Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond
Abstract
:1. Introduction
2. Drug Discovery and Generative AI
2.1. Generative Adversarial Networks (GANs)
2.2. Variational Autoencoders (VAEs)
2.3. Transformer-Based Models
3. Restricted Boltzmann Machines (RBMs)
4. Generative Graph Neural Networks (GNNs)
5. Language Models (LMs)
6. Multimodal Models
7. Drug Discovery and Digital Twins
8. Challenges and Considerations of Generative AI and Digital Twins in Drug Development
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Turing, A.M. Computing Machinery and Intelligence. In The Essential Turing; Oxford Academic: Oxford, UK, 1950; Volume 59, pp. 433–460. [Google Scholar]
- Artificial Intelligence Coined at Dartmouth. Available online: https://home.dartmouth.edu/about/artificial-intelligence-ai-coined-dartmouth (accessed on 6 February 2024).
- Wiederhold, J.M.G. Arthur Samuel: Pioneer in Machine Learning. IBM J. Res. Dev. 1992, 36, 329–331. [Google Scholar] [CrossRef]
- Natale, S. The ELIZA Effect: Joseph Weizenbaum and the Emergence of Chatbots. In Deceitful Media: Artificial Intelligence and Social Life after the Turing Test; Oxford Academic: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Bian, Y.; Wang, J.; Jun, J.J.; Xie, X.Q. Deep Convolutional Generative Adversarial Network (dcGAN) Models for Screening and Design of Small Molecules Targeting Cannabinoid Receptors. Mol. Pharm. 2019, 16, 4451–4460. [Google Scholar] [CrossRef] [PubMed]
- Parrot, M.; Tajmouati, H.; da Silva, V.B.R.; Atwood, B.R.; Fourcade, R.; Gaston-Mathe, Y.; Do Huu, N.; Perron, Q. Integrating synthetic accessibility with AI-based generative drug design. J. Cheminform. 2023, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.B.; Karmazyn-Raz, H. Episodes of experience and generative intelligence. Trends Cogn. Sci. 2022, 26, 1064–1065. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.H.D.; Chatterjee, S.; Rasmussen, L.K. Powering Hidden Markov Model by Neural Network based Generative Models. arXiv 2019. [Google Scholar] [CrossRef]
- Cao, S.L.Y.; Liu, Y.; Yan, Z.; Dai, Y.; Yu, P.S.; Sun, L. A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT. arXiv 2023. [Google Scholar] [CrossRef]
- Lendasse, E.E.A. Gaussian Mixture Models for Time Series Modelling, Forecasting, and Interpolation. In Advances in Intelligent Data Analysis XII; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Jeong, J.J.; Tariq, A.; Adejumo, T.; Trivedi, H.; Gichoya, J.W.; Banerjee, I. Systematic Review of Generative Adversarial Networks (GANs) for Medical Image Classification and Segmentation. J. Digit. Imaging 2022, 35, 137–152. [Google Scholar] [CrossRef] [PubMed]
- Skandarani, Y.; Lalande, A.; Afilalo, J.; Jodoin, P.M. Generative Adversarial Networks in Cardiology. Can. J. Cardiol. 2022, 38, 196–203. [Google Scholar] [CrossRef] [PubMed]
- Motamed, S.; Rogalla, P.; Khalvati, F. Data augmentation using Generative Adversarial Networks (GANs) for GAN-based detection of Pneumonia and COVID-19 in chest X-ray images. Inform. Med. Unlocked 2021, 27, 100779. [Google Scholar] [CrossRef]
- Goulas, A.; Damicelli, F.; Hilgetag, C.C. Bio-instantiated recurrent neural networks: Integrating neurobiology-based network topology in artificial networks. Neural Netw. 2021, 142, 608–618. [Google Scholar] [CrossRef]
- Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P.D.; Pisani, A.R.; Turner, K. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Comput. Biol. Med. 2023, 155, 106649. [Google Scholar] [CrossRef] [PubMed]
- Nath, S.; Marie, A.; Ellershaw, S.; Korot, E.; Keane, P.A. New meaning for NLP: The trials and tribulations of natural language processing with GPT-3 in ophthalmology. Br. J. Ophthalmol. 2022, 106, 889–892. [Google Scholar] [CrossRef] [PubMed]
- Jungmann, F.; Kuhn, S.; Kampgen, B. Basics and applications of Natural Language Processing (NLP) in radiology. Radiologe 2018, 58, 764–768. [Google Scholar] [CrossRef] [PubMed]
- An, G.; Cockrell, C. Drug Development Digital Twins for Drug Discovery, Testing and Repurposing: A Schema for Requirements and Development. Front. Syst. Biol. 2022, 2, 928387. [Google Scholar] [CrossRef] [PubMed]
- Bjornsson, B.; Borrebaeck, C.; Elander, N.; Gasslander, T.; Gawel, D.R.; Gustafsson, M.; Jornsten, R.; Lee, E.J.; Li, X.; Lilja, S.; et al. Digital twins to personalize medicine. Genome Med. 2019, 12, 4. [Google Scholar] [CrossRef] [PubMed]
- Bordukova, M.; Makarov, N.; Rodriguez-Esteban, R.; Schmich, F.; Menden, M.P. Generative artificial intelligence empowers digital twins in drug discovery and clinical trials. Expert Opin. Drug Discov. 2024, 19, 33–42. [Google Scholar] [CrossRef]
- Croatti, A.; Gabellini, M.; Montagna, S.; Ricci, A. On the Integration of Agents and Digital Twins in Healthcare. J. Med. Syst. 2020, 44, 161. [Google Scholar] [CrossRef] [PubMed]
- Laubenbacher, R.; Sluka, J.P.; Glazier, J.A. Using digital twins in viral infection. Science 2021, 371, 1105–1106. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Lee, E.J.; Lilja, S.; Loscalzo, J.; Schafer, S.; Smelik, M.; Strobl, M.R.; Sysoev, O.; Wang, H.; Zhang, H.; et al. A dynamic single cell-based framework for digital twins to prioritize disease genes and drug targets. Genome Med. 2022, 14, 48. [Google Scholar] [CrossRef]
- Ward, T.M.; Mascagni, P.; Ban, Y.; Rosman, G.; Padoy, N.; Meireles, O.; Hashimoto, D.A. Computer vision in surgery. Surgery 2021, 169, 1253–1256. [Google Scholar] [CrossRef]
- Kather, J.N.; Ghaffari Laleh, N.; Foersch, S.; Truhn, D. Medical domain knowledge in domain-agnostic generative AI. npj Digit. Med. 2022, 5, 90. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Li, W.; Moon, H.; Roell, G.W.; Chen, Y.; Tang, Y.J. Generative Artificial Intelligence GPT-4 Accelerates Knowledge Mining and Machine Learning for Synthetic Biology. ACS Synth. Biol. 2023, 12, 2973–2982. [Google Scholar] [CrossRef]
- Di Masi, J.A.; Grabowski, H.G.; Hansen, R.W. Innovation in the pharmaceutical industry: New estimates of R&D costs. J. Health Econ. 2016, 47, 20–33. [Google Scholar] [CrossRef] [PubMed]
- MGI. Generative AI in the Pharmaceutical Industry: Moving from Hype to Reality. Available online: https://www.mckinsey.com/industries/life-sciences/our-insights/generative-ai-in-the-pharmaceutical-industry-moving-from-hype-to-reality#/ (accessed on 6 February 2024).
- Wenzel, M. Generative Adversarial Networks and Other Generative Models. In Machine Learning for Brain Disorders; Colliot, O., Ed.; Humana: New York, NY, USA, 2023; pp. 139–192. [Google Scholar]
- Li, C.; Xu, K.; Zhu, J.; Liu, J.; Zhang, B. Triple Generative Adversarial Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 9629–9640. [Google Scholar] [CrossRef]
- Zhong, G.; Gao, W.; Liu, Y.; Yang, Y.; Wang, D.H.; Huang, K. Generative adversarial networks with decoder-encoder output noises. Neural Netw. 2020, 127, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, A.E.; Stanley, C.; Bhowmik, D. Using GANs with adaptive training data to search for new molecules. J. Cheminform. 2021, 13, 14. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Li, K.; Shi, J. DGANDDI: Double Generative Adversarial Networks for Drug-Drug Interaction Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 1854–1863. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.; Anees, A.; Das, A.; Nguyen, B.P.; Marzuki, M.; Lin, S.; Wright, G.; Singhal, A. High-content image generation for drug discovery using generative adversarial networks. Neural Netw. 2020, 132, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Bian, Y.; Xie, X.Q. Generative chemistry: Drug discovery with deep learning generative models. J. Mol. Model. 2021, 27, 71. [Google Scholar] [CrossRef]
- Tong, X.; Liu, X.; Tan, X.; Li, X.; Jiang, J.; Xiong, Z.; Xu, T.; Jiang, H.; Qiao, N.; Zheng, M. Generative Models for De Novo Drug Design. J. Med. Chem. 2021, 64, 14011–14027. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.H.; Lane, H.Y. De Novo Peptide and Protein Design Using Generative Adversarial Networks: An Update. J. Chem. Inf. Model. 2022, 62, 761–774. [Google Scholar] [CrossRef]
- Macedo, B.; Ribeiro Vaz, I.; Taveira Gomes, T. MedGAN: Optimized generative adversarial network with graph convolutional networks for novel molecule design. Sci. Rep. 2024, 14, 1212. [Google Scholar] [CrossRef]
- Zhang, Z.; Cui, P.; Zhu, W. Deep Learning on Graphs: A Survey. IEEE Pulse 2022, 34, 249–270. [Google Scholar] [CrossRef]
- Lin, E.; Lin, C.H.; Lane, H.Y. Relevant Applications of Generative Adversarial Networks in Drug Design and Discovery: Molecular De Novo Design, Dimensionality Reduction, and De Novo Peptide and Protein Design. Molecules 2020, 25, 3250. [Google Scholar] [CrossRef]
- Kao, P.Y.; Yang, Y.C.; Chiang, W.Y.; Hsiao, J.Y.; Cao, Y.; Aliper, A.; Ren, F.; Aspuru-Guzik, A.; Zhavoronkov, A.; Hsieh, M.H.; et al. Exploring the Advantages of Quantum Generative Adversarial Networks in Generative Chemistry. J. Chem. Inf. Model. 2023, 63, 3307–3318. [Google Scholar] [CrossRef]
- Niu, M.Y.; Zlokapa, A.; Broughton, M.; Boixo, S.; Mohseni, M.; Smelyanskyi, V.; Neven, H. Entangling Quantum Generative Adversarial Networks. Phys. Rev. Lett. 2022, 128, 220505. [Google Scholar] [CrossRef]
- Tian, J.; Sun, X.; Du, Y.; Zhao, S.; Liu, Q.; Zhang, K.; Yi, W.; Huang, W.; Wang, C.; Wu, X.; et al. Recent Advances for Quantum Neural Networks in Generative Learning. IEEE Trans. Pattern Anal. Mach. Intell. 2023, 45, 12321–12340. [Google Scholar] [CrossRef]
- Lim, J.; Ryu, S.; Kim, J.W.; Kim, W.Y. Molecular generative model based on conditional variational autoencoder for de novo molecular design. J. Cheminform. 2018, 10, 31. [Google Scholar] [CrossRef]
- Marino, J. Predictive Coding, Variational Autoencoders, and Biological Connections. Neural Comput. 2021, 34, 1–44. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Li, H.; Liu, X. Drug-protein interaction prediction via variational autoencoders and attention mechanisms. Front. Genet. 2022, 13, 1032779. [Google Scholar] [CrossRef]
- Li, T.; Zhao, X.M.; Li, L. Co-VAE: Drug-Target Binding Affinity Prediction by Co-Regularized Variational Autoencoders. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 8861–8873. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, S.; Yu, L. Predicting new drug indications based on double variational autoencoders. Comput. Biol. Med. 2023, 164, 107261. [Google Scholar] [CrossRef]
- Ochiai, T.; Inukai, T.; Akiyama, M.; Furui, K.; Ohue, M.; Matsumori, N.; Inuki, S.; Uesugi, M.; Sunazuka, T.; Kikuchi, K.; et al. Variational autoencoder-based chemical latent space for large molecular structures with 3D complexity. Commun. Chem. 2023, 6, 249. [Google Scholar] [CrossRef]
- Chow, Y.L.; Singh, S.; Carpenter, A.E.; Way, G.P. Predicting drug polypharmacology from cell morphology readouts using variational autoencoder latent space arithmetic. PLoS Comput. Biol. 2022, 18, e1009888. [Google Scholar] [CrossRef]
- Ang, D.; Rakovski, C.; Atamian, H.S. De Novo Drug Design Using Transformer-Based Machine Translation and Reinforcement Learning of an Adaptive Monte Carlo Tree Search. Pharmaceuticals 2024, 17, 161. [Google Scholar] [CrossRef]
- Grechishnikova, D. Transformer neural network for protein-specific de novo drug generation as a machine translation problem. Sci. Rep. 2021, 11, 321. [Google Scholar] [CrossRef]
- Kalakoti, Y.; Yadav, S.; Sundar, D. TransDTI: Transformer-Based Language Models for Estimating DTIs and Building a Drug Recommendation Workflow. ACS Omega 2022, 7, 2706–2717. [Google Scholar] [CrossRef]
- Shiju, A.; He, Z. Classifying Drug Ratings Using User Reviews with Transformer-Based Language Models. In Proceedings of the 2022 IEEE 10th International Conference on Healthcare Informatics (ICHI), Rochester, MN, USA, 11–14 June 2022; Volume 2022, pp. 163–169. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, R.; Liu, Y.; Chen, S.; Liu, Q.; Zeng, W. Applications of transformer-based language models in bioinformatics: A survey. Bioinform. Adv. 2023, 3, vbad001. [Google Scholar] [CrossRef]
- Jiang, L.; Jiang, C.; Yu, X.; Fu, R.; Jin, S.; Liu, X. DeepTTA: A transformer-based model for predicting cancer drug response. Brief. Bioinform. 2022, 23, bbac100. [Google Scholar] [CrossRef]
- Hu, J.; Gao, J.; Fang, X.; Liu, Z.; Wang, F.; Huang, W.; Wu, H.; Zhao, G. DTSyn: A dual-transformer-based neural network to predict synergistic drug combinations. Brief. Bioinform. 2022, 23, bbac302. [Google Scholar] [CrossRef]
- Mao, J.; Wang, J.; Zeb, A.; Cho, K.H.; Jin, H.; Kim, J.; Lee, O.; Wang, Y.; No, K.T. Transformer-Based Molecular Generative Model for Antiviral Drug Design. J. Chem. Inf. Model. 2023, 64, 2733–2745. [Google Scholar] [CrossRef]
- Vaswani, N.S.A.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. arXiv 2017. [Google Scholar] [CrossRef]
- Hugo Larochelle, P. Classification Using Discriminative Restricted Boltzmann Machines. In Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008. [Google Scholar] [CrossRef]
- Max Welling, G.E.H. A New Learning Algorithm for Mean Field Boltzmann Machines. In Artificial Neural Networks—ICANN 2002; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Salakhutdinov, R.; Mnih, A.; Hinton, G. Restricted Boltzmann Machines for Collaborative Filtering. In Proceedings of the 24th International Conference on Machine Learning, Corvalis, OR, USA, 20–24 June 2007. [Google Scholar]
- Wang, Y.; Zeng, J. Predicting drug-target interactions using restricted Boltzmann machines. Bioinformatics 2013, 29, i126–i134. [Google Scholar] [CrossRef]
- Qian, Y.; Ding, Y.; Zou, Q.; Guo, F. Identification of drug-side effect association via restricted Boltzmann machines with penalized term. Brief. Bioinform. 2022, 23, bbac458. [Google Scholar] [CrossRef]
- Cheng, X.; Qu, J.; Song, S.; Bian, Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022, 10, e13848. [Google Scholar] [CrossRef]
- Bongini, P.; Messori, E.; Pancino, N.; Bianchini, M. A Deep Learning Approach to the Prediction of Drug Side-Effects on Molecular Graphs. IEEE/ACM Trans. Comput. Biol. Bioinform. 2023, 20, 3681–3690. [Google Scholar] [CrossRef]
- Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 4–24. [Google Scholar] [CrossRef]
- Abate, C.; Decherchi, S.; Cavalli, A. Graph neural networks for conditional de novo drug design. WIREs Comput. Mol. Sci. 2023, 13, e1651. [Google Scholar] [CrossRef]
- Zhou, G.C.J.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and applications. AI Open 2020, 1, 57–81. [Google Scholar] [CrossRef]
- Xiong, J.; Xiong, Z.; Chen, K.; Jiang, H.; Zheng, M. Graph neural networks for automated de novo drug design. Drug Discov. Today 2021, 26, 1382–1393. [Google Scholar] [CrossRef]
- Feng, J.; Liang, Y.; Yu, T. MM-GANN-DDI: Multimodal Graph-Agnostic Neural Networks for Predicting Drug-Drug Interaction Events. Comput. Biol. Med. 2023, 166, 107492. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, S.; Kv, P.; Balaji, S. Training recurrent neural networks as generative neural networks for molecular structures: How does it impact drug discovery? Expert Opin. Drug Discov. 2022, 17, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.; Hu, J.; Wang, Y.; Zhang, L.; Liu, Z. Graph-based generative models for de Novo drug design. Drug Discov. Today Technol. 2019, 32–33, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Moret, M.; Pachon Angona, I.; Cotos, L.; Yan, S.; Atz, K.; Brunner, C.; Baumgartner, M.; Grisoni, F.; Schneider, G. Leveraging molecular structure and bioactivity with chemical language models for de novo drug design. Nat. Commun. 2023, 14, 114. [Google Scholar] [CrossRef] [PubMed]
- Schenone, M.; Dancik, V.; Wagner, B.K.; Clemons, P.A. Target identification and mechanism of action in chemical biology and drug discovery. Nat. Chem. Biol. 2013, 9, 232–240. [Google Scholar] [CrossRef]
- Janakarajan, N.; Erdmann, T.; Swaminathan, S.; Laino, T.; Born, J. Language models in molecular discovery. arXiv 2023. [Google Scholar] [CrossRef]
- Bajorath, J. Chemical language models for molecular design. Mol. Inform. 2024, 43, e202300288. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Roberts, R.A.; Lal-Nag, M.; Chen, X.; Huang, R.; Tong, W. AI-based language models powering drug discovery and development. Drug Discov. Today 2021, 26, 2593–2607. [Google Scholar] [CrossRef]
- Giorgi, J.M.; Bader, G.D. Towards reliable named entity recognition in the biomedical domain. Bioinformatics 2020, 36, 280–286. [Google Scholar] [CrossRef]
- Blanco, A.; Perez-de-Vinaspre, O.; Perez, A.; Casillas, A. Boosting ICD multi-label classification of health records with contextual embeddings and label-granularity. Comput. Methods Programs Biomed. 2020, 188, 105264. [Google Scholar] [CrossRef]
- Dias, R.; Torkamani, A. Artificial intelligence in clinical and genomic diagnostics. Genome Med. 2019, 11, 70. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.L.; Ryan, J.J.; Bray, B.E.; Brown, C.; Lanfear, D.; Newby, L.K.; Relling, M.V.; Risch, N.J.; Roden, D.M.; Shaw, S.Y.; et al. Merging Electronic Health Record Data and Genomics for Cardiovascular Research: A Science Advisory from the American Heart Association. Circ. Cardiovasc. Genet. 2016, 9, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Harrer, S.; Shah, P.; Antony, B.; Hu, J. Artificial Intelligence for Clinical Trial Design. Trends Pharmacol. Sci. 2019, 40, 577–591. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Wang, F.; Luo, Y.; Kang, S.-G.; Tang, J.; Lightstone, F.C.; Fang, E.F.; Cornell, W.; Nussinov, R.; Cheng, F. Deep generative molecular design reshapes drug discovery. Cell Rep. Med. 2022, 3, 100794. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Eran, A.; Palmer, N.; Avillach, P.; Levy-Moonshine, A.; Szolovits, P.; Kohane, I.S. A multidimensional precision medicine approach identifies an autism subtype characterized by dyslipidemia. Nat. Med. 2020, 26, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, H.; Liu, W.; Lasenby, J.; Guo, H.; Tang, J. Pre-training Molecular Graph Representation with 3D Geometry. arXiv 2021. [Google Scholar] [CrossRef]
- Manica, M.; Oskooei, A.; Born, J.; Subramanian, V.; Sáez-Rodríguez, J.; Martínez, M.R. Toward explainable anticancer compound sensitivity prediction via multimodal attention-based convolutional encoders. Mol. Pharm. 2019, 16, 4797–4806. [Google Scholar] [CrossRef] [PubMed]
- Jin, W.; Yang, K.; Barzilay, R.; Jaakkola, T. Learning Multimodal Graph-to-Graph Translation for Molecular Optimization. arXiv 2018. [Google Scholar] [CrossRef]
- Ma, M.; Ren, J.; Zhao, L.; Tulyakov, S.; Wu, C.; Peng, X. SMIL: Multimodal Learning with Severely Missing Modality. AAAI Tech. Track Comput. Vis. II 2021, 35, 2302–2310. [Google Scholar] [CrossRef]
- Baltrusaitis, T.; Ahuja, C.; Morency, L.P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 423–443. [Google Scholar] [CrossRef]
- Steyaert, S.; Pizurica, M.; Nagaraj, D.; Khandelwal, P.; Hernandez-Boussard, T.; Gentles, A.J.; Gevaert, O. Multimodal data fusion for cancer biomarker discovery with deep learning. Nat. Mach. Intell. 2023, 5, 351–362. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Liu, X.Y.; Yang, K.; Huang, K.; Hong, M.; Zhang, J.; Wu, Y.; Nie, Z. Toward Unified AI Drug Discovery with Multimodal Knowledge. Health Data Sci. 2024, 4, 0113. [Google Scholar] [CrossRef] [PubMed]
- Skalic, M.; Sabbadin, D.; Sattarov, B.; Sciabola, S.; De Fabritiis, G. From Target to Drug: Generative Modeling for the Multimodal Structure-Based Ligand Design. Mol. Pharm. 2019, 16, 4282–4291. [Google Scholar] [CrossRef] [PubMed]
- Buchberger, A.R.; DeLaney, K.; Johnson, J.; Li, L. Mass Spectrometry Imaging: A Review of Emerging Advancements and Future Insights. Anal. Chem. 2018, 90, 240–265. [Google Scholar] [CrossRef] [PubMed]
- Loscher, W. Single-Target Versus Multi-Target Drugs Versus Combinations of Drugs with Multiple Targets: Preclinical and Clinical Evidence for the Treatment or Prevention of Epilepsy. Front. Pharmacol. 2021, 12, 730257. [Google Scholar] [CrossRef] [PubMed]
- Marecek, R.; Riha, P.; Bartonova, M.; Kojan, M.; Lamos, M.; Gajdos, M.; Vojtisek, L.; Mikl, M.; Barton, M.; Dolezalova, I.; et al. Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging. Hum. Brain Mapp. 2021, 42, 2921–2930. [Google Scholar] [CrossRef] [PubMed]
- Laubenbacher, R.; Niarakis, A.; Helikar, T.; An, G.; Shapiro, B.; Malik-Sheriff, R.S.; Sego, T.J.; Knapp, A.; Macklin, P.; Glazier, J.A. Building digital twins of the human immune system: Toward a roadmap. npj Digit. Med. 2022, 5, 64. [Google Scholar] [CrossRef] [PubMed]
- Cockrell, C.; An, G. Utilizing the Heterogeneity of Clinical Data for Model Refinement and Rule Discovery Through the Application of Genetic Algorithms to Calibrate a High-Dimensional Agent-Based Model of Systemic Inflammation. Front. Physiol. 2021, 12, 662845. [Google Scholar] [CrossRef] [PubMed]
- Polasek, T.M.; Rostami-Hodjegan, A. Virtual Twins: Understanding the Data Required for Model-Informed Precision Dosing. Clin. Pharmacol. Ther. 2020, 107, 742–745. [Google Scholar] [CrossRef]
- Patel, N.; Wisniowska, B.; Jamei, M.; Polak, S. Real Patient and its Virtual Twin: Application of Quantitative Systems Toxicology Modelling in the Cardiac Safety Assessment of Citalopram. AAPS J. 2017, 20, 6. [Google Scholar] [CrossRef]
- Chasseloup, E.; Hooker, A.C.; Karlsson, M.O. Generation and application of avatars in pharmacometric modelling. J. Pharmacokinet. Pharmacodyn. 2023, 50, 411–423. [Google Scholar] [CrossRef] [PubMed]
- Shalek, A.K.; Benson, M. Single-cell analyses to tailor treatments. Sci. Transl. Med. 2017, 9, eaan4730. [Google Scholar] [CrossRef] [PubMed]
- Venkatesh, K.P.; Brito, G.; Kamel Boulos, M.N. Health Digital Twins in Life Science and Health Care Innovation. Annu. Rev. Pharmacol. Toxicol. 2024, 64, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Fogel, D.B. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp. Clin. Trials Commun. 2018, 11, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Schutt, M.; Stamatopoulos, K.; Batchelor, H.K.; Simmons, M.J.H.; Alexiadis, A. Development of a digital twin of a tablet that mimics a real solid dosage form: Differences in the dissolution profile in conventional mini-USP II and a biorelevant colon model. Eur. J. Pharm. Sci. 2022, 179, 106310. [Google Scholar] [CrossRef]
- Subramanian, K. Digital Twin for Drug Discovery and Development—The Virtual Liver. J. Indian Inst. Sci. 2020, 100, 653–662. [Google Scholar] [CrossRef]
Term | Definition |
---|---|
Digital Twins | Virtual replicas of physical systems used for simulation, analysis, and optimization |
Generative AI | AI systems that create new content or data resembling real-world examples |
Generative Adversarial Networks (GANs) | Machine learning models comprising two neural networks, a generator and a discriminator, that compete to improve each other |
Variational Autoencoders (VAEs) | Neural networks that encode data into a compressed latent space and decode it back, allowing for data generation |
Encoder–Decoder Transformer architecture | A neural network design using self-attention mechanisms to process sequences of data, commonly used in natural language processing tasks |
Reinforcement Learning | A type of machine learning where an agent learns to make decisions by receiving rewards or penalties |
Restricted Boltzmann Machines (RBMs) | Energy-based neural networks for unsupervised learning, with one visible layer and one hidden layer |
Recurrent Neural Networks (RNNs) | Neural networks designed to handle sequential data by maintaining a memory of previous inputs |
Hidden Markov Models (HMMs) | Statistical models that represent systems with hidden states and observable events, used for time-series analysis |
Gaussian Mixture Models (GMMs) | Probabilistic models representing data as a mixture of several Gaussian distributions, useful for clustering and density estimation |
Generative AI Type | Examples | Salient Features | Metrics | Applications in Healthcare and Drug Discovery |
---|---|---|---|---|
Generative Adversarial Networks (GANs) | DCGAN (Deep Convolutional GAN), StyleGAN | Adversarial training between generator and discriminator networks, capable of generating high-quality images | Inception Score, Frechet Inception Distance (FID) | Image generation, drug discovery (molecular generation) |
Variational Autoencoders (VAEs) | β-VAE, Adversarial Autoencoder | Latent variable models enable probabilistic generative modeling, allowing for sampling and reconstruction | Reconstruction loss, KL divergence | Image generation, molecular design, anomaly detection |
Transformer-based Models | GPT (Generative Pre-trained Transformer), BERT (Bidirectional Encoder Representations from Transformers) | Attention mechanism for capturing contextual dependencies, capable of generating text and sequences | Perplexity, BLEU score, ROUGE score | Text generation, molecule generation, medical report generation |
Implementation Stages | Generative AI Use Cases | Digital Twin Use Cases | Benefits |
---|---|---|---|
Target Identification | Analyze large datasets of scientific literature to identify potential drug targets (transformer-based models) | Build digital twins of diseases to understand their underlying mechanisms | Prioritize promising targets with higher success rates in drug development |
Lead Generation | Generate novel drug-like molecules with desired properties (GANs, VAEs) | Develop digital twins of proteins as potential drug targets | Explore vast chemical spaces to discover potential drug candidates efficiently |
Drug Optimization | Refine existing drug structures for improved potency or reduced side effects (GANs) | Integrate drug–target interactions and patient data into digital twins | Optimize drug properties for better efficacy and safety profiles |
Preclinical Testing | Generate synthetic patient data with specific disease profiles (VAEs) | Build digital twins of organs or tissues to simulate drug effects | Reduce reliance on animal studies and accelerate preclinical testing |
Clinical Trial Design | Generate virtual patient populations for trial simulations (Transformer-based models) | Integrate digital twins with clinical trial data for real-time patient monitoring | Optimize trial design by predicting patient responses and potential side effects |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariam, Z.; Niazi, S.K.; Magoola, M. Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics 2024, 4, 1441-1456. https://doi.org/10.3390/biomedinformatics4020079
Mariam Z, Niazi SK, Magoola M. Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics. 2024; 4(2):1441-1456. https://doi.org/10.3390/biomedinformatics4020079
Chicago/Turabian StyleMariam, Zamara, Sarfaraz K. Niazi, and Matthias Magoola. 2024. "Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond" BioMedInformatics 4, no. 2: 1441-1456. https://doi.org/10.3390/biomedinformatics4020079
APA StyleMariam, Z., Niazi, S. K., & Magoola, M. (2024). Unlocking the Future of Drug Development: Generative AI, Digital Twins, and Beyond. BioMedInformatics, 4(2), 1441-1456. https://doi.org/10.3390/biomedinformatics4020079