Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots
Abstract
:1. Introduction
2. Fundaments and Evolution of Language Models
2.1. Fundamentals of Natural Language Processing
2.2. Evolution of Large Language Models
3. Results
3.1. Application of AI Chatbot in Healthcare
3.1.1. Healthcare Knowledge Transfer with Chatbot
3.1.2. Symptom Diagnosis
3.1.3. Mental Healthcare
3.2. Ethical and Legal Implications
3.2.1. Patient Privacy and Data Security Concerns
3.2.2. Ethical Considerations in AI-Assisted Healthcare Conversations
3.2.3. Regulatory Compliance in AI-Powered Healthcare Applications
4. Discussion
4.1. Future Development and Challenges
4.2. Opportunities for Improvement and Advancement
4.2.1. Enhancing Precision and Accuracy
4.2.2. Personalization and Context Awareness
4.2.3. Interdisciplinary Collaboration and Research
4.2.4. User Education and Engagement
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Confalonieri, R.; Coba, L.; Wagner, B.; Besold, T.R. A historical perspective of explainable Artificial Intelligence. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2021, 11, e1391. [Google Scholar] [CrossRef]
- Kononenko, I. Machine learning for medical diagnosis: History, state of the art and perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C. Artificial intelligence in radiotherapy. Rep. Pract. Oncol. Radiother. 2020, 25, 656–666. [Google Scholar] [CrossRef]
- Chow, J.C. Internet-based computer technology on radiotherapy. Rep. Pract. Oncol. Radiother. 2017, 22, 455–462. [Google Scholar] [CrossRef]
- Joshi, G.; Jain, A.; Araveeti, S.R.; Adhikari, S.; Garg, H.; Bhandari, M. FDA-Approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices: An Updated Landscape. Electronics 2024, 13, 498. [Google Scholar] [CrossRef]
- Raiaan, M.A.K.; Mukta, M.S.H.; Fatema, K.; Fahad, N.M.; Sakib, S.; Mim, M.M.J.; Ahmad, J.; Ali, M.E.; Azam, S. A Review on Large Language Models: Architectures, Applications, Taxonomies, Open Issues and Challenges. IEEE Access 2024, 12, 26839–26874. [Google Scholar] [CrossRef]
- Khan, W.; Daud, A.; Khan, K.; Muhammad, S.; Haq, R. Exploring the frontiers of deep learning and natural language processing: A comprehensive overview of key challenges and emerging trends. Nat. Lang. Process. J. 2023, 4, 100026. [Google Scholar] [CrossRef]
- Thirunavukarasu, A.J.; Ting, D.S.J.; Elangovan, K.; Gutierrez, L.; Tan, T.F.; Ting, D.S.W. Large language models in medicine. Nat. Med. 2023, 29, 1930–1940. [Google Scholar] [CrossRef]
- Kim, J.K.; Chua, M.; Rickard, M.; Lorenzo, A. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine. J. Pediatr. Urol. 2023, 19, 598–604. [Google Scholar] [CrossRef]
- Haupt, C.E.; Marks, M. AI-generated medical advice—GPT and beyond. JAMA 2023, 329, 1349–1350. [Google Scholar] [CrossRef] [PubMed]
- Siddique, S.; Chow, J.C.L. Machine learning in healthcare communication. Encyclopedia 2021, 1, 220–239. [Google Scholar] [CrossRef]
- Xu, L.; Sanders, L.; Li, K.; Chow, J.C.L. Chatbot for health care and oncology applications using artificial intelligence and machine learning: Systematic review. JMIR Cancer 2021, 7, e27850. [Google Scholar] [CrossRef]
- Chow, J.C.L.; Wong, V.; Sanders, L.; Li, K. Developing an AI-Assisted Educational Chatbot for Radiotherapy Using the IBM Watson Assistant Platform. Healthcare 2023, 11, 2417. [Google Scholar] [CrossRef]
- Kovacek, D.; Chow, J.C.L. An AI-assisted chatbot for radiation safety education in radiotherapy. IOP SciNotes 2021, 2, 034002. [Google Scholar] [CrossRef]
- Lalwani, T.; Bhalotia, S.; Pal, A.; Rathod, V.; Bisen, S. Implementation of a Chatbot System using AI and NLP. Int. J. Innov. Res. Comput. Sci. Technol. IJIRCST 2018, 6, 26–30. [Google Scholar] [CrossRef]
- Wu, T.; He, S.; Liu, J.; Sun, S.; Liu, K.; Han, Q.-L.; Tang, Y. A brief overview of ChatGPT: The history, status quo and potential future development. IEEE/CAA J. Autom. Sin. 2023, 10, 1122–1136. [Google Scholar] [CrossRef]
- Li, J.; Dada, A.; Puladi, B.; Kleesiek, J.; Egger, J. ChatGPT in healthcare: A taxonomy and systematic review. Comput. Methods Programs Biomed. 2024, 245, 108013. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L.; Sanders, L.; Li, K. Impact of ChatGPT on medical chatbots as a disruptive technology. Front. Artif. Intell. 2023, 6, 1166014. [Google Scholar] [CrossRef] [PubMed]
- Kao, H.-J.; Chien, T.-W.M.; Wang, W.-C.; Chou, W.; Chow, J.C. Assessing ChatGPT’s capacity for clinical decision support in pediatrics: A comparative study with pediatricians using KIDMAP of Rasch analysis. Medicine 2023, 102, e34068. [Google Scholar] [CrossRef] [PubMed]
- Rawashdeh, B.; Kim, J.; AlRyalat, S.A.; Prasad, R.; Cooper, M. ChatGPT and artificial intelligence in transplantation research: Is it always correct? Cureus 2023, 15, e42150. [Google Scholar] [CrossRef] [PubMed]
- Chow, J.C.L.; Sanders, L.; Li, K. Design of an educational chatbot using artificial intelligence in radiotherapy. AI 2023, 4, 319–332. [Google Scholar] [CrossRef]
- Lubowitz, J.H. ChatGPT, an artificial intelligence chatbot, is impacting medical literature. Arthroscopy 2023, 39, 1121–1122. [Google Scholar] [CrossRef] [PubMed]
- Chin, H.; Lima, G.; Shin, M.; Zhunis, A.; Cha, C.; Choi, J.; Cha, M. User-Chatbot conversations during the COVID-19 pandemic: Study based on topic modeling and sentiment analysis. J. Med. Internet Res. 2023, 25, e40922. [Google Scholar] [CrossRef]
- Almalki, M.; Azeez, F. Health chatbots for fighting COVID-19: A scoping review. Acta Inform. Med. 2020, 28, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Ayanouz, S.; Abdelhakim, B.A.; Benhmed, M. A smart chatbot architecture based NLP and machine learning for health care assistance. In Proceedings of the 3rd International Conference on Networking, Information Systems & Security, Marrakech, Morocco, 31 March–2 April 2020; pp. 1–6. [Google Scholar]
- Olthof, A.W.; Shouche, P.; Fennema, E.M.; IJpma, F.F.; Koolstra, R.C.; Stirler, V.M.; van Ooijen, P.M.; Cornelissen, L.J. Machine learning based natural language processing of radiology reports in orthopaedic trauma. Comput. Methods Programs Biomed. 2021, 208, 106304. [Google Scholar] [CrossRef] [PubMed]
- Adamopoulou, E.; Moussiades, L. An overview of chatbot technology. In IFIP International Conference on Artificial Intelligence Applications and Innovations; Springer: Cham, Switzerland, 2020; pp. 373–383. [Google Scholar]
- Adamopoulou, E.; Moussiades, L. Chatbots: History, technology, and applications. Mach. Learn. Appl. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Chadha, N.; Gangwar, R.; Bedi, R. Current Challenges and Application of Speech Recognition Process using Natural Language Processing: A Survey. Int. J. Comput. Appl. 2015, 131, 28–31. [Google Scholar] [CrossRef]
- Malik, M.; Malik, M.K.; Mehmood, K.; Makhdoom, I. Automatic speech recognition: A survey. Multimed. Tools Appl. 2021, 80, 9411–9457. [Google Scholar] [CrossRef]
- Zaib, M.; Zhang, W.E.; Sheng, Q.Z.; Mahmood, A.; Zhang, Y. Conversational question answering: A survey. Knowl. Inf. Syst. 2022, 64, 3151–3195. [Google Scholar] [CrossRef]
- Reddy, S.; Chen, D.; Manning, C.D. Coqa: A conversational question answering challenge. Trans. Assoc. Comput. Linguist. 2019, 7, 249–266. [Google Scholar] [CrossRef]
- Kocaleva, M.; Stojanov, D.; Stojanovik, I.; Zdravev, Z. Pattern recognition and natural language processing: State of the art. TEM J. 2016, 5, 236–240. [Google Scholar] [CrossRef]
- Fu, T.; Gao, S.; Zhao, X.; Wen, J.-R.; Yan, R. Learning towards conversational AI: A survey. AI Open 2022, 3, 14–28. [Google Scholar] [CrossRef]
- Sharma, D.; Paliwal, M.; Rai, J. NLP for Intelligent Conversational Assistance. Int. J. Innov. Res. Comput. Sci. Technol. 2021, 9, 179–184. [Google Scholar]
- Locke, S.; Bashall, A.; Al-Adely, S.; Moore, J.; Wilson, A.; Kitchen, G.B. Natural language processing in medicine: A review. Trends Anaesth. Crit. Care 2021, 38, 4–9. [Google Scholar] [CrossRef]
- Lo Barco, T.; Kuchenbuch, M.; Garcelon, N.; Neuraz, A.; Nabbout, R. Improving early diagnosis of rare diseases using Natural Language Processing in unstructured medical records: An illustration from Dravet syndrome. Orphanet J. Rare Dis. 2021, 16, 309. [Google Scholar] [CrossRef] [PubMed]
- Friedman, C.; Hripcsak, G. Natural language processing and its future in medicine. Acad. Med. 1999, 74, 890–895. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.; Gupta, N.; Sinhababu, A.; Chakravarty, R. Impact of Conversational and Generative AI Systems on Libraries: A Use Case Large Language Model (LLM). Sci. Technol. Libr. 2023, 42, 1–5. [Google Scholar] [CrossRef]
- Alberts, I.L.; Mercolli, L.; Pyka, T.; Prenosil, G.; Shi, K.; Rominger, A.; Afshar-Oromieh, A. Large language models (LLM) and ChatGPT: What will the impact on nuclear medicine be? Eur. J. Nucl. Med. 2023, 50, 1549–1552. [Google Scholar] [CrossRef] [PubMed]
- Ethape, P.; Kane, R.; Gadekar, G.; Chimane, S. Smart Automation Using LLM. Int. Res. J. Innov. Eng. Technol. 2023, 7, 603. [Google Scholar]
- El Saddik, A.; Ghaboura, S. The Integration of ChatGPT with the Metaverse for Medical Consultations. IEEE Consum. Electron. Mag. 2024, 13, 6–15. [Google Scholar] [CrossRef]
- Roumeliotis, K.I.; Tselikas, N.D. ChatGPT and Open-AI Models: A Preliminary Review. Future Internet 2023, 15, 192. [Google Scholar] [CrossRef]
- De Angelis, L.; Baglivo, F.; Arzilli, G.; Privitera, G.P.; Ferragina, P.; Tozzi, A.E.; Rizzo, C. ChatGPT and the rise of large language models: The new AI-driven infodemic threat in public health. Front. Public Health 2023, 11, 1166120. [Google Scholar] [CrossRef]
- Waisberg, E.; Ong, J.; Masalkhi, M.; Kamran, S.A.; Zaman, N.; Sarker, P.; Lee, A.G.; Tavakkoli, A. GPT-4: A new era of artificial intelligence in medicine. Ir. J. Med Sci. 2023, 192, 3197–3200. [Google Scholar] [CrossRef]
- Acheampong, F.A.; Nunoo-Mensah, H.; Chen, W. Transformer models for text-based emotion detection: A review of BERT-based approaches. Artif. Intell. Rev. 2021, 54, 5789–5829. [Google Scholar] [CrossRef]
- Sayeed, M.S.; Mohan, V.; Muthu, K.S. BERT: A Review of Applications in Sentiment Analysis. HighTech Innov. J. 2023, 4, 453–462. [Google Scholar] [CrossRef]
- Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.R.; Le, Q.V. Xlnet: Generalized autoregressive pretraining for language understanding. Adv. Neural Inf. Process. Syst. 2019, 32. Available online: https://api.semanticscholar.org/CorpusID:195069387 (accessed on 11 March 2024).
- Raffel, C.; Shazeer, N.; Roberts, A.; Lee, K.; Narang, S.; Matena, M.; Zhou, Y.; Li, W.; Liu, P.J. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res. 2020, 21, 5485–5551. [Google Scholar]
- Hao, Y.; Dong, L.; Wei, F.; Xu, K. Visualizing and understanding the effectiveness of BERT. arXiv 2019, arXiv:1908.05620. [Google Scholar]
- Catelli, R.; Pelosi, S.; Esposito, M. Lexicon-Based vs. Bert-Based Sentiment Analysis: A Comparative Study in Italian. Electronics 2022, 11, 374. [Google Scholar] [CrossRef]
- Chow, J.C. Artificial intelligence in radiotherapy and patient care. In Artificial Intelligence in Medicine; Springer: Cham, Switzerland, 2021; pp. 1–13. [Google Scholar]
- Yang, R.; Tan, T.F.; Lu, W.; Thirunavukarasu, A.J.; Ting, D.S.W.; Liu, N. Large language models in health care: Development, applications, and challenges. Health Care Sci. 2023, 2, 255–263. [Google Scholar] [CrossRef]
- Chakraborty, C.; Bhattacharya, M.; Lee, S.-S. Need an AI-enabled, next-generation, advanced ChatGPT or large language models (LLMs) for error-free and accurate medical information. Ann. Biomed. Eng. 2023, 52, 134–135. [Google Scholar] [CrossRef] [PubMed]
- Sanaei, M.-J.; Ravari, M.S.; Abolghasemi, H. ChatGPT in medicine: Opportunity and challenges. Iran. J. Blood Cancer 2023, 15, 60–67. [Google Scholar] [CrossRef]
- Adhikari, K.; Naik, N.; Hameed, B.Z.; Raghunath, S.K.; Somani, B.K. Exploring the ethical, legal, and social implications of ChatGPT in urology. Curr. Urol. Rep. 2023, 25, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Goodman, R.S.; Patrinely, J.R.; Stone, C.A.; Zimmerman, E.; Donald, R.R.; Chang, S.S.; Berkowitz, S.T.; Finn, A.P.; Jahangir, E.; Scoville, E.A.; et al. Accuracy and reliability of chatbot responses to physician questions. JAMA Netw. Open 2023, 6, e2336483. [Google Scholar] [CrossRef] [PubMed]
- Walker, H.L.; Ghani, S.; Kuemmerli, C.; Nebiker, C.A.; Müller, B.P.; Raptis, D.A.; Staubli, S.M. Reliability of medical information provided by ChatGPT: Assessment against clinical guidelines and patient information quality instrument. J. Med. Internet Res. 2023, 25, e47479. [Google Scholar] [CrossRef] [PubMed]
- Fournier-Tombs, E.; McHardy, J. A medical ethics framework for conversational artificial intelligence. J. Med. Internet Res. 2023, 25, e43068. [Google Scholar] [CrossRef]
- Chang, I.-C.; Shih, Y.-S.; Kuo, K.-M. Why would you use medical chatbots? interview and survey. Int. J. Med. Inform. 2022, 165, 104827. [Google Scholar] [CrossRef]
- Chung, K.; Park, R.C. Chatbot-based heathcare service with a knowledge base for cloud computing. Clust. Comput. 2019, 22, 1925–1937. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial intelligence in disease diagnosis: A systematic literature review, synthesizing framework and future research agenda. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 8459–8486. [Google Scholar] [CrossRef]
- Lee, S.; Lee, J.; Park, J.; Park, J.; Kim, D.; Lee, J.; Oh, J. Deep learning-based natural language processing for detecting medical symptoms and histories in emergency patient triage. Am. J. Emerg. Med. 2024, 77, 29–38. [Google Scholar] [CrossRef]
- Wilkins, A. The robot doctor will see you soon. New Sci. 2023, 257, 28. [Google Scholar] [CrossRef]
- DeSouza, D.D.; Robin, J.; Gumus, M.; Yeung, A. Natural language processing as an emerging tool to detect late-life depression. Front. Psychiatry 2021, 12, 719125. [Google Scholar] [CrossRef]
- Farhat, F. ChatGPT as a complementary mental health resource: A boon or a bane. Ann. Biomed. Eng. 2023, 51, 1–4. [Google Scholar] [CrossRef]
- Cheng, S.W.; Chang, C.W.; Chang, W.J.; Wang, H.W.; Liang, C.S.; Kishimoto, T.; Chang, J.P.; Kuo, J.S.; Su, K.P. The now and future of ChatGPT and GPT in psychiatry. Psychiatry Clin. Neurosci. 2023, 77, 592–596. [Google Scholar] [CrossRef]
- Zhang, T.; Schoene, A.M.; Ji, S.; Ananiadou, S. Natural language processing applied to mental illness detection: A narrative review. NPJ Digit. Med. 2022, 5, 46. [Google Scholar] [CrossRef] [PubMed]
- Tanana, M.J.; Soma, C.S.; Kuo, P.B.; Bertagnolli, N.M.; Dembe, A.; Pace, B.T.; Srikumar, V.; Atkins, D.C.; Imel, Z.E. How do you feel? Using natural language processing to automatically rate emotion in psychotherapy. Behav. Res. Methods 2021, 53, 2069–2082. [Google Scholar] [CrossRef] [PubMed]
- Madhuri, S. Detecting emotion from natural language text using hybrid and NLP pre-trained models. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 4095–4103. [Google Scholar]
- Pestian, J.; Nasrallah, H.; Matykiewicz, P.; Bennett, A.; Leenaars, A. Suicide note classification using natural language processing: A content analysis. Biomed. Inform. Insights 2010, 3, BII.S4706. [Google Scholar] [CrossRef] [PubMed]
- Nijhawan, T.; Attigeri, G.; Ananthakrishna, T. Stress detection using natural language processing and machine learning over social interactions. J. Big Data 2022, 9, 33. [Google Scholar] [CrossRef]
- May, R.; Denecke, K. Security, privacy, and healthcare-related conversational agents: A scoping review. Inform. Health Soc. Care 2022, 47, 194–210. [Google Scholar] [CrossRef]
- Li, J. Security Implications of AI Chatbots in Health Care. J. Med. Internet Res. 2023, 25, e47551. [Google Scholar] [CrossRef]
- Hasal, M.; Nowaková, J.; Ahmed Saghair, K.; Abdulla, H.; Snášel, V.; Ogiela, L. Chatbots: Security, privacy, data protection, and social aspects. Concurr. Comput. Pract. Exp. 2021, 33, e6426. [Google Scholar] [CrossRef]
- Oca, M.C.; Meller, L.; Wilson, K.; Parikh, A.O.; McCoy, A.; Chang, J.; Sudharshan, R.; Gupta, S.; Zhang-Nunes, S. Bias and inaccuracy in AI chatbot ophthalmologist recommendations. Cureus 2023, 15, e45911. [Google Scholar] [CrossRef]
- Jin, E.; Eastin, M. Gender Bias in Virtual Doctor Interactions: Gender Matching Effects of Chatbots and Users on Communication Satisfactions and Future Intentions to Use the Chatbot. Int. J. Hum.–Comput. Interact. 2023, 39, 1–13. [Google Scholar] [CrossRef]
- Kim, J.; Cai, Z.R.; Chen, M.L.; Simard, J.F.; Linos, E. Assessing Biases in Medical Decisions via Clinician and AI Chatbot Responses to Patient Vignettes. JAMA Netw. Open 2023, 6, e2338050. [Google Scholar] [CrossRef]
- Pearman, S.; Young, E.; Cranor, L.F. User-friendly yet rarely read: A case study on the redesign of an online HIPAA authorization. Proc. Priv. Enhancing Technol. 2022, 2022, 558–581. [Google Scholar] [CrossRef]
- Ebers, M.; Hoch, V.R.S.; Rosenkranz, F.; Ruschemeier, H.; Steinrötter, B. The European Commission’s proposal for an artificial intelligence act—A critical assessment by members of the robotics and AI law society (rails). J 2021, 4, 589–603. [Google Scholar] [CrossRef]
- Schmidlen, T.; Schwartz, M.; DiLoreto, K.; Kirchner, H.L.; Sturm, A.C. Patient assessment of chatbots for the scalable delivery of genetic counseling. J. Genet. Couns. 2019, 28, 1166–1177. [Google Scholar] [CrossRef] [PubMed]
- Gräf, M.; Knitza, J.; Leipe, J.; Krusche, M.; Welcker, M.; Kuhn, S.; Mucke, J.; Hueber, A.J.; Hornig, J.; Klemm, P.; et al. Comparison of physician and artificial intelligence-based symptom checker diagnostic accuracy. Rheumatol. Int. 2022, 42, 2167–2176. [Google Scholar] [CrossRef] [PubMed]
- Wiedermann, C.J.; Mahlknecht, A.; Piccoliori, G.; Engl, A. Redesigning Primary Care: The Emergence of Artificial-Intelligence-Driven Symptom Diagnostic Tools. J. Pers. Med. 2023, 13, 1379. [Google Scholar] [CrossRef] [PubMed]
- Jarrah, A.M.; Wardat, Y.; Fidalgo, P. Using ChatGPT in academic writing is (not) a form of plagiarism: What does the literature say? Online J. Commun. Media Technol. 2023, 13, e202346. [Google Scholar] [CrossRef]
- Meskó, B. The impact of multimodal large language models on health care’s future. J. Med. Internet Res. 2023, 25, e52865. [Google Scholar] [CrossRef]
- Meskó, B.; Topol, E.J. The imperative for regulatory oversight of large language models (or generative AI) in healthcare. NPJ Digit. Med. 2023, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Xu, H.; Hu, X.; Deng, C. Leveraging Generative AI and Large Language Models: A Comprehensive Roadmap for Healthcare Integration. Healthcare 2023, 11, 2776. [Google Scholar] [CrossRef]
- Karabacak, M.; Margetis, K. Embracing Large Language Models for Medical Applications: Opportunities and Challenges. Cureus 2023, 15, e39305. [Google Scholar] [CrossRef]
- Safranek, C.W.; Sidamon-Eristoff, A.E.; Gilson, A.; Chartash, D. The role of large language models in medical education: Applications and implications. JMIR Med. Educ. 2023, 9, e50945. [Google Scholar] [CrossRef]
- Valtolina, S.; Marchionna, M. Design of a Chatbot to Assist the Elderly. In International Symposium on End User Development; Springer International Publishing: Cham, Switzerland, 2021; pp. 153–168. [Google Scholar]
- Huq, S.M.; Maskeliūnas, R.; Damaševičius, R. Dialogue agents for artificial intelligence-based conversational systems for cognitively disabled: A systematic review. Disabil. Rehabil. Assist. Technol. 2022, 17, 1–20. [Google Scholar] [CrossRef]
- Guleria, A.; Krishan, K.; Sharma, V.; Kanchan, T. ChatGPT: Ethical concerns and challenges in academics and research. J. Infect. Dev. Ctries. 2023, 17, 1292–1299. [Google Scholar] [CrossRef]
- Iannantuono, G.M.; Bracken-Clarke, D.; Floudas, C.S.; Roselli, M.; Gulley, J.L.; Karzai, F. Applications of large language models in cancer care: Current evidence and future perspectives. Front. Oncol. 2023, 13, 1268915. [Google Scholar] [CrossRef] [PubMed]
- Abd-Alrazaq, A.; AlSaad, R.; Alhuwail, D.; Ahmed, A.; Healy, P.M.; Latifi, S.; Aziz, S.; Damseh, R.; Alrazak, S.A.; Sheikh, J. Large Language Models in Medical Education: Opportunities, Challenges, and Future Directions. JMIR Med. Educ. 2023, 9, e48291. [Google Scholar] [CrossRef]
- Gao, C.A.; Howard, F.M.; Markov, N.S.; Dyer, E.C.; Ramesh, S.; Luo, Y.; Pearson, A.T. Comparing scientific abstracts generated by ChatGPT to real abstracts with detectors and blinded human reviewers. NPJ Digit. Med. 2023, 6, 75. [Google Scholar] [CrossRef]
- Hart, S.N.; Hoffman, N.G.; Gershkovich, P.; Christenson, C.; McClintock, D.S.; Miller, L.J.; Jackups, R.; Azimi, V.; Spies, N.; Brodsky, V. Organizational preparedness for the use of large language models in pathology informatics. J. Pathol. Inform. 2023, 14, 100338. [Google Scholar] [CrossRef]
- Chakraborty, C.; Pal, S.; Bhattacharya, M.; Dash, S.; Lee, S.-S. Overview of Chatbots with special emphasis on artificial intelligence-enabled ChatGPT in medical science. Front. Artif. Intell. 2023, 6, 1237704. [Google Scholar] [CrossRef]
- Caldarini, G.; Jaf, S.; McGarry, K. A literature survey of recent advances in chatbots. Information 2022, 13, 41. [Google Scholar] [CrossRef]
- Prasad, G.; Ranjan, S.; Ankit, T.; Kumar, V. A personalized medical assistant chatbot: Medibot. Int. J. Sci. Technol. Eng. 2019, 5, 42–46. [Google Scholar]
- Følstad, A.; Araujo, T.; Law, E.L.-C.; Brandtzaeg, P.B.; Papadopoulos, S.; Reis, L.; Baez, M.; Laban, G.; McAllister, P.; Ischen, C.; et al. Future directions for chatbot research: An interdisciplinary research agenda. Computing 2021, 103, 2915–2942. [Google Scholar] [CrossRef]
- Kaur, A.; Singh, S.; Chandan, J.S.; Robbins, T.; Patel, V. Qualitative exploration of digital chatbot use in medical education: A pilot study. Digit. Health 2021, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
Feature | Description |
---|---|
Accurate Information Retrieval | Provide accurate and up-to-date medical information from reliable sources. |
Symptom Assessment | Analyze and assess user-described symptoms to suggest potential health conditions. |
Diagnosis Support | Offer preliminary assistance in suggesting potential diagnoses, understanding its limitations. |
Treatment Guidance | Provide general information on treatments, medications, and lifestyle recommendations. |
Medication Information | Offer details about medications, including dosage, side effects, and potential interactions. |
Appointment Scheduling | Assist users in scheduling appointments with healthcare providers and send reminders. |
Health Monitoring | Support users in tracking and monitoring health metrics like blood pressure or blood sugar. |
Emergency Response | Recognize urgent situations and provide emergency response information or facilitate contacts. |
Patient Education | Offer educational content to enhance users’ understanding of medical conditions and prevention. |
Privacy and Security | Ensure strict adherence to data privacy regulations and maintain the confidentiality of user health information. |
Multilingual Support | Provide communication in multiple languages to cater to diverse patient populations. |
Integration with EHR | Facilitate integration with existing healthcare systems to access relevant patient data. |
Personalized Recommendations | Offer personalized health advice based on user data, preferences, and lifestyle. |
Follow-up and Continuity of Care | Implement features for follow-up interactions, reminders, and maintaining continuity of care. |
User-Friendly Interface | Ensure an intuitive and user-friendly interface for easy interaction. |
Adherence Support | Assist patients in adhering to prescribed treatment plans and medications. |
Mental Health Support | Include features for mental health assessments, stress management, and access to mental health resources. |
Feedback and Improvement | Incorporate mechanisms for users to provide feedback on the chatbot’s performance. |
Model | Description | Applications in Healthcare |
---|---|---|
GPT-3 and 4 [43,44,45] | OpenAI’s powerful LLM with strong natural language understanding. | Medical documentation, question answering, text-based interactions |
BERT, BioBERT and ClinicalBERT [46,47] | Bidirectional processing makes BERT suitable for clinical text analysis. | Clinical text analysis, medical literature understanding, biomedical text mining, information extraction from medical texts, clinical note understanding, medical question answering |
XLNet [48] | OpenAI’s model capable of capturing bidirectional context. | Medical literature analysis, clinical documentation |
T5 [49] | Text-to-Text Transfer Transformer, designed for various NLP tasks. | Summarization of medical documents, question generation |
BART [50] | Bidirectional and Auto-Regressive Transformer, used for text generation. | Text summarization, document generation, paraphrasing |
Concern | Description |
---|---|
Patient Privacy and Data Security | AI in healthcare raises concerns about patient data security. Robust measures are needed for encryption and storage. |
Ethical Considerations in AI-Assisted Healthcare | Transparency and informed consent are crucial. Addressing biases and maintaining fairness in healthcare is essential. |
Regulatory Compliance in AI-powered Healthcare | Adhering to healthcare regulations like HIPAA and the European Union’s AI Act is crucial. It establishes a framework for responsible AI deployment. |
Opportunities for Improvement and Advancement | |
---|---|
Enhancing Precision and Accuracy | Continuous refinement of LLMs through targeted training on diverse medical datasets to reduce misinformation and improve reliability. |
Personalization and Context Awareness | Tailoring responses based on user profiles, medical histories, and preferences for a more personalized and user-centric experience. |
Interdisciplinary Collaboration and Research | Tailoring responses based on individual user profiles, medical histories, and preferences for a more personalized and user-centric experience. |
User Education and Engagement | Initiatives to educate users about AI capabilities and limitations in healthcare, encouraging user feedback for iterative improvement. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, J.C.L.; Wong, V.; Li, K. Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots. BioMedInformatics 2024, 4, 837-852. https://doi.org/10.3390/biomedinformatics4010047
Chow JCL, Wong V, Li K. Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots. BioMedInformatics. 2024; 4(1):837-852. https://doi.org/10.3390/biomedinformatics4010047
Chicago/Turabian StyleChow, James C. L., Valerie Wong, and Kay Li. 2024. "Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots" BioMedInformatics 4, no. 1: 837-852. https://doi.org/10.3390/biomedinformatics4010047
APA StyleChow, J. C. L., Wong, V., & Li, K. (2024). Generative Pre-Trained Transformer-Empowered Healthcare Conversations: Current Trends, Challenges, and Future Directions in Large Language Model-Enabled Medical Chatbots. BioMedInformatics, 4(1), 837-852. https://doi.org/10.3390/biomedinformatics4010047