Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Elemental Analysis
2.3. Thermogravimetric Analyses
2.4. Experimental Determination by Isoperibolic Calorimeter
2.5. Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and Chemometric Ftir Spectroscopy Analysis (PLS) of Lignocellulosic Solid Residues
2.6. Calculation of Combustion Enthalpy Knowing the Content of Lignin/Cellulose/Hemicellulose
- hemicellulose: monomer xylose units, MW = 132.12 g mol−1, ΔfH° = −759.2 kJ mol−1;
- cellulose: monomer glucose unit, MW = 161.14 g mol−1, ΔfH° = −1019.0 kJ mol−1;
- lignin: monomer unit, MW = 258.27 g mol−1, ΔfH° = −759.39 kJ mol−1 [30].
3. Results and Discussion
3.1. Experimental Combustion Enthalpy
- Waste biomasses from citrus residues, which have the lowest combustion enthalpies values (ranging from −15.1 to −17.2 kJ/g);
- Waste biomasses from aromatic herbs with middle combustion enthalpies values (ranging from 15.5 to −18.0 kJ/g);
- Waste biomasses from poultry feathers, which have the highest combustion enthalpies values (ca 20 kJ/g).
3.2. Combustion Enthalpy Calculated by FTIR/Chemometric Method
3.3. Fuel Capacity Calculated by HHV
3.4. Comparison of the Data Obtained by Different Methodologies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Taghian Dinani, S.; van der Goot, A.J. Challenges and solutions of extracting value-added ingredients from fruit and vegetable by-products: A review. Crit. Rev. Food Sci. Nutr. 2022, 1–23. [Google Scholar] [CrossRef]
- Russo, C.; Maugeri, A.; Lombardo, G.E.; Musumeci, L.; Barreca, D.; Rapisarda, A.; Cirmi, S.; Navarra, M. The Second Life of Citrus Fruit Waste: A Valuable Source of Bioactive Compounds. Molecules 2021, 26, 5991. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, E.H.; Mazzei, R.; Bazzarelli, F.; Piacentini, E.; Giannakopoulos, V.; Roberts, M.R.; Giorno, L. Agri-Food Industry Waste as Resource of Chemicals: The Role of Membrane Technology in Their Sustainable Recycling. Sustainability 2022, 14, 1483. [Google Scholar] [CrossRef]
- Muller, B.; Laibach, L. Extraction of valuable components from waste biomass. In Waste to Food; Smetana, S., Pleissner, D., Zeidler, V.Z., Eds.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2022; Chapter 5; ISBN 978-90-8686-377-8. [Google Scholar]
- Pulidori, E.; Micalizzi, S.; Bramanti, E.; Bernazzani, L.; Duce, C.; De Maria, C.; Montemurro, F.; Pelosi, C.; De Acutis, A.; Vozzi, G.; et al. One-Pot Process: Microwave-Assisted Keratin Extraction and Direct Electrospinning to Obtain Keratin-Based Bioplastic. Int. J. Mol. Sci. 2021, 22, 9597. [Google Scholar] [CrossRef]
- Pulidori, E.; Micalizzi, S.; Bramanti, E.; Bernazzani, L.; De Maria, C.; Pelosi, C.; Tinè, M.R.; Vozzi, G.; Duce, C. Valorization of not soluble byproducts deriving from green keratin extraction from poultry feathers as filler for biocomposites. J. Therm. Anal. Calorim. 2022, 147, 5377–5390. [Google Scholar] [CrossRef]
- Sinkiewicz, I.; Śliwińska, A.; Staroszczyk, H.; Kołodziejska, I. Alternative Methods of Preparation of Soluble Keratin from Chicken Feathers. Waste Biomass Valorization 2017, 8, 1043–1048. [Google Scholar] [CrossRef]
