Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications
Abstract
:1. Introduction
2. Principles of TiO2 Photocatalysis
3. Modification of TiO2 Materials and the Nitrogen Doping
4. Synthesis Methodologies of N-Doped TiO2
4.1. Sol–Gel Method
4.2. Solvothermal or Hydrothermal Method
4.3. Ball Milling Method
4.4. Microwave Method
4.5. Wet Chemical Method
4.6. Sputtering Method
4.7. Plasma Method
4.8. Ion Implantation Method
4.9. Direct Hydrolysis of Organic/Inorganic Salts
4.10. Anodic Oxidation Method
4.11. Annealing Method
4.12. Ionothermal Method
4.13. Flame Spray Pyrolysis (FSP) Method
4.14. Combination Methods
4.14.1. Plasma-Assisted Electrolysis
4.14.2. Ultraviolet-Assisted Thermal Synthesis
4.14.3. Microwave-Assisted Hydrothermal Method
5. Possible Mechanism for N Doping in TiO2
6. Property Evaluation of N-Doped TiO2 and Its Photocatalytic Efficiency
7. Co-Doping into N-Doped TiO2
8. N-TiO2 Based Z-Scheme Heterojunction System
9. Visible Light Photocatalysis of N-Doped TiO2
9.1. Pollutants Degradation
9.2. Water Splitting (H2 Production)
10. Stability, Recovery and Reusability of N-TiO2 Photocatalyst
11. Opportunity, Challenges and Future Requirement/Prospects
- (a)
- The defects in TiO2, electronic structure of disordered TiO2, physicochemical properties and their influence on the catalytic efficiency needs to be investigated.
- (b)
- Each methodology involves different operational parameters and uses different nitrogen sources which limit the synthesis optimizing N doping and also upgradation of large-scale synthesis of efficient N-TiO2 for practical implementation. Therefore, there is an urgent need for an optimized synthesized methodology and nitrogen sources for preparation of N-TiO2 and this could be a promising photoresponsive nanomaterials research.
- (c)
- The stability of N-TiO2 is still questionable, thus the co-doping of N-TiO2 with other metals, non-metals and semiconductors could improve its stability and reusability, thus boosting the practical applicability of the materials. However, the study of the practical degradation ability of the N-TiO2 systems in realistic wastewater is needed.
- (d)
- The recovery and reusability of N-TiO2 could be improved by integrating/supporting N-TiO2 on magnetic supports. However, there is still a decrease in photocatalytic efficiency due to the loss of materials after several cycles and also the energy requirement for post-treatment of recovered catalyst is still on the high side. Therefore, the immobilization of photocatalytic materials on various solid supports followed by fabrication of different geometry of reactors have been performed, and the catalytic materials are easily recovered after the catalytic reaction and reused for multiple cycles of experiments while retaining photocatalytic efficiency. However, the upscaling of the process for real scale application depends upon the various operational parameters (e.g., coating techniques, reproducibility in coating thickness, etc.). Therefore, there is an opportunity to optimize the various operational parameters for designing effective immobilized photocatalytic reactor systems.
- (e)
- The N doping/incorporation into TiO2 is still debatable and it depends upon the sources of nitrogen and the synthesis methodologies adopted. Furthermore, controlling the N doping concentration in the TiO2 lattice is essential for efficient catalytic efficiency. Therefore, the characterization of N-TiO2 using combined analytical techniques (e.g., transient optical spectroscopy) along with theoretical study is needed to control the doping concentration and create awareness of the structural features of the N-TiO2.
- (f)
- Theoretical analysis and computational modeling of the experimental data is needed that offers clear representation on the required nitrogen source type, synthesis methodology for development of durable N-doped TiO2, structure, doping mechanism and the catalytic efficiency of N-TiO2.
12. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujishima:, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. [Google Scholar] [CrossRef] [PubMed]
- Tayade, R.J.; Kulkarni, R.G.; Jasra, R.V. Photocatalytic Degradation of Aqueous Nitrobenzene by Nanocrystalline TiO2. Ind. Eng. Chem. Res. 2006, 45, 922–927. [Google Scholar] [CrossRef]
- Tayade, R.J.; Surolia, P.K.; Kulkarni, R.G.; Jasra, R.V. Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mater. 2007, 8, 455–462. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, K.; Natarajan, T.S.; Kureshy, R.I.; Bajaj, H.C.; Jo, W.K.; Tayade, R.J. Photocatalytic H2 Production using Semiconductor Nanomaterials via Water Splitting—An Overview. In Advanced Materials Research; Al-Ahmed, A., Hossain, M.K., Afzaal, M., Bahaidarah, H.M., Eds.; Trans Tech Publications, Ltd.: Stafa-Zurich, Switzerland, 2015; Volume 1116, pp. 130–156. [Google Scholar]
- Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D.W. Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chem. Rev. 2014, 114, 9919–9986. [Google Scholar] [CrossRef] [PubMed]
- Humayun, M.; Raziq, F.; Khan, A.; Luo, W. Modification strategies of TiO2 for potential applications in photocatalysis: A critical review. Green Chem. Lett. Rev. 2018, 11, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Suhail, M.; Alothman, Z.A.; Alwarthan, A. Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv. 2018, 8, 30125–30147. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, T.S.; Tayade, R.J. Photocatalysis: Present, past and future. In Inorganic Pollutants in Wastewater: Method of Analysis, Removal and Treatment; Inamuddin, Mohammad, A., Asiri, A.M., Eds.; Materials Research Forum LLC: Millersville, PA, USA, 2017; Volume 16, pp. 1–63. [Google Scholar]
- Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Nitrogen-Doped Titanium Dioxide as Visible-Light-Sensitive Photocatalyst: Designs, Developments, and Prospects. Chem. Rev. 2014, 114, 9824–9852. [Google Scholar] [CrossRef]
- Natarajan, S.; Bajaj, H.C.; Tayade, R.J. Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J. Environ. Sci. 2018, 65, 201–222. [Google Scholar] [CrossRef]
- Tayade, R.J.; Kulkarni, R.G.; Jasra, R.V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind. Eng. Chem. Res. 2006, 45, 5231–5238. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Natarajan, K.; Bajaj, H.C.; Tayade, R.J. Enhanced photocatalytic activity of bismuth-doped TiO2 nanotubes under direct sunlight irradiation for degradation of Rhodamine B dye. J. Nanoparticle Res. 2013, 15, 1–18. [Google Scholar] [CrossRef]
- Devi, L.G.; Kavitha, R. A review on non metal ion doped titania for the photocatalytic degradation of organic pollutants under UV/solar light: Role of photogenerated charge carrier dynamics in enhancing the activity. Appl. Catal. B Environ. 2013, 140–141, 559–587. [Google Scholar] [CrossRef]
- Ansari, S.A.; Khan, M.M.; Ansaric, M.O.; Cho, M.H. Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J. Chem. 2016, 40, 3000–3009. [Google Scholar] [CrossRef]
- Bakar, S.A.; Ribeiro, C. Nitrogen-doped titanium dioxide: An overview of material design and dimensionality effect over modern applications. J. Photochem. Photobiol. C Photochem. Rev. 2016, 27, 1–29. [Google Scholar] [CrossRef]
