Should We Expect a Second Wave of AlphaFold Misuse After the Nobel Prize?
- Alternative splicing events (not taken into account if the correct sequence is not given);
- Post-translational modifications essential for function but which may be poorly known, poorly determined, reversible, etc., and are not taken into account by AF, occur;
- They often require ions, cofactors and partners that can be very complex to introduce (the latest version of AF remains very limited);
- A non-negligible part of the protein structure is disordered and therefore difficult to take into account, even when using by AF;
- A fixed structure with a nice visual appearance represents only part of the structural conformations of the protein of interest, especially in terms of conformers.
Funding
Acknowledgments
Conflicts of Interest
References
- Method of the year 2021: Protein structure prediction. Nat. Methods 2022, 19, 1. [CrossRef] [PubMed]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Protein structure prediction using multiple deep neural networks in the 13th critical assessment of protein structure prediction (casp13). Proteins 2019, 87, 1141–1148. [Google Scholar] [CrossRef] [PubMed]
- AlQuraishi, M. Alphafold at casp13. Bioinformatics 2019, 35, 4862–4865. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with alphafold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Jumper, J.; Hassabis, D. Protein structure predictions to atomic accuracy with alphafold. Nat. Methods 2022, 19, 11–12. [Google Scholar] [CrossRef]
- Fersht, A.R. Alphafold—A personal perspective on the impact of machine learning. J. Mol. Biol. 2021, 433, 167088. [Google Scholar] [CrossRef]
- Mullard, A. What does alphafold mean for drug discovery? Nat. Rev. Drug Discov. 2021, 20, 725–727. [Google Scholar] [CrossRef]
- Cramer, P. Alphafold2 and the future of structural biology. Nat. Struct. Mol. Biol. 2021, 28, 704–705. [Google Scholar] [CrossRef]
- Xu, T.; Xu, Q.; Li, J. Toward the appropriate interpretation of alphafold2. Front. Artif. Intell. 2023, 6, 1149748. [Google Scholar] [CrossRef]
- Radjasandirane, R.; de Brevern, A.G. Alphafold2 for protein structure prediction: Best practices and critical analyses. Methods Mol. Biol. 2024, 2836, 235–252. [Google Scholar]
- Tunyasuvunakool, K.; Adler, J.; Wu, Z.; Green, T.; Zielinski, M.; Žídek, A.; Bridgland, A.; Cowie, A.; Meyer, C.; Laydon, A.; et al. Highly accurate protein structure prediction for the human proteome. Nature 2021, 596, 590–596. [Google Scholar] [CrossRef] [PubMed]
- Varadi, M.; Anyango, S.; Deshpande, M.; Nair, S.; Natassia, C.; Yordanova, G.; Yuan, D.; Stroe, O.; Wood, G.; Laydon, A.; et al. Alphafold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022, 50, D439–D444. [Google Scholar] [CrossRef] [PubMed]
- Mirdita, M.; Schütze, K.; Moriwaki, Y.; Heo, L.; Ovchinnikov, S.; Steinegger, M. Colabfold—Making protein folding accessible to all. Nat. Methods 2022, 19, 679–682. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Zeng, X.; Zhao, Y.; Chen, R. Alphafold2 and its applications in the fields of biology and medicine. Signal Transduct. Target. Ther. 2023, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.X.; Liang, F.; Xia, Y.H.; Zhao, K.L.; Hou, M.H.; Zhang, G.J. Recent advances and challenges in protein structure prediction. J. Chem. Inf. Model 2024, 64, 76–95. [Google Scholar] [CrossRef]
- Guo, H.B.; Perminov, A.; Bekele, S.; Kedziora, G.; Farajollahi, S.; Varaljay, V.; Hinkle, K.; Molinero, V.; Meister, K.; Hung, C.; et al. Alphafold2 models indicate that protein sequence determines both structure and dynamics. Sci. Rep. 2022, 12, 10696. [Google Scholar] [CrossRef]