- Rouse, J.G.; Van Dyke, M.E. A Review of Keratin-Based Biomaterials for Biomedical Applications. Materials 2010, 3, 999–1014. [Google Scholar] [CrossRef] [Green Version]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Giacometti, J.; Bursać Kovačević, D.; Putnik, P.; Gabrić, D.; Bilušić, T.; Krešić, G.; Stulić, V.; Barba, F.J.; Chemat, F.; Barbosa-Cánovas, G.; et al. Extraction of bioactive compounds and essential oils from mediterranean herbs by conventional and green innovative techniques: A review. Food Res. Int. 2018, 113, 245–262. [Google Scholar] [CrossRef]
- Duce, C.; Vecchio Ciprioti, S.; Spepi, A.; Bernazzani, L.; Tinè, M.R. Vaporization kinetic study of lavender and sage essential oils. J. Therm. Anal. Calorim. 2017, 130, 595–604. [Google Scholar] [CrossRef]
- Mastellone, M.L. Waste Management and clean Energy Production from Municipal Solid Waste; Nova Science Publishers, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Basu, P. Analytical Techniques. In Biomass Gasification, Pyrolysis and Torrefaction; Elsevier: Amsterdam, The Netherlands, 2018; pp. 479–495. [Google Scholar]
- Knurr, B.J.; Hauri, J.F. An Alternative to Recycling: Measurement of Combustion Enthalpies of Plastics via Bomb Calorimetry. J. Chem. Educ. 2020, 97, 1465–1469. [Google Scholar] [CrossRef]
- Bouabid, G.; Nahya, D.; Azzi, M. Determination of heating value of industrial waste for the formulation of alternative fuels. MATEC Web Conf. 2013, 5, 04031. [Google Scholar] [CrossRef] [Green Version]
- Tamelová, B.; Malaťák, J.; Velebil, J.; Gendek, A.; Aniszewska, M. Energy Utilization of Torrefied Residue from Wine Production. Materials 2021, 14, 1610. [Google Scholar] [CrossRef]
- Picone, A.; Volpe, M.; Giustra, M.G.; Bella, G.D.; Messineo, A. Hydrothermal carbonization of lemon peel waste: Preliminary results on the effects of temperature during process water recirculation. Appl. Syst. Innov. 2021, 4, 19. [Google Scholar] [CrossRef]
- Indulekha, J.; Gokul Siddarth, M.S.; Kalaichelvi, P.; Arunagiri, A. Characterization of Citrus Peels for Bioethanol Production. In Materials, Energy and Environment Engineering; Springer: Singapore, 2017; pp. 3–12. [Google Scholar]
- Selvarajoo, A.; Wong, Y.L.; Khoo, K.S.; Chen, W.-H.; Show, P.L. Biochar production via pyrolysis of citrus peel fruit waste as a potential usage as solid biofuel. Chemosphere 2022, 294, 133671. [Google Scholar] [CrossRef] [PubMed]
- Stan, C. Energy Recovery from Industrial Feather Waste by Gasification. J. Clean Energy Technol. 2018, 6, 401–404. [Google Scholar] [CrossRef] [Green Version]
- Stan, C.; Badea, A. Thermo-physico-chemical analyses and calorific value of poultry processing industry waste. UPB Sci. Bull. Ser. C 2013, 75, 277–284. [Google Scholar]
- Meraz, L.; Oropeza, M.; Dominguez, A. Prediction of the Combustion Enthalpy of Municipal Solid Waste. Chem. Educ. 2002, 7, 66–70. [Google Scholar] [CrossRef]
- Meraz, L.; Domínguez, A.; Kornhauser, I.; Rojas, F. A thermochemical concept-based equation to estimate waste combustion enthalpy from elemental composition. Fuel 2003, 82, 1499–1507. [Google Scholar] [CrossRef]
- González-Rivera, J.; Spepi, A.; Ferrari, C.; Duce, C.; Longo, I.; Falconieri, D.; Piras, A.; Tinè, M.R. Novel configurations for a citrus waste based biorefinery: From solventless to simultaneous ultrasound and microwave assisted extraction. Green Chem. 2016, 18, 6482–6492. [Google Scholar] [CrossRef]
- González-Rivera, J.; Duce, C.; Falconieri, D.; Ferrari, C.; Ghezzi, L.; Piras, A.; Tine, M.R. Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): Chemical composition and thermal analysis. Innov. Food Sci. Emerg. Technol. 2016, 33, 308–318. [Google Scholar] [CrossRef]