- Varma, K.S.; Tayade, R.J.; Shah, K.J.; Joshi, P.A.; Shukla, A.D.; Gandhi, V.G. Photocatalytic degradation of pharmaceutical and pesticide compounds (PPCs) using doped TiO2 nanomaterials: A review. Water Energy Nexus 2020, 3, 46–61. [Google Scholar] [CrossRef]
- Tayade, R.J.; Kulkarni, R.G.; Jasra, R.V. Enhanced Photocatalytic Activity of TiO2-Coated NaY and HY Zeolites for the Degradation of Methylene Blue in Water. Ind. Eng. Chem. Res. 2007, 46, 369–376. [Google Scholar] [CrossRef]
- Palanivelu, K.; Im, J.S.; Lee, Y.-S. Carbon Doping of TiO2 for Visible Light Photo Catalysis—A review. Carbon Sci. 2007, 8, 214–224. [Google Scholar] [CrossRef] [Green Version]
- Tayade, R.J.; Surolia, P.K.; Lazar, M.A.; Jasra, R.V. Enhanced Photocatalytic Activity by Silver Metal Ion Exchanged NaY Zeolite Photocatalysts for the Degradation of Organic Contaminants and Dyes in Aqueous Medium. Ind. Eng. Chem. Res. 2008, 47, 7545–7551. [Google Scholar] [CrossRef]
- Jo, W.-K.; Won, Y.; Hwang, I.; Tayade, R.J. Enhanced Photocatalytic Degradation of Aqueous Nitrobenzene Using Graphitic Carbon−TiO2 Composites. Ind. Eng. Chem. Res. 2014, 53, 3455–3461. [Google Scholar] [CrossRef]
- Mogilevsky, G.; Hartman, O.; Emmons, E.D.; Balboa, A.; DeCoste, J.B.; Schindler, B.J.; Iordanov, I.; Karwacki, C.J. Bottom-Up Synthesis of Anatase Nanoparticles with Graphene Domains. ACS Appl. Mater. Interfaces 2014, 6, 10638–10648. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Bajaj, H.C.; Tayade, R.J. Palmyra tuber peel derived activated carbon and anatase TiO2 nanotube based nanocomposites with enhanced photocatalytic performance in rhodamine 6G dye degradation. Process. Saf. Environ. Prot. 2016, 104, 346–357. [Google Scholar] [CrossRef]
- Giovannetti, R.; Rommozzi, E.; Zannotti, M.; D’Amato, C.A. Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes. Catalysts 2017, 7, 305. [Google Scholar] [CrossRef]
- Natarajan, T.S.; Lee, J.Y.; Bajaj, H.C.; Jo, W.K.; Tayade, R.J. Synthesis of multiwall carbon nanotubes/TiO2 nanotube composites with enhanced photocatalytic decomposition efficiency. Catal. Today 2017, 282, 13–23. [Google Scholar] [CrossRef]
- Thomas, M.; Natarajan, T.S. TiO2-High Surface Area Materials Based Composite Photocatalytic Nanomaterials for Degradation of Pollutants: A Review. In Photocatalytic Nanomaterials for Environmental Applications; Tayade, R.J., Gandhi, V., Eds.; Materials Research Forum LLC: Millersville, PA, USA, 2018; Volume 27, pp. 48–96. [Google Scholar]
- Hua, L.; Yin, Z.; Cao, S. Recent Advances in Synthesis and Applications of Carbon-Doped TiO2 Nanomaterials. Catalysts 2020, 10, 1431. [Google Scholar] [CrossRef]
- Yalçın, Y.; Kılıç, M.; Çınar, Z. The Role of Non-Metal Doping in TiO2 Photocatalysis. J. Adv. Oxid. Technol. 2016, 13, 281–296. [Google Scholar] [CrossRef]
- Sato, S. Photocatalytic activity of NOx-doped TiO2 in the visible light region. Chem. Phys. Lett. 1986, 123, 126–128. [Google Scholar] [CrossRef]
- Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides. Science 2001, 294, 269–271. [Google Scholar] [CrossRef]
- Fox, M.A.; Dulay, M.T. Heterogeneous photocatalysis. Chem. Rev. 1993, 93, 341–357. [Google Scholar] [CrossRef]
- Acharya, R.; Naik, B.; Parida, K. Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 2018, 9, 1448–1470. [Google Scholar] [CrossRef] [Green Version]