- Tong, A.B.; Burch, J.D.; McKay, D.; Bustamante, C.; Crackower, M.A.; Wu, H. Could alphafold revolutionize chemical therapeutics? Nat. Struct. Mol. Biol. 2021, 28, 771–772. [Google Scholar] [CrossRef]
- Skolnick, J.; Gao, M.; Zhou, H.; Singh, S. Alphafold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. J. Chem. Inf. Model 2021, 61, 4827–4831. [Google Scholar] [CrossRef]
- Tourlet, S.; Radjasandirane, R.; Diharce, J.; de Brevern, A.G. Alphafold2 update and perspectives. BioMedInformatics 2023, 3, 378–390. [Google Scholar] [CrossRef]
- Akdel, M.; Pires, D.E.V.; Pardo, E.P.; Jänes, J.; Zalevsky, A.O.; Mészáros, B.; Bryant, P.; Good, L.L.; Laskowski, R.A.; Pozzati, G.; et al. A structural biology community assessment of alphafold2 applications. Nat. Struct. Mol. Biol. 2022, 29, 1056–1067. [Google Scholar] [CrossRef]
- Thornton, J.M.; Laskowski, R.A.; Borkakoti, N. Alphafold heralds a data-driven revolution in biology and medicine. Nat. Med. 2021, 27, 1666–1669. [Google Scholar] [CrossRef] [PubMed]
- Floch, A.; Lomas-Francis, C.; Vege, S.; Brennan, S.; Shakarian, G.; de Brevern, A.G.; Westhoff, C.M. A novel high-prevalence antigen in the lutheran system, luga (lu24), and an updated, full-length 3d bcam model. Transfusion 2023, 63, 798–807. [Google Scholar] [CrossRef] [PubMed]
- Floch, A.; Lomas-Francis, C.; Vege, S.; Burgos, A.; Hoffman, R.; Cusick, R.; de Brevern, A.G.; Westhoff, C.M. Two new scianna variants causing loss of high prevalence antigens: Ermap model and 3d analysis of the antigens. Transfusion 2023, 63, 230–238. [Google Scholar] [CrossRef] [PubMed]
- Floch, A.; Galochkina, T.; Pirenne, F.; Tournamille, C.; de Brevern, A.G. Molecular dynamics of the human rhd and rhag blood group proteins. Front. Chem. 2024, 12, 1360392. [Google Scholar] [CrossRef]
- de Brevern, A.G. An agnostic analysis of the human alphafold2 proteome using local protein conformations. Biochimie 2022, 207, 11–19. [Google Scholar] [CrossRef]
- Bruley, A.; Mornon, J.P.; Duprat, E.; Callebaut, I. Digging into the 3d structure predictions of alphafold2 with low confidence: Disorder and beyond. Biomolecules 2022, 12, 1467. [Google Scholar] [CrossRef]
- Bruley, A.; Bitard-Feildel, T.; Callebaut, I.; Duprat, E. A sequence-based foldability score combined with alphafold2 predictions to disentangle the protein order/disorder continuum. Proteins Struct. Funct. Bioinform. 2022, 91, 466–484. [Google Scholar] [CrossRef]
- Nobel Prize. 2024. Available online: https://www.nobelprize.org/prizes/chemistry/2024/press-release/ (accessed on 1 November 2024).
- Jorgensen, W.L. Foundations of biomolecular modeling. Cell 2013, 155, 1199–1202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Brevern, A.G. Should We Expect a Second Wave of AlphaFold Misuse After the Nobel Prize? BioMedInformatics 2024, 4, 2306-2308. https://doi.org/10.3390/biomedinformatics4040124
de Brevern AG. Should We Expect a Second Wave of AlphaFold Misuse After the Nobel Prize? BioMedInformatics. 2024; 4(4):2306-2308. https://doi.org/10.3390/biomedinformatics4040124
Chicago/Turabian Stylede Brevern, Alexandre G. 2024. "Should We Expect a Second Wave of AlphaFold Misuse After the Nobel Prize?" BioMedInformatics 4, no. 4: 2306-2308. https://doi.org/10.3390/biomedinformatics4040124
APA Stylede Brevern, A. G. (2024). Should We Expect a Second Wave of AlphaFold Misuse After the Nobel Prize? BioMedInformatics, 4(4), 2306-2308. https://doi.org/10.3390/biomedinformatics4040124