- Gonzalez-Rivera, J.; Duce, C.; Campanella, B.; Bernazzani, L.; Ferrari, C.; Tanzini, E.; Onor, M.; Longo, I.; Ruiz, J.C.; Tinè, M.R.; et al. In situ microwave assisted extraction of clove buds to isolate essential oil, polyphenols, and lignocellulosic compounds. Ind. Crops Prod. 2021, 161, 113203. [Google Scholar] [CrossRef]
- Shehab, M.; Stratulat, C.; Ozcan, K.; Boztepe, A.; Isleyen, A.; Zondervan, E.; Moshammer, K. A Comprehensive Analysis of the Risks Associated with the Determination of Biofuels’ Calorific Value by Bomb Calorimetry. Energies 2022, 15, 2771. [Google Scholar] [CrossRef]
- Chen, H.; Ferrari, C.; Angiuli, M.; Yao, J.; Raspi, C.; Bramanti, E. Qualitative and quantitative analysis of wood samples by Fourier transform infrared spectroscopy and multivariate analysis. Carbohydr. Polym. 2010, 82, 772–778. [Google Scholar] [CrossRef]
- Gorensek, M.B.; Shukre, R.; Chen, C.-C. Development of a Thermophysical Properties Model for Flowsheet Simulation of Biomass Pyrolysis Processes. ACS Sustain. Chem. Eng. 2019, 7, 9017–9027. [Google Scholar] [CrossRef]
- Yankovsky, S.A.; Tolokolnikov, A.A.; Cherednik, I.V.; Kuznetsov, G.V. Reasons for tangerine peel utilization in the composition of mixed fuels based on bituminous coal. J. Phys. Conf. Ser. 2019, 1359, 012136. [Google Scholar] [CrossRef] [Green Version]
- Chakyrova, D.; Doseva, N. Analysis of the energy recovery possibilities of energy from lavender straws after a steam distillation process. In IOP Conferene Series: Material Science and Engeneering, Proceedings of the International Scientific Conference of Communications, Information, Electronic and Energy Systems (CIEES 2020), Borovets, Bulgaria, 26–29 November 2020; IOP Publishing Ltd.: Bristol, UK, 2021; p. 012023. [Google Scholar]
- Marculescu, C.; Stan, C. Poultry processing industry waste to energy conversion. Energy Procedia 2011, 6, 550–557. [Google Scholar] [CrossRef] [Green Version]
- Stingone, J.A.; Wing, S. Poultry Litter Incineration as a Source of Energy: Reviewing the Potential for Impacts on Environmental Health and Justice. NEW Solut. A J. Environ. Occup. Health Policy 2011, 21, 27–42. [Google Scholar] [CrossRef] [PubMed]
- Del Tedesco, S. Incineration of Municipal Solid Waste with Energy Recovery. Master’s Thesis, University of Padova, Padova, Italy, 2009. [Google Scholar]
- Dashti, A.; Noushabadi, A.S.; Raji, M.; Razmi, A.; Ceylan, S.; Mohammadi, A.H. Estimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlation. Fuel 2019, 257, 115931. [Google Scholar] [CrossRef]
- Setyawati, W.; Damanhuri, E.; Lestari, P.; Dewi, K. Correlation Equation to Predict HHV of Tropical Peat Based on its Ultimate Analyses. Procedia Eng. 2015, 125, 298–303. [Google Scholar] [CrossRef]
- Galhano dos Santos, R.; Bordado, J.C.; Mateus, M.M. Estimation of HHV of lignocellulosic biomass towards hierarchical cluster analysis by Euclidean’s distance method. Fuel 2018, 221, 72–77. [Google Scholar] [CrossRef]
- Channiwala, S.A.; Parikh, P.P. A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 2002, 81, 1051–1063. [Google Scholar] [CrossRef]
- Ioelovich, M. Thermodynamics of Biomass-Based Solid Fuels. Acad. J. Polym. Sci. 2018, 2, 555577. [Google Scholar] [CrossRef]
Biomass | ID Number | Biomass Residue | −ΔcH (kJ/g) a |
---|---|---|---|
Citrus waste | 1 | Orange peels waste | 15.1 |
2 | tangerine peels waste | 16.5 | |
3 | grapefruit peels waste | 17.2 | |