- Gomes, J.; Lincho, J.; Domingues, E.; Quinta-Ferreira, R.M.; Martins, R.C. N–TiO2 Photocatalysts: A Review of Their Characteristics and Capacity for Emerging Contaminants Removal. Water 2019, 11, 373. [Google Scholar] [CrossRef] [Green Version]
- Ismael, M. A review and recent advances in solar-to-hydrogen energy conversion based on photocatalytic water splitting over doped-TiO2 nanoparticles. Sol. Energy 2020, 211, 522–546. [Google Scholar] [CrossRef]
- Rivas, J.; Solis, R.R.; Gimeno, O.; Sagasti, J. Photocatalytic elimination of aqueous 2-methyl-4-chlorophenoxyacetic acid in the presence of commercial and nitrogen-doped TiO2. Int. J. Environ. Sci. Technol. 2015, 12, 513–526. [Google Scholar] [CrossRef] [Green Version]
- Solís, R.R.; Rivas, F.J.; Gimeno, O.; Pérez-Bote, J.L. Photocatalytic ozonation of pyridine-based herbicides by N-doped titania. J. Chem. Technol. Biotechnol. 2016, 91, 1998–2008. [Google Scholar] [CrossRef]
- Solís, R.R.; Rivas, F.J.; Martínez-Piernas, A.; Agüera, A. Ozonation, photocatalysis and photocatalytic ozonation of diuron. Intermediates identification. Chem. Eng. J. 2016, 292, 72–81. [Google Scholar] [CrossRef]
- Avisar, D.; Horovitz, I.; Lozzi, L.; Ruggieri, F.; Baker, M.; Abel, M.-L.; Mamane, H. Impact of water quality on removal of carbamazepine in natural waters by N-doped TiO2 photo-catalytic thin film surfaces. J. Hazard. Mater. 2013, 244–245, 463–471. [Google Scholar] [CrossRef] [Green Version]
- Caratto, V.; Setti, L.; Campodonico, S.; Carnasciali, M.M.; Botter, R.; Ferretti, M. Synthesis and characterization of nitrogen-doped TiO2 nanoparticles prepared by sol–gel method. J. Sol. Gel. Sci. Technol. 2012, 63, 16–22. [Google Scholar] [CrossRef]
- Pan, J.H.; Han, G.; Zhou, R.; Zhao, X.S. Hierarchical N-doped TiO2 hollow microspheres consisting of nanothorns with exposed anatase {101} facets. Chem. Commun. 2011, 47, 6942–6944. [Google Scholar] [CrossRef]
- Chainarong, S.; Sikong, L.; Pavasupree, S.; Niyomwas, S. Synthesis and Characterization of Nitrogen-doped TiO2 Nanomaterials for Photocatalytic Activities under Visible Light. Energy Procedia 2011, 9, 418–427. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Zhang, Q.; Saito, F.; Sato, T. Preparation of visible light-activated titania photocatalyst by mechanochemical method. Chem. Lett. 2003, 32, 358–359. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Yamaki, H.; Komatsu, M.; Zhang, Q.; Wang, J.; Tang, Q.; Saito, F.; Sato, T. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine. J. Mater. Chem. 2003, 13, 2996–3001. [Google Scholar] [CrossRef]
- Techitdheera, W.; Rattanarak, J.; Mekprasart, W.; Pecharapa, W. Influence of milling time, NH3 additive and annealing temperature on physical properties of modified commercial TiO2 powders via ball milling process. Energy Procedia 2014, 56, 667–672. [Google Scholar] [CrossRef] [Green Version]
- Kassim, K.; Hamali, M.A.; Yamin, B. A new alternative synthesis of salicylaldazine via microwave irradiation method. J. Chem. 2019, 2019, 9546373. [Google Scholar] [CrossRef]
- Eskicioglu, C.; Terzian, N.; Kennedy, K.J.; Droste, R.L.; Hamoda, M. Athermal microwave effects for enhancing digestibility of waste activated sludge. Water Res. 2007, 41, 2457–2466. [Google Scholar] [CrossRef]
- Kadam, A.N.; Dhabbe, R.S.; Kokate, M.R.; Gaikwad, Y.B.; Garadkar, K.M. Preparation of N doped TiO2 via microwave-assisted method and its photocatalytic activity for degradation of Malathion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 133, 669–676. [Google Scholar] [CrossRef]
