Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Structural Characterization of Hydrochar
2.3. UV–Vis Spectroscopy Measurements
2.4. Photodegradation Experiments
2.5. Analytical Methods
2.6. Determination of Toxicity with the Microtox Technique
3. Results
3.1. Characterization of Hydrochar
3.2. Photodegradation of Clothianidin in Hydrochar Aqueous Suspensions and Aqueous Extracts
3.3. Identification of Photolytic Degradation Products of Clothianidin by Ultrahigh-Performance Liquid Chromatography—Coupled Mass Spectrometry (UHPLC-ESI-LIT-Orbitrap-MS)
3.4. Monitoring of Ecotoxicity during Photodegradation of Clothianidin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Heilmann, S.M.; Jader, L.R.; Sadowsky, M.J.; Schendel, F.J.; von Keitz, M.G.; Valentas, K.J. Hydrothermal carbonization of distiller’s grains. Biomass Bioenergy 2011, 35, 2526–2533. [Google Scholar] [CrossRef]
- Qin, Y.; Li, G.; Gao, Y.; Zhang, L.; Ok, Y.S.; An, T. Persistent free radicals in carbon-based materials on transformation of refractory organic contaminants (ROCs) in water: A critical review. Water Res. 2018, 137, 130–143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, F.; Wen, R.; Zhang, H.; Elumalai, P.; Zheng, Q.; Chen, H.; Yang, Y.; Huang, M.; Ying, G. Heterogeneous electro-Fenton using three-dimension NZVI-BC electrodes for degradation of neonicotinoid wastewater. Water Res. 2020, 182, 115795. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2018, 90, 223–247. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Fang, J.; Zhan, L.; Ok, Y.S.; Gao, B. Minireview of potential applications of hydrochar derived from hydrothermal carbonization of biomass. J. Ind. Eng. Chem. 2018, 57, 15–21. [Google Scholar] [CrossRef]
- Pietrzak, D.; Kania, J.; Malina, G.; Kmiecik, E.; Wątor, K. Fate of selected neonicotinoid insecticides in soilewater systems: Current state of the art and knowledge gaps. Chemosphere 2020, 255, 126981. [Google Scholar] [CrossRef]
- Chretien, F.; Giroux, I.; Theriault, G.; Gagnon, P.; Corriveau, J. Surface runoff and subsurface tile drain losses of neonicotinoids and companion herbicides at edge-of-field. Environ. Pollut. 2017, 224, 255–264. [Google Scholar] [CrossRef]
- Main, A.R.; Michel, N.L.; Cavallaro, M.C.; Headley, J.V.; Peru, K.M.; Morrissey, C.A. Snowmelt transport of neonicotinoid insecticides to Canadian Prairie wetlands. Agric. Ecosyst. Environ. 2016, 215, 76–84. [Google Scholar] [CrossRef]
- Sánchez-Bayo, F.; Hyne, R.V. Detection and analysis of neonicotinoids in river waters—Development of a passive sampler for three commonly used insecticides. Chemosphere 2014, 99, 143–151. [Google Scholar] [CrossRef]
- Wood, T.J.; Goulson, D. The environmental risks of neonicotinoid pesticides: A review of the evidence post 2013. Environ. Sci. Pollut. Res. 2017, 24, 17285–17325. [Google Scholar] [CrossRef] [PubMed]
- Bonmatin, J.M.; Giorio, C.; Girolami, V.; Goulson, D.; Kreutzweiser, D.P.; Krupke, C.; Liess, M.; Long, E.; Marzaro, M.; Mitchell, E.A.; et al. Environmental fate and exposure; neonicotinoids and fipronil. Environ. Sci. Pollut. Res. Int. 2015, 22, 35–67. [Google Scholar] [CrossRef] [PubMed]