4 | Pomelo peels waste | 15.5 | |
5 | lemon peels waste | 15.9 | |
Aromatic herbs | 6 | Rosemary | 18.0 |
7 | lavender | 15.5 | |
8 | Thyme | 16.1 | |
9 | Artemisia vulgaris L. | 16.4 | |
10 | Ruta chalepensis L. | 17.7 | |
Poultry feathers | 11 | Poultry feathers | 19.2 |
Biomass | ID Number | Biomass Residue | Elemental Analysis (wt%) | TGAO2 | ||||
---|---|---|---|---|---|---|---|---|
C | H | N | O | S a | Ash (wt%) b | |||
Citrus waste | 1 | Orange peels waste | 43.8 ± 0.4 | 6.88 ± 0.04 | 1.14 ± 0.06 | 50.5 ± 0.4 | <LOQ (0.05%) | 0.9 |
2 | tangerine peels waste | 44.23 ± 0.06 | 6.91 ± 0.02 | 1.18 ± 0.02 | 50.7 ± 0.1 | <LOQ (0.05%) | 1.1 | |
3 | grapefruit peels waste | 42.8 ± 0.1 | 6.89 ± 0.04 | 0.93 ± 0.03 | 52.5 ± 0.1 | <LOQ (0.03%) | 0.4 | |
4 | Pomelo peels waste | 41.56 ± 0.04 | 6.76 ± 0.01 | 0.76 ± 0.03 | 54.0 ± 0.9 | <LOQ (0.015%) | 0.7 | |
5 | lemon peels waste | 41.50 ± 0.09 | 6.63 ± 0.01 | 0.90 ± 0.03 | 53.1 ± 0.8 | <LOQ (0.026%) | 1.5 | |
Aromatic herbs | 6 | Rosemary | 51.66 ± 0.09 | 6.9 ± 0.7 | 1.19 ± 0.05 | 39.2 ± 0.3 | <LOQ (0.09%) | 3.0 |
7 | lavender | 45.4 ± 0.2 | 6.77 ± 0.01 | 1.79 ± 0.05 | 43.7 ± 0.1 | <LOQ (0.112%) | 6.3 | |
8 | Thyme | 42.55 ± 0.07 | 6.66 ± 0.06 | 1.66 ± 0.09 | 46.7 ± 0.1 | <LOQ (0.15%) | 4.6 | |
9 | Artemisia vulgaris L. | 44.7 ± 0.3 | 6.90 ± 0.05 | 2.4 ± 0.1 | 41.8 ± 0.1 | <LOQ (0.20%) | 5.8 | |
10 | Ruta chalepensis L. | 42.8 ± 0.1 | 6.71 ± 0.02 | 1.84 ± 0.02 | 45.0 ± 0.9 | <LOQ (0.15%) | 6.7 | |
Poultry feathers | 11 | Poultry feathers | 45.59 ± 0.09 | 7.2 ± 0.3 | 14.74 ± 0.01 | 29.7 ± 0.9 | 2.70 ± 0.05 | 0.3 |
Biomass | ID Number | Biomass Residue | −ΔcH (kJ/g) | ||
---|---|---|---|---|---|
Experimental (Calorimetric Bomb) a | FTIR Chemometrics b | HHV c | |||
Citrus waste | 1 | Orange peels waste | 15.1 | 16.6 | 18.1 |
2 | tangerine peels waste | 16.5 | 16.4 | 18.3 | |
3 | grapefruit peels waste | 17.2 | 16.5 | 17.6 | |
4 | Pomelo peels waste | 15.5 | 16.8 | 16.9 | |
5 | lemon peels waste | 15.9 | 16.2 | 16.8 | |
Aromatic herbs | 6 | Rosemary | 18.0 | 17.1 | 22.0 |
7 | lavender | 15.5 | 15.5 | 19.2 | |
8 | Thyme | 16.1 | 17.0 | 17.8 | |
9 | Artemisia vulgaris L. | 16.4 | 15.8 | 19.3 | |
10 | Ruta chalepensis L. | 17.7 | 16.4 | 18.0 | |
Poultry feathers | 11 | Poultry feathers | 19.2 | ---- | 21.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pulidori, E.; Gonzalez-Rivera, J.; Pelosi, C.; Ferrari, C.; Bernazzani, L.; Bramanti, E.; Tiné, M.R.; Duce, C. Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production. Thermo 2023, 3, 66-75. https://doi.org/10.3390/thermo3010004
Pulidori E, Gonzalez-Rivera J, Pelosi C, Ferrari C, Bernazzani L, Bramanti E, Tiné MR, Duce C. Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production. Thermo. 2023; 3(1):66-75. https://doi.org/10.3390/thermo3010004
Chicago/Turabian StylePulidori, Elena, José Gonzalez-Rivera, Chiara Pelosi, Carlo Ferrari, Luca Bernazzani, Emilia Bramanti, Maria Rosaria Tiné, and Celia Duce. 2023. "Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production" Thermo 3, no. 1: 66-75. https://doi.org/10.3390/thermo3010004
APA StylePulidori, E., Gonzalez-Rivera, J., Pelosi, C., Ferrari, C., Bernazzani, L., Bramanti, E., Tiné, M. R., & Duce, C. (2023). Thermochemical Evaluation of Different Waste Biomasses (Citrus Peels, Aromatic Herbs, and Poultry Feathers) towards Their Use for Energy Production. Thermo, 3(1), 66-75. https://doi.org/10.3390/thermo3010004