assist in Understanding Gene–Protein Relations? A Perennial Fruit Tree Case Study Using Sweet Cherry as a Model. Cells 2021, 11, 92. [Google Scholar] [CrossRef]
- Ganopoulou, M.; Kangelidis, I.; Sianos, G.; Angelis, L. Causal Models for the Result of Percutaneous Coronary Intervention in Coronary Chronic Total Occlusions. Appl. Sci. 2021, 11, 9258. [Google Scholar] [CrossRef]
- Piccininni, M.; Konigorski, S.; Rohmann, J.L.; Kurth, T. Directed Acyclic Graphs and Causal Thinking in Clinical Risk Prediction Modeling. BMC Med. Res. Methodol. 2020, 20, 179. [Google Scholar] [CrossRef]
- Raghu, V.K.; Zhao, W.; Pu, J.; Leader, J.K.; Wang, R.; Herman, J.; Yuan, J.-M.; Benos, P.V.; Wilson, D.O. Feasibility of Lung Cancer Prediction from Low-Dose CT Scan and Smoking Factors Using Causal Models. Thorax 2019, 74, 643–649. [Google Scholar] [CrossRef]
- Sachs, K.; Perez, O.; Pe’er, D.; Lauffenburger, D.A.; Nolan, G.P. Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data. Science (1979) 2005, 308, 523–529. [Google Scholar] [CrossRef]
- Liu, J.; Niyogi, D. Identification of Linkages between Urban Heat Island Magnitude and Urban Rainfall Modification by Use of Causal Discovery Algorithms. Urban Clim. 2020, 33, 100659. [Google Scholar] [CrossRef]
- Farnia, L.; Alibegovic, M.; Cruickshank, E. On Causal Structural Learning Algorithms Oracles’ Simulations and Considerations. Knowl. Based Syst. 2023, 276, 110694. [Google Scholar] [CrossRef]
- Krethong, P.; Jirapaet, V.; Jitpanya, C.; Sloan, R. A Causal Model of Health-related Quality of Life in Thai Patients with Heart-failure. J. Nurs. Scholarsh. 2008, 40, 254–260. [Google Scholar] [CrossRef]
- Tangkawanich, T.; Yunibhand, J.; Thanasilp, S.; Magilvy, K. Causal Model of Health: Health-related Quality of Life in People Living with HIV/AIDS in the Northern Region of Thailand. Nurs. Health Sci. 2008, 10, 216–221. [Google Scholar] [CrossRef] [PubMed]
- Gąsior, J.S.; Młyńczak, M.; Williams, C.A.; Popłonyk, A.; Kowalska, D.; Giezek, P.; Werner, B. The Discovery of a Data-Driven Causal Diagram of Sport Participation in Children and Adolescents with Heart Disease: A Pilot Study. Front. Cardiovasc. Med. 2023, 10, 1247122. [Google Scholar] [CrossRef]
- Varni, J.W.; Seid, M.; Kurtin, P.S. PedsQLTM 4.0: Reliability and Validity of the Pediatric Quality of Life InventoryTM Version 4.0 Generic Core Scales in Healthy and Patient Populations. Med. Care 2001, 39, 800–812. [Google Scholar] [CrossRef] [PubMed]
- Varni, J.W.; Burwinkle, T.M.; Seid, M.; Skarr, D. The PedsQLTM* 4.0 as a Pediatric Population Health Measure: Feasibility, Reliability, and Validity. Ambul. Pediatr. 2003, 3, 329–341. [Google Scholar] [CrossRef]
- Ganopoulou, M.; Kontopoulos, E.; Fokianos, K.; Koparanis, D.; Angelis, L.; Kotsianidis, I.; Moysiadis, T. Delving into Causal Discovery in Health-Related Quality of Life Questionnaires. Algorithms 2024, 17, 138. [Google Scholar] [CrossRef]