- Struger, J.; Grabuski, J.; Cagampan, S.; Sverko, E.; Mcgoldrick, D.; Marvin, C.H. Factors influencing the occurrence and distribution of neonicotinoid insecticides in surface waters of southern Ontario, Canada. Chemosphere 2017, 169, 516–523. [Google Scholar] [CrossRef]
- Anderson, J.C.; Dubetz, C.; Palace, V.P. Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure and biological effects. Sci. Total Environ. 2015, 505, 409–422. [Google Scholar] [CrossRef] [PubMed]
- Huseth, A.S.; Groves, R.L. Environmental Fate of Soil Applied Neonicotinoid Insecticides in an Irrigated Potato Agroecosystem. PLoS ONE 2014, 9, e97081. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, C.A.; Mineau, P.; Devries, J.H.; Sanchez-Bayo, F.; Liess, M.C.; Cavallaro, M.C.; Liber, K. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: A review. Environ. Int. 2015, 74, 291–303. [Google Scholar] [CrossRef]
- Todey, S.A.; Fallon, A.M.; Arnold, W.A. Neonicotinoid insecticide hydrolysis and photolysis: Rates and residual toxicity. Environ. Toxicol. Chem. 2018, 37, 2797–2809. [Google Scholar] [CrossRef]
- Liu, Y.; Lonappan, L.; Brar, S.K.; Yang, S. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: A review. Sci. Total Environ. 2018, 645, 60–70. [Google Scholar] [CrossRef]
- Chen, N.; Huang, Y.; Hou, X.; Ai, Z.; Zhang, L. Photochemistry of hydrochar: Reactive Oxygen Species Generation of Sulfadimidine Degradation. Environ. Sci. Technol. 2017, 51, 11278–11287. [Google Scholar] [CrossRef]
- Hao, S.; Zhu, X.; Liu, Y.; Qian, F.; Fang, Z.; Shi, Q.; Zhang, S.; Jianmin Chen, J.; Jason Ren, Z.J. Production Temperature Effects on the Structure of Hydrochar-Derived Dissolved Organic Matter and Associated Toxicity. Environ. Sci. Technol. 2018, 52, 7486–7495. [Google Scholar] [CrossRef]
- Fang, G.; Gao, J.; Liu, C.; Dionysiou, D.D.; Wang, Y.; Zhou, D. Key Role of Persistent Free Radicals in Hydrogen Peroxide Activation by Biochar: Implications to Organic Contaminant Degradation. Environ. Sci. Technol. 2014, 48, 1902–1910. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Liu, H.; Mao, J.; Chu, W.; Li, Q.; Alvarez, P.J.J.; Qu, X.; Zhu, D. Photochemistry of Dissolved Black Carbon Released from Biochar: Reactive Oxygen Species Generation and Phototransformation. Sci. Technol. 2016, 50, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Fang, G.; Liu, C.; Wang, Y.; Dionysiou, D.D.; Zhou, D. Photogeneration of reactive oxygen species from biochar suspension for diethyl phthalate degradation. Appl. Catal. B Environ. 2017, 214, 34–45. [Google Scholar] [CrossRef]
- Pinna, M.V.; Banonti, S.; Miglietta, F.; Pusino, A. Photooxidation of foramsulfuron: Effects of char substances. J. Photochem. Photobiol. A 2016, 326, 16–20. [Google Scholar] [CrossRef]
- Serelis, K.; Mantzos, N.; Meintani, D.; Konstantinou, I. The effect of biochar, hydrochar particles, and dissolved organic matter on the photodegradation of metribuzin herbicide in aquatic media. J. Environ. Chem. Eng. 2021, 9, 105027. [Google Scholar] [CrossRef]