- Azami, M.S.; Nawawi, W.I.; Jawad, A.H.; Ishak, M.A.M.; Ismail, K. N-doped TiO2 Synthesised via Microwave Induced Photocatalytic on RR4 Dye Removal under LED Light Irradiation. Sains Malays. 2017, 46, 1309–1316. [Google Scholar] [CrossRef]
- Lin, Y.-H.; Weng, C.-H.; Srivastav, A.L.; Lin, Y.-T.; Tzeng, J.-H. Facile Synthesis and Characterization of N-Doped TiO2 Photocatalyst and Its Visible-Light Activity for Photo-Oxidation of Ethylene. J. Nanomater. 2015, 2015, 807394. [Google Scholar] [CrossRef]
- Makropoulou, T.; Panagiotopoulou, P.; Venieri, D. N-doped TiO2 photocatalysts for bacterial inactivation in water. J. Chem. Technol. Biotechnol. 2018, 93, 2518–2526. [Google Scholar] [CrossRef]
- Irie, H.; Washizuka, S.; Watanabe, Y.; Kako, T.; Hashimoto, K. Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO2 films. J. Electrochem. Soc. 2005, 152, E351. [Google Scholar] [CrossRef]
- Kitano, M.; Funatsu, K.; Matsuoka, M.; Ueshima, M.; Anpo, M. Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J. Phys. Chem. B 2006, 110, 25266–25272. [Google Scholar] [CrossRef]
- Obata, K.; Irie, H.; Hashimoto, K. Enhanced photocatalytic activities of Ta, N co-doped TiO2 thin films under visible light. Chem. Phys. 2007, 339, 124–132. [Google Scholar] [CrossRef]
- Dobromir, M.; Manole, A.V.; Nica, V.; Apetrei, R.; Neagu, M.; Luca, D. Analyzing the Development of N-Doped TiO2 Thin Films Deposited by RF Magnetron Sputtering. Sens. Lett. 2013, 11, 675–678. [Google Scholar] [CrossRef]
- Chan, M.-H.; Lu, F.-H. Characterization of N-doped TiO2 films prepared by reactive sputtering using air/Ar mixtures. Thin Solid Film. 2009, 518, 1369–1372. [Google Scholar] [CrossRef]
- Chen, X.; Ma, E.; Liu, G.; Yin, M. Excited-state dynamics of Er3+ in Gd2O3 nanocrystals. J. Phys. Chem. C 2007, 111, 9638–9643. [Google Scholar] [CrossRef]
- Tang, J.; Zou, Z.; Ye, J. Photophysical and photocatalytic properties of AgInW2O8. J. Phys. Chem. B 2003, 107, 14265–14269. [Google Scholar] [CrossRef]
- Matsubara, K.; Danno, M.; Inoue, M.; Honda, Y.; Abe, T. Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system. Chem. Eng. J. 2012, 181–182, 754–760. [Google Scholar] [CrossRef]
- Yamada, K.; Nakamura, H.; Matsushima, S.; Yamane, H.; Haishi, T.; Ohira, K.; Kumada, K. Preparation of N-doped TiO2 particles by plasma surface modification. Comptes Rendus Chim. 2006, 9, 788–793. [Google Scholar] [CrossRef]
- Chen, C.; Bai, H.; Chang, S.M.; Chang, C.; Den, W. Preparation of N-doped TiO2 photocatalyst by atmospheric pressure plasma process for VOCs decomposition under UV and visible light sources. J. Nanopart. Res. 2007, 9, 365–375. [Google Scholar] [CrossRef]
- Panepinto, A.; Cossement, D.; Snyders, R. Experimental and theoretical study of the synthesis of N-doped TiO2 by N ion implantation of TiO2 thin films. Appl. Surf. Sci. 2021, 541, 148493. [Google Scholar] [CrossRef]
- Borras, A.; Lopez, C.; Rico, V.; Gracia, F.; Gonzalez-Elipe, A.R.; Richter, E.; Battiston, G.; Gerbasi, R.; McSporran, N.; Sauthier, G.; et al. Effect of visible and UV illumination on the water contact angle of TiO2 thin films with incorporated nitrogen. J. Phys. Chem. C 2007, 111, 1801–1808. [Google Scholar] [CrossRef]
- Ghicov, A.; Macak, J.M.; Tsuchiya, H.; Kunze, J.; Haeublein, V.; Frey, L.; Schmuki, P. Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes. Nano Lett. 2006, 6, 1080–1082. [Google Scholar] [CrossRef]
- Khan, T.T.; Bari, G.A.K.M.R.; Kang, H.-J.; Lee, T.-G.; Park, J.-W.; Hwang, H.J.; Hossain, S.M.; Mun, J.S.; Suzuki, N.; Fujishima, A.; et al. Synthesis of N-Doped TiO2 for Efficient Photocatalytic Degradation of Atmospheric NOx. Catalysts 2021, 11, 109. [Google Scholar] [CrossRef]
- Ji, L.; Zhou, S.; Liu, X.; Gong, M.; Xu, T. Synthesis of carbon- and nitrogen-doped TiO2/carbon composite fibers by a surface-hydrolyzed PAN fiber and their photocatalytic property. J. Mater. Sci. 2020, 55, 2471–2481. [Google Scholar] [CrossRef]
- Japa, M.; Tantraviwat, D.; Phasayavan, W.; Nattestad, A.; Chen, J.; Inceesungvorn, B. Simple preparation of nitrogen-doped TiO2 and its performance in selective oxidation of benzyl alcohol and benzylamine under visible light. Colloids Surf. A Physicochem. Eng. Asp. 2020, 610, 125743. [Google Scholar] [CrossRef]
- Le, P.; Hieu, L.; Lam, T.N.; Hang, N.; Truong, N.; Tuyen, L.; Phong, P.T.; Leu, J. Enhanced Photocatalytic Performance of Nitrogen-Doped TiO2 Nanotube Arrays Using a Simple Annealing Process. Micromachines 2018, 9, 618. [Google Scholar] [CrossRef] [Green Version]
- Mor, G.K.; Varghese, O.K.; Paulose, M.; Shankar, K.; Grimes, C.A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 2006, 90, 2011–2075. [Google Scholar] [CrossRef]
- Wang, D.; Yu, B.; Wang, C.; Zhou, F.; Liu, W. A novel protocol toward perfect alignment of anodized TiO2 nanotubes. Adv. Mater. 2009, 21, 1964–1967. [Google Scholar] [CrossRef]
- Pishkar, N.; Ghoranneviss, M.; Ghorannevis, Z.; Akbari, H. Study of the highly ordered TiO2 nanotubes physical properties prepared with two-step anodization. Results Phys. 2018, 9, 1246–1249. [Google Scholar] [CrossRef]
- Mazierski, P.; Nischk, M.; Gołkowska, M.; Lisowski, W.; Gazda, M.; Winiarski, M.J.; Klimczuk, T.; Zaleska-Medynska, A. Photocatalytic activity of nitrogen doped TiO2 nanotubes prepared by anodic oxidation: The effect of applied voltage, anodization time and amount of nitrogen dopant. Appl. Catal. B Environ. 2016, 196, 77–88. [Google Scholar] [CrossRef]
- Lai, Y.-K.; Huang, J.-Y.; Zhang, H.-F.; Subramaniam, V.-P.; Tang, Y.-X.; Gong, D.-G.; Sundar, L.; Sun, L.; Chen, Z.; Lin, C.-J. Nitrogen-doped TiO2 nanotube array films with enhanced photocatalytic activity under various light sources. J. Hazard. Mater. 2010, 184, 855–863. [Google Scholar] [CrossRef]
- Wan, L.; Li, J.F.; Feng, J.Y.; Sun, W.; Mao, Z.Q. Improved optical response and photocatalysis for N-doped titanium oxide (TiO2) films prepared by oxidation of TiN. Appl. Surf. Sci. 2007, 253, 4764–4767. [Google Scholar] [CrossRef]
- Liu, G.; Yang, H.G.; Wang, X.; Cheng, L.; Pan, J.; Lu, G.Q.M.; Cheng, H.-M. Visible light responsive nitrogen doped anatase TiO2 sheets with dominant {001} facets derived from TiN. J. Am. Chem. Soc. 2009, 131, 12868–12869. [Google Scholar] [CrossRef]
- Cooper, E.; Andrews, C.; Wheatley, P.S.; Webb, P.B.; Wormald, P.; Morris, R.E. Ionic liquids and eutectic mixtures as solvent and template in synthesis of zeolite analogues. Nature 2004, 430, 1012–1016. [Google Scholar] [CrossRef] [PubMed]
- Pipi, A.; Byzynski, G.; Ruotolo, L. Photocatalytic activity and RNO dye degradation of