- Greenland, S.; Pearl, J. Causal Diagrams. In Encyclopedia of Epidemiology; Boslaugh, S., Ed.; Technical Report; Sage Publications: Thousand Oaks, CA, USA, 2022; pp. 149–156. [Google Scholar]
- Nagarajan, R.; Scutari, M.; Lèbre, S. Bayesian Networks in R with Applications in Systems Biology; Springer: Berlin/Heidelberg, Germany, 2013; ISBN 978-1-4614-6445-7. [Google Scholar]
- Tsanousa, A.; Ntoufa, S.; Papakonstantinou, N.; Stamatopoulos, K.; Angelis, L. Study of Gene Expressions’ Correlation Structures in Subgroups of Chronic Lymphocytic Leukemia Patients. J. Biomed. Inform. 2019, 95, 103211. [Google Scholar] [CrossRef] [PubMed]
- Tsanousa, A.; Angelis, L.; Ntoufa, S.; Papakonstantinou, N.; Stamatopoulos, K. A Structural Equation Modeling Approach of the Toll-like Receptor Signaling Pathway in Chronic Lymphocytic Leukemia. In Proceedings of the 2013 24th International Workshop on Database and Expert Systems Applications, Los Alamitos, CA, USA, 26–30 August 2013; pp. 71–75. [Google Scholar]
- Tsanousa, A.; Ntoufa, S.; Papakonstantinou, N.; Stamatopoulos, K.; Angelis, L. Discovering Causal Patterns with Structural Equation Modeling: Application to Toll-Like Receptor Signaling Pathway in Chronic Lymphocytic Leukemia. Pattern Recognit. Comput. Mol. Biol. Tech. Approaches 2015, 555–584. [Google Scholar] [CrossRef]
- Bai, F.; Shu, N.; Yuan, Y.; Shi, Y.; Yu, H.; Wu, D.; Wang, J.; Xia, M.; He, Y.; Zhang, Z. Topologically Convergent and Divergent Structural Connectivity Patterns between Patients with Remitted Geriatric Depression and Amnestic Mild Cognitive Impairment. J. Neurosci. 2012, 32, 4307–4318. [Google Scholar] [CrossRef]
- Muhetaer, S.; Mijiti, P.; Aierken, K.; Ziyin, H.; Talapuhan, W.; Tuoheti, K.; Lixia, Y.; Shuang, Q.; Jingjing, W. A Network Approach to Investigating the Inter-Relationship between Health-Related Quality of Life Dimensions and Depression in 1735 Chinese Patients with Heterogeneous Cancers. Front. Public Health 2024, 11, 1325986. [Google Scholar] [CrossRef] [PubMed]
- Tsamardinos, I.; Brown, L.E.; Aliferis, C.F. The Max-Min Hill-Climbing Bayesian Network Structure Learning Algorithm. Mach. Learn. 2006, 65, 31–78. [Google Scholar] [CrossRef]
- Scutari, M. Learning Bayesian Networks with the Bnlearn R Package. J. Stat. Softw. 2010, 35, 1–22. [Google Scholar] [CrossRef]
- Colombo, D.; Maathuis, M.H. Order-Independent Constraint-Based Causal Structure Learning. J. Mach. Learn. Res. 2014, 15, 3741–3782. [Google Scholar]
- Spirtes, P.; Glymour, C.; Scheines, R. Discovery Algorithms for Causally Sufficient Structures. In Causation, Prediction, and Search; Lecture Notes in Statistics; Springer: New York, NY, USA, 1993; pp. 103–162. [Google Scholar]
- Spirtes, P.; Glymour, C.N.; Scheines, R. Causation, Prediction, and Search; MIT Press: Cambridge, MA, USA, 2000; ISBN 0262194406. [Google Scholar]
- Bakirtzis, C.; Artemiadis, A.; Nteli, E.; Boziki, M.K.; Karakasi, M.-V.; Honan, C.; Messinis, L.; Nasios, G.; Dardiotis, E.; Grigoriadis, N. A Greek Validation Study of the Multiple Sclerosis Work Difficulties Questionnaire-23. Healthcare 2021, 9, 897. [Google Scholar] [CrossRef]
- Kalisch, M.; Bühlmann, P. Robustification of the PC-Algorithm for Directed Acyclic Graphs. J. Comput. Graph. Stat. 2008, 17, 773–789. [Google Scholar] [CrossRef]
- Kalisch, M.; Bühlman, P. Estimating High-Dimensional Directed Acyclic Graphs with the PC-Algorithm. J. Mach. Learn. Res. 2007, 8, 613–636. [Google Scholar]
- Le, T.D.; Hoang, T.; Li, J.; Liu, L.; Liu, H.; Hu, S. A Fast PC Algorithm for High Dimensional Causal Discovery with Multi-Core PCs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 16, 1483–1495. [Google Scholar] [CrossRef]
- Scutari, M.; Graafland, C.E.; Gutiérrez, J.M. Who Learns Better Bayesian Network Structures: Accuracy and Speed of Structure Learning Algorithms. Int. J. Approx. Reason. 2019, 115, 235–253. [Google Scholar] [CrossRef]
Percentages out of 100,000 Repetitions | ||||||
---|---|---|---|---|---|---|
Pairs of CPDAGs Compared | Comparison Description | Measure | k = 100 | k = 500 | k = 1000 | k = 5000 |
DAG1.1 (nodes = 12, edges = 14) vs. DAG1.2 (nodes = 12, edges = 12) | SHD(CPDAG1Test1, CPDAG1) < SHD(CPDAG2Test1, CPDAG2) | CCR-Test1 | 27.64 | 30.87 | 35.40 | 45.10 |
SHD(CPDAG1Test1, CPDAG1) > SHD(CPDAG2Test1, CPDAG2) | MR-Test1 | 14.48 | 3.98 | 3.60 | 0.15 | |
SHD(CPDAG1Test1, CPDAG1) = SHD(CPDAG2Test1, CPDAG2) | No decision-Test1 | 57.88 | 65.16 | 61.00 | 54.75 | |
SHD(CPDAG1Test2, CPDAG1) < SHD(CPDAG2Test2, CPDAG2) | MR-Test2 | 19.96 | 5.76 | 0.85 | 0.15 | |
SHD(CPDAG1Test2, CPDAG1) > SHD(CPDAG2Test2, CPDAG2) | CCR-Test2 | 25.29 | 10.37 | 9.44 | 18.36 | |
SHD(CPDAG1Test2, CPDAG1) = SHD(CPDAG2Test2, CPDAG2) | No decision-Test2 | 54.74 | 83.87 | 89.71 | 81.49 | |
DAG2.1 (nodes = 16, edges = 16) vs. DAG2.2 (nodes = 16, edges = 19) | SHD(CPDAG1Test1, CPDAG1) < SHD(CPDAG2Test1, CPDAG2) | CCR-Test1 | 35.06 | 41.25 | 7.42 | 40.31 |
SHD(CPDAG1Test1, CPDAG1) > SHD(CPDAG2Test1, CPDAG2) | MR-Test1 | 16.94 | 2.85 | 2.06 | 0.40 | |
SHD(CPDAG1Test1, CPDAG1) = SHD(CPDAG2Test1, CPDAG2) | No decision-Test1 | 48.00 | 55.90 | 90.52 | 59.29 | |
SHD(CPDAG1Test2, CPDAG1) < SHD(CPDAG2Test2, CPDAG2) | MR-Test2 | 21.82 | 14.11 | 3.29 | 1.33 | |
SHD(CPDAG1Test2, CPDAG1) > SHD(CPDAG2Test2, CPDAG2) | CCR-Test2 | 27.44 | 26.41 | 11.61 | 43.72 | |
SHD(CPDAG1Test2, CPDAG1) = SHD(CPDAG2Test2, CPDAG2) | No decision-Test2 | 50.74 | 59.48 | 85.10 | 54.95 | |
DAG3.1 (nodes = 22, edges = 20) vs. DAG3.2 (nodes = 22, edges = 22) | SHD(CPDAG1Test1, CPDAG1) < SHD(CPDAG2Test1, CPDAG2) | CCR-Test1 | 39.99 | 30.04 | 16.97 | 62.87 |
SHD(CPDAG1Test1, CPDAG1) > SHD(CPDAG2Test1, CPDAG2) | MR-Test1 | 12.10 | 9.46 | 3.85 | 0.72 | |
SHD(CPDAG1Test1, CPDAG1) = SHD(CPDAG2Test1, CPDAG2) | No decision-Test1 | 47.92 | 60.50 | 79.19 | 36.41 | |
SHD(CPDAG1Test2, CPDAG1) < SHD(CPDAG2Test2, CPDAG2) | MR-Test2 | 25.21 | 12.24 | 6.83 | 1.10 | |
SHD(CPDAG1Test2, CPDAG1) > SHD(CPDAG2Test2, CPDAG2) | CCR-Test2 | 22.71 | 24.07 | 11.04 | 18.09 | |
SHD(CPDAG1Test2, CPDAG1) = SHD(CPDAG2Test2, CPDAG2) | No decision-Test2 | 52.08 | 63.69 | 82.13 | 80.81 | |
DAG4.1 (nodes = 27, edges = 24) vs. DAG4.2 (nodes = 27, edges = 26) | SHD(CPDAG1Test1, CPDAG1) < SHD(CPDAG2Test1, CPDAG2) | CCR-Test1 | 39.35 | 30.65 | 28.62 | 3.17 |
SHD(CPDAG1Test1, CPDAG1) > SHD(CPDAG2Test1, CPDAG2) | MR-Test1 | 12.30 | 14.74 | 7.65 | 1.59 | |
SHD(CPDAG1Test1, CPDAG1) = SHD(CPDAG2Test1, CPDAG2) | No decision-Test1 | 48.35 | 54.61 | 63.73 | 95.24 | |
SHD(CPDAG1Test2, CPDAG1) < SHD(CPDAG2Test2, CPDAG2) | MR-Test2 | 28.03 | 11.63 | 4.53 | 0.63 | |
SHD(CPDAG1Test2, CPDAG1) > SHD(CPDAG2Test2, CPDAG2) | CCR-Test2 | 17.27 | 33.15 | 29.24 | 5.38 | |
SHD(CPDAG1Test2, CPDAG1) = SHD(CPDAG2Test2, CPDAG2) | No decision-Test2 | 54.70 | 55.22 | 66.23 | 93.99 |
1st | 2nd | 3rd | ||||
---|---|---|---|---|---|---|
Scenario | Observed | Synthetical 1 | Synthetical 2 | |||
Patient Group | Progressive | Non-Progressive | Progressive | Non-Progressive | Progressive | Non-Progressive |
Number of cases | 23 | 170 | 46 | 170 | 69 | 170 |
SBLR: CCR | 30.43% | 94.71% | 58.70% | 93.53% | 65.22% | 93.53% |
CBCA: | ||||||
CCR | 26.09% | 19.41% | 45.65% | 49.41% | 40.58% | 62.94% |
MR | 8.70% | 14.71% | 0.00% | 13.53% | 11.59% | 12.35% |
No Decision | 65.22% | 65.88% | 54.35% | 37.06% | 47.83% | 24.71% |
Number of cases with decision from CBCA | 8 | 58 | 21 | 107 | 36 | 128 |
SBLR: Adjusted CCR | 62.50% | 89.66% | 71.43% | 96.26% | 66.67% | 96.88% |
CBCA: Adjusted CCR | 75.00% | 56.90% | 100.0% | 78.50% | 77.78% | 83.59% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganopoulou, M.; Fokianos, K.; Bakirtzis, C.; Angelis, L.; Moysiadis, T. Causal Discovery for Patient Classification Using Health-Related Quality of Life Questionnaires. BioMedInformatics 2025, 5, 28. https://doi.org/10.3390/biomedinformatics5020028
Ganopoulou M, Fokianos K, Bakirtzis C, Angelis L, Moysiadis T. Causal Discovery for Patient Classification Using Health-Related Quality of Life Questionnaires. BioMedInformatics. 2025; 5(2):28. https://doi.org/10.3390/biomedinformatics5020028
Chicago/Turabian StyleGanopoulou, Maria, Konstantinos Fokianos, Christos Bakirtzis, Lefteris Angelis, and Theodoros Moysiadis. 2025. "Causal Discovery for Patient Classification Using Health-Related Quality of Life Questionnaires" BioMedInformatics 5, no. 2: 28. https://doi.org/10.3390/biomedinformatics5020028
APA StyleGanopoulou, M., Fokianos, K., Bakirtzis, C., Angelis, L., & Moysiadis, T. (2025). Causal Discovery for Patient Classification Using Health-Related Quality of Life Questionnaires. BioMedInformatics, 5(2), 28. https://doi.org/10.3390/biomedinformatics5020028