- Liang, R.; Tang, F.; Wang, J.; Yue, Y. Photo-degradation dynamics of five neonicotinoids: Bamboo vinegar as a synergistic agent for improved functional duration. PLoS ONE 2019, 14, e0223708. [Google Scholar] [CrossRef]
- Mulligan, R.A.; Redman, Z.C.; Keener, M.R.; Ball, D.B.; Tjeerdemaa, R.S. Photodegradation of clothianidin under simulated California rice field conditions. Pest. Manag. Sci. 2016, 72, 1322–1327. [Google Scholar] [CrossRef]
- Gong, Y.; Jinhui Chen, J.; Wang, H.; Li, J. Separation and Identification of Photolysis Products of Clothianidin by Ultra-Performance Liquid Tandem Mass Spectrometry. Anal. Lett. 2012, 45, 2483–2492. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Liu, Y.; Ward, T.J. Photodegradation of clothianidin and thiamethoxam in agricultural soils. Environ. Sci. Pollut. Int. 2018, 25, 31318–31325. [Google Scholar] [CrossRef]
- Kralj, M.B.; Dilcanb, E.G.; Salihoğlub, G.; Mazurc, D.M.; Lebedevc, A.T.; Trebšea, P. Photocatalytic Degradation of Clothianidin: Effect of Humic Acids, Nitrates and Oxygen. J. Anal. Chem. 2019, 74, 1371–1377. [Google Scholar] [CrossRef]
- Žabar, R.; Komel, T.; Fabjan, J.; Kralj, M.B.; Trebše, P. Photocatalytic degradation with immobilised TiO2 of three selected neonicotinoid insecticides: Imidacloprid, thiamethoxam and clothianidin. Chemosphere 2012, 89, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Voigt, M.; Jaeger, M. Structure and QSAR analysis of photoinduced transformation products of neonicotinoids from EU watchlist for ecotoxicological assessment. Sci. Total Environ. 2021, 751, 141634. [Google Scholar] [CrossRef] [PubMed]
- van der Velde-Koerts, T.; van Hoeven-Arentzen, P.H.; Mahieu, C.M. Clothianidin (238); Centre for Substances and Integrated Risk Assessment, National Institute of Public Health and the Environment (RIVM): Bilthoven, The Netherlands, 2010; Available online: https://www.fao.org/fileadmin/templates/agphome/documents/Pests_Pesticides/JMPR/Evaluation10/Chlotiahinidin.pdf (accessed on 20 October 2023).
- Zhang, S.; Zhu, X.; Zhou, S.; Shang, H.; Luo, J.; Tsang, D.C.W. Chapter 15—Hydrothermal Carbonization for Hydrochar Production and Its Application. In Biochar from Biomass and Waste; Elsevier: Amsterdam, The Netherlands, 2019; pp. 275–294. [Google Scholar] [CrossRef]
- Mohanta, D.; Ahmaruzzaman, M. A novel Au-SnO2-rGO ternary nanoheterojunction catalyst for UV-LED induced photocatalytic degradation of clothianidin: Identification of reactive intermediates, degradation pathway and in-depth mechanistic insight. J. Hazard. Mater. 2020, 397, 122685. [Google Scholar] [CrossRef] [PubMed]
Treatments | Equations | k (min−1) | t1/2 (min) | R2 |
---|---|---|---|---|
Control | y = 1.022 × e−0.0040x | 0.0040 | 173.3 | 0.9951 |
HCp-50 | y = 0.935 × e−0.0020x | 0.0020 | 346.5 | 0.9538 |
HCp-100 | y = 0.971 × e−0.0038x | 0.0038 | 182.3 | 0.9862 |
HCp-200 | y = 1.062 × e−0.0042x | 0.0042 | 165 | 0.9945 |
HCp-400 | y = 0.932 × e−0.0036x | 0.0036 | 267.5 | 0.9523 |
HCw-50 | y = 0.937 × e−0.0036x | 0.0036 | 192.5 | 0.9910 |
HCw-100 | y = 1.009 × e−0.0039x | 0.0039 | 177.7 | 0.9976 |
HCw-200 | y = 1.040 × e−0.0034x | 0.0034 | 203.8 | 0.9934 |
HCw-400 | y = 0.966 × e−0.0034x | 0.0034 | 203.8 | 0.9919 |
Matrix/ Reactor/ Lamp | Initial Concentration of Clothianidin (mgL−1) | Rate Constant/ DT50 | Degradation Efficiency (%) | Irradiation Time (min) | Ref. |
---|---|---|---|---|---|
Vinegar bamboo/Quartz/High pressure Hg | 10 | - | 80 | 180 | [26] |
Deionized water/-/UV-light | 1.1 | 0.0167 min−1/42 min | 93 | 160 | [27] |
Milli Q water/Quartz/Xe lamp | 9.8 | 0.187 h−1/3.7 h | 59 | 300 | [28] |
Hydrochar suspension/Duran glass/Xe lamp | 10 | 0.0042 min−1/165 min | 70 | 300 | this work |
TP | Rt | m/z (M + H)+ | Molecular Formula | Mass Error (ppm) | RDB | MS2 | Molecular Formula | Mass Error (ppm) | RDB |
---|---|---|---|---|---|---|---|---|---|
CLOTH | 11.12 | 250.0154 271.9972 | C6H9O2N5ClS C6H8O2N5ClSNa | −2.358 | 4.5 | 220.0174 | C6H9ON4ClS | −2.867 | 4.0 |
206.0145 | C6H9ON3ClS | −2.121 | 3.5 | ||||||
169.0537 | C6H9N4S | −3.038 | 4.5 | ||||||
168.0462 | C6H8N4S | −1.003 | 5.0 | ||||||
131.9665 | C4H3NSCl | −3.138 | 3.5 | ||||||
TP1 | 9.93 | 206.0146 | C6H9ON3ClS | −1.635 | 3.5 | 174.9723 | C5H4ON2ClS | −2.730 | 4.5 |
148.9929 | C4H6N2ClS | −3.713 | 2.5 | ||||||
131.9664 | C4H3NClS | −3.820 | 3.5 | ||||||
119.9663 | C3H3NClS | −5.035 | 2.5 | ||||||
113.0162 | C4H5N2S | −5.269 | 3.5 | ||||||
TP2 | 7.12 | 201.0431 | C6H9N4O2S | −5.087 | 4.5 | ||||
TP3 | 6.09 | 205.0307 | C6H10N4ClS | −1.274 | 3.5 | 188.0038 | C6H7N3ClS | −2.884 | 4.5 |
169.0537 | C6H9N4S | −2.979 | 4.5 | ||||||
163.0086 | C5H8N2ClS | −3.087 | 2.5 | ||||||
148.9930 | C4H6N2ClS | −3.377 | 2.5 | ||||||
131.9664 | C4H3NClS | −3.971 | 3.5 | ||||||
113.0162 | C4H5N2S | −5.623 | 3.5 | ||||||
TP4 | 4.93 | 221.0249 | C6H10ON4ClS | −4.280 | 3.5 | 185.0486 | C6H9ON4S | −2.962 | 4.5 |
168.0458 | C6H8N4S | −3.978 | 5.0 | ||||||
164.9879 | C4H6ON2ClS | −2.835 | 2.5 | ||||||
131.9663 | C4H3NClS | −4.805 | 3.5 | ||||||
129.0112 | C4H5ON2S | −4.341 | 3.5 | ||||||
113.0161 | C4H5N2S | −6.242 | 3.5 | ||||||
TP5 | 1.66 | 169.0539 | C6H9N4S | −2.091 | 4.5 | 113.0161 | C4H5N2S | −5.800 | 3.5 |
TP6 | 1.37 | 137.0817 | C6H9N4 | −3.45 | 4.5 | 81.0440 | C4H5N2 | −8.449 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappa, A.; Bairamis, F.; Konstantinou, I. Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts. Photochem 2023, 3, 442-460. https://doi.org/10.3390/photochem3040027
Pappa A, Bairamis F, Konstantinou I. Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts. Photochem. 2023; 3(4):442-460. https://doi.org/10.3390/photochem3040027
Chicago/Turabian StylePappa, Artemis, Feidias Bairamis, and Ioannis Konstantinou. 2023. "Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts" Photochem 3, no. 4: 442-460. https://doi.org/10.3390/photochem3040027
APA StylePappa, A., Bairamis, F., & Konstantinou, I. (2023). Photolytic Degradation of the Insecticide Clothianidin in Hydrochar Aquatic Suspensions and Extracts. Photochem, 3(4), 442-460. https://doi.org/10.3390/photochem3040027