Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Data Description
2.3. Problem Definition
2.4. Machine Learning Workflow
2.5. Feature Engineering
2.6. Learning Process
2.7. Evaluation
2.8. Explainability
3. Results
3.1. Descriptive Statistics
3.2. Prediction Performance
3.3. Explainability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
FRL Items | Description |
---|---|
FRL1 | I always make a list, before I go shopping for food |
FRL2 | I like shopping for food for me or my family |
FRL3 | I like shopping and tasting gourmet foods |
FRL4 | Eating out with my friends or with my family is an important part of my social life |
FRL5 | Eating is an enjoyment |
FRL6 | I try to schedule the weekly menu, so as not to waste time and money |
FRL7 | I like to read the labels of the food products that I buy to know what they contain |
FRL8 | I like to cook for myself, for my family and my friends |
FRL9 | I check the prices and compare them |
FRL10 | I check the expiration dates of food |
FRL11 | I read recipes and experiment in cooking |
FRL12 | Members of my family like to involve in cooking |
FRL13 | I prefer to buy products firstly for their nutritional value and then for their taste |
FRL14 | I prefer to buy natural products without preservatives |
FRL15 | At home, I eat take away food, at least once a month |
FRL16 | After the pandemic, I prefer not to eat out |
FRL17 | I find cooking tiring |
FRL18 | After the pandemic, I pay attention to the places from where I buy food (cleanliness, without overcrowding) |
FRL19 | After the coronavirus pandemic, I do not trust the takeaway food |
FRL20 | I use the internet to inform me and to entertain me |
References
- Font-i-Furnols, M.; Guerrero, L. Consumer Preference, Behavior and Perception about Meat and Meat Products: An Overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Ripoll García, G.; Albertí Lasalle, P.; Panea Doblado, B. Consumer Segmentation Based on Food-Related Lifestyles and Perception of Chicken Breast. Int. J. Poult. Sci. 2015, 14, 262–275. [Google Scholar] [CrossRef]
- Predanocyová, K.; Kubicová, Ľ.; Kádeková, Z.; Košičiarová, I. Key Factors Affecting Consumption of Meat and Meat Products from Perspective of Slovak Consumers. Potravinarstvo 2019, 13, 1001–1012. [Google Scholar] [CrossRef]
- Kehagia, O.C.; Colmer, C.; Chryssochoidis, M.G. Consumer Valuation of Traceability Labels: A Cross-Cultural Study in Germany and Greece. Br. Food J. 2017, 119, 803–816. [Google Scholar] [CrossRef]
- Raimundo, L.M.B.; Batalha, M.O. Consumption of Chicken Meat in Sao Paulo: Market Segmentation and Strategies. CEP 2015, 13565, 905. [Google Scholar]
- Walley, K.; Parrott, P.; Custance, P.; Meledo-Abraham, P.; Bourdin, A. A Review of French Consumers Purchasing Patterns, Perceptions and Decision Factors for Poultry Meat. World’s Poult. Sci. J. 2015, 71, 5–14. [Google Scholar] [CrossRef]
- Michel, L.M.; Punter, P.; Wismer, W. Perceptual Attributes of Poultry and Other Meat Products: A Repertory Grid Application. Meat Sci. 2011, 87, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Sismanoglou, A.; Tzimitra-Kalogianni, I. Consumer Perception of Poultry Meat in Greece. World’s Poult. Sci. J. 2011, 67, 269–276. [Google Scholar] [CrossRef]
- Krystallis, A.; Chryssochoidis, G.; Scholderer, J. Consumer-Perceived Quality in ‘Traditional’ Food Chains: The Case of the Greek Meat Supply Chain. Appetite 2007, 48, 54–68. [Google Scholar] [CrossRef]
- Kennedy, O.B.; Stewart-Knox, B.; Mitchell, P.; Thurnham, D. Consumer Perceptions of Poultry Meat: A Qualitative Analysis. Nutr. Food Sci. 2004, 34, 122–129. [Google Scholar] [CrossRef]
- Vukasović, T.; Stanton, J.L. Going Local: Exploring Millennials Preferences for Locally Sourced and Produced Fresh Poultry in a Developing Economy. World’s Poult. Sci. J. 2017, 73, 757–766. [Google Scholar] [CrossRef]
- Henchion, M.; McCarthy, M.; Resconi, V.C.; Troy, D. Meat Consumption: Trends and Quality Matters. Meat Sci. 2014, 98, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Escriba-Perez, C.; Baviera-Puig, A.; Buitrago-Vera, J.; Montero-Vicente, L. Consumer Profile Analysis for Different Types of Meat in Spain. Meat Sci. 2017, 129, 120–126. [Google Scholar] [CrossRef]
- Grunert, K.G. Future Trends and Consumer Lifestyles with Regard to Meat Consumption. Meat Sci. 2006, 74, 149–160. [Google Scholar] [CrossRef]
- Buitrago-Vera, J.; Escribá-Pérez, C.; Baviera-Puig, A.; Montero-Vicente, L. Consumer Segmentation Based on Food-Related Lifestyles and Analysis of Rabbit Meat Consumption. World Rabbit. Sci. 2016, 24, 169–182. [Google Scholar] [CrossRef]
- Bernués, A.; Ripoll, G.; Panea, B. Consumer Segmentation Based on Convenience Orientation and Attitudes towards Quality Attributes of Lamb Meat. Food Qual. Prefer. 2012, 26, 211–220. [Google Scholar] [CrossRef]
- OECD/FAO. OECD-FAO Agricultural Outlook 2021–2030. In OECD-FAO Agricultural Outlook; OECD: Paris, France, 2021; pp. 163–177. [Google Scholar]
- Kler, R.; Elkady, G.; Rane, K.; Singh, A.; Hossain, M.S.; Malhotra, D.; Ray, S.; Bhatia, K.K. Machine Learning and Artificial Intelligence in the Food Industry: A Sustainable Approach. J. Food Qual. 2022, 2022, 8521236. [Google Scholar] [CrossRef]
- Bedoya, M.G.; Montoya, D.R.; Tabilo-Munizaga, G.; Pérez-Won, M.; Lemus-Mondaca, R. Promising Perspectives on Novel Protein Food Sources Combining Artificial Intelligence and 3D Food Printing for Food Industry. Trends Food Sci. Technol. 2022, 128, 38–52. [Google Scholar] [CrossRef]
- Addanki, M.; Patra, P.; Kandra, P. Recent Advances and Applications of Artificial Intelligence and Related Technologies in the Food Industry. Appl. Food Res. 2022, 2, 100126. [Google Scholar] [CrossRef]
- Miyazawa, T.; Hiratsuka, Y.; Toda, M.; Hatakeyama, N.; Ozawa, H.; Abe, C.; Cheng, T.-Y.; Matsushima, Y.; Miyawaki, Y.; Ashida, K.; et al. Artificial Intelligence in Food Science and Nutrition: A Narrative Review. Nutr. Rev. 2022, 80, 2288–2300. [Google Scholar] [CrossRef]
- Deng, X.; Cao, S.; Horn, A.L. Emerging Applications of Machine Learning in Food Safety. Annu. Rev. Food Sci. Technol. 2021, 12, 513–538. [Google Scholar] [CrossRef] [PubMed]
- Shivani, C.; Anusha, B.; Druvitha, B.; Swamy, K.K. RNN-LSTM Model Based Forecasting of Cryptocurrency Prices Using Standard Scaler Transform. J. Crit. Rev. 2022, 10, 144–158. [Google Scholar]
- Gkantzios, A.; Kokkotis, C.; Tsiptsios, D.; Moustakidis, S.; Gkartzonika, E.; Avramidis, T.; Aggelousis, N.; Vadikolias, K. Evaluation of Blood Biomarkers and Parameters for the Prediction of Stroke Survivors’ Functional Outcome upon Discharge Utilizing Explainable Machine Learning. Diagnostics 2023, 13, 532. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature Selection with the Boruta Package. J. Stat. Softw. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Kokkotis, C.; Moustakidis, S.; Tsatalas, T.; Ntakolia, C.; Chalatsis, G.; Konstadakos, S.; Hantes, M.E.; Giakas, G.; Tsaopoulos, D. Leveraging Explainable Machine Learning to Identify Gait Biomechanical Parameters Associated with Anterior Cruciate Ligament Injury. Sci. Rep. 2022, 12, 6647. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. Adv. Neural Inf. Process. Syst. 2017. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H.; DeGrave, A.; Prutkin, J.M.; Nair, B.; Katz, R.; Himmelfarb, J.; Bansal, N.; Lee, S.-I. From Local Explanations to Global Understanding with Explainable AI for Trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef]
- Janzing, D.; Minorics, L.; Blöbaum, P. Feature Relevance Quantification in Explainable AI: A Causality Problem. arXiv 2019, arXiv:1910.13413. [Google Scholar]
- Vukasovič, T. Buying Decision-making Process for Poultry Meat. Br. Food J. 2010, 112, 125–139. [Google Scholar] [CrossRef]
- Stamatopoulou, M.; Tzimitra-Kalogianni, I. Consumers’ Profile Analysis for Chicken Meat, during the First Wave of COVID-19 Pandemic: Case of Northern Greece. J. Agric. Sci. 2022, 33, 162–175. [Google Scholar]
- Katiyo, W.; Coorey, R.; Buys, E.M.; de Kock, H.L. Consumers’ Perceptions of Intrinsic and Extrinsic Attributes as Indicators of Safety and Quality of Chicken Meat: Actionable Information for Public Health Authorities and the Chicken Industry. J. Food Sci. 2020, 85, 1845–1855. [Google Scholar] [CrossRef] [PubMed]
- Strašek, R. Empirical Testing of Correlations between the Effects of Country-of-Origin and Consumer Perceptions. World’s Poult. Sci. J. 2010, 66, 39–52. [Google Scholar] [CrossRef]
- Hall, C.; Sandilands, V. Public Attitudes to the Welfare of Broiler Chickens. Anim. Welf. 2007, 16, 499–512. [Google Scholar] [CrossRef]
- Wang, E.; An, N.; Gao, Z.; Kiprop, E.; Geng, X. Consumer Food Stockpiling Behavior and Willingness to Pay for Food Reserves in COVID-19. Food Secur. 2020, 12, 739–747. [Google Scholar] [CrossRef] [PubMed]
- Verbeke, W.; Marcu, A.; Rutsaert, P.; Gaspar, R.; Seibt, B.; Fletcher, D.; Barnett, J. ‘Would You Eat Cultured Meat?’: Consumers’ Reactions and Attitude Formation in Belgium, Portugal and the United Kingdom. Meat Sci. 2015, 102, 49–58. [Google Scholar] [CrossRef]
- Skunca, D.; Tomasevic, I.; Zdolec, N.; Kolaj, R.; Aleksiev, G.; Djekic, I. Consumer-Perceived Quality Characteristics of Chicken Meat and Chicken Meat Products in Southeast Europe. Br. Food J. 2017, 119, 1525–1535. [Google Scholar] [CrossRef]
- Djekic, I.; Skunca, D.; Nastasijevic, I.; Tomovic, V.; Tomasevic, I. Transformation of Quality Aspects throughout the Chicken Meat Supply Chain. Br. Food J. 2018, 120, 1132–1150. [Google Scholar] [CrossRef]
- Naspetti, S.; Alberti, F.; Solfanelli, F. Quality Function Deployment in the Organic Animal Food Sector: Application to Poultry Meat. Ital. J. Anim. Sci. 2015, 14, 4050. [Google Scholar] [CrossRef]
- Imran, S.N.; Kamarulzaman, N.H.; Latif, I.A.; Mohd Nawi, N. Enhancing Poultry Industry Competitiveness: Consumer Perspective on Chicken Meat Quality Based on Sensory Characteristics. J. Food Prod. Mark. 2014, 20, 102–121. [Google Scholar] [CrossRef]
- Van Loo, E.J.; Caputo, V.; Nayga, R.M., Jr.; Verbeke, W. Consumers’ Valuation of Sustainability Labels on Meat. Food Policy 2014, 49, 137–150. [Google Scholar] [CrossRef]
- Pirvutoiu, I.; Popescu, A. Research on Consumer Behaviour in Bucharest Poultry Meat Market. Sci. Pap. Anim. Sci. Biotechnol./Lucr. Stiintifice Zooteh. Biotehnol. 2013, 46, 389–396. [Google Scholar]
- Verbeke, W.; Vackier, I. Profile and Effects of Consumer Involvement in Fresh Meat. Meat Sci. 2004, 67, 159–168. [Google Scholar] [CrossRef]
- Krystallis, A.; Vassallo, M.; Chryssohoidis, G. The Usefulness of Schwartz’s ‘Values Theory’ in Understanding Consumer Behaviour towards Differentiated Products. J. Mark. Manag. 2012, 28, 1438–1463. [Google Scholar] [CrossRef]
- Marian, L.; Chrysochou, P.; Krystallis, A.; Thøgersen, J. The Role of Price as a Product Attribute in the Organic Food Context: An Exploration Based on Actual Purchase Data. Food Qual. Prefer. 2014, 37, 52–60. [Google Scholar] [CrossRef]
- Walley, K.; Parrott, P.; Custance, P.; Meledo-Abraham, P.; Bourdin, A. A Review of UK Consumers’ Purchasing Patterns, Perceptions and Decision Making Factors for Poultry Meat. World’s Poult. Sci. J. 2014, 70, 493–502. [Google Scholar] [CrossRef]
Sociodemographic Variables | Frequencies (%) |
---|---|
Gender | |
Woman | 61.8 |
Man | 38.2 |
Age | |
18–25 y | 8.9 |
26–35 y | 12.2 |
36–45 y | 26.1 |
46–55 y | 36.6 |
56–65 y | 10.6 |
66–75 y | 4.9 |
>75 y | 0.7 |
Income (euro per month) | |
≤500 | 12.1 |
501–1000 | 25.6 |
1001–1500 | 37.1 |
1501–2000 | 16.3 |
2001–3000 | 4.5 |
>3000 | 4.4 |
FRL Items | Rare Chicken Consumers (Mean ± SD) | Chicken Consumers (Mean ± SD) |
---|---|---|
FRL1 | 4.09 ± 1.05 | 4.01 ± 1.02 |
FRL2 | 4.40 ± 0.75 | 4.39 ± 0.80 |
FRL3 | 3.60 ± 1.04 | 3.44 ± 1.08 |
FRL4 | 3.97 ± 0.94 | 4.05 ± 0.91 |
FRL5 | 4.43 ± 0.71 | 4.38 ± 0.79 |
FRL6 | 3.83 ± 0.99 | 3.79 ± 1.01 |
FRL7 | 3.89 ± 0.79 | 4.01 ± 0.98 |
FRL8 | 4.00 ± 1.02 | 4.13 ± 1.00 |
FRL9 | 4.01 ± 0.84 | 4.02 ± 1.00 |
FRL10 | 4.45 ± 0.67 | 4.37 ± 0.91 |
FRL11 | 3.53 ± 1.11 | 3.62 ± 1.08 |
FRL12 | 3.50 ± 1.01 | 3.42 ± 1.15 |
FRL13 | 3.46 ± 1.00 | 3.60 ± 1.18 |
FRL14 | 4.15 ± 0.81 | 4.17 ± 0.99 |
FRL15 | 3.50 ± 1.31 | 3.48 ± 1.26 |
FRL16 | 2.75 ± 1.21 | 2.88 ± 1.29 |
FRL17 | 2.81 ± 1.23 | 2.78 ± 1.23 |
FRL18 | 3.60 ± 1.15 | 3.72 ± 1.16 |
FRL19 | 2.67 ± 1.13 | 2.78 ± 1.24 |
FRL20 | 4.03 ± 0.95 | 3.89 ± 1.06 |
ML Classifiers | Accuracy (%) | Recall (%) | Precision (%) | f1-Score (%) | Number of Selected Features | Confusion Matrix | |
---|---|---|---|---|---|---|---|
RF | 78.26 | 80.36 | 79.65 | 80.00 | 14 | 72 | 23 |
22 | 90 | ||||||
SVM | 75.36 | 74.11 | 79.05 | 76.50 | 19 | 73 | 22 |
29 | 83 | ||||||
NN | 72.95 | 69.64 | 78.00 | 73.59 | 20 | 73 | 22 |
34 | 78 | ||||||
LR | 61.35 | 68.75 | 63.12 | 65.81 | 17 | 50 | 45 |
35 | 77 |
Ranking | Feature | Type of Variable |
---|---|---|
1 | FRL10 | Categorical |
2 | FRL16 | Categorical |
3 | FRL13 | Categorical |
4 | FRL7 | Categorical |
5 | FRL9 | Categorical |
6 | FRL14 | Categorical |
7 | FRL12 | Categorical |
8 | FRL18 | Categorical |
9 | FRL3 | Categorical |
10 | FRL1 | Categorical |
11 | FRL19 | Categorical |
12 | FRL17 | Categorical |
13 | FRL20 | Categorical |
14 | FRL15 | Categorical |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiras, D.; Stamatopoulou, M.; Paraskevis, N.; Moustakidis, S.; Tzimitra-Kalogianni, I.; Kokkotis, C. Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece. BioMedInformatics 2023, 3, 817-828. https://doi.org/10.3390/biomedinformatics3030051
Chiras D, Stamatopoulou M, Paraskevis N, Moustakidis S, Tzimitra-Kalogianni I, Kokkotis C. Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece. BioMedInformatics. 2023; 3(3):817-828. https://doi.org/10.3390/biomedinformatics3030051
Chicago/Turabian StyleChiras, Dimitrios, Marina Stamatopoulou, Nikolaos Paraskevis, Serafeim Moustakidis, Irini Tzimitra-Kalogianni, and Christos Kokkotis. 2023. "Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece" BioMedInformatics 3, no. 3: 817-828. https://doi.org/10.3390/biomedinformatics3030051
APA StyleChiras, D., Stamatopoulou, M., Paraskevis, N., Moustakidis, S., Tzimitra-Kalogianni, I., & Kokkotis, C. (2023). Explainable Machine Learning Models for Identification of Food-Related Lifestyle Factors in Chicken Meat Consumption Case in Northern Greece. BioMedInformatics, 3(3), 817-828. https://doi.org/10.3390/biomedinformatics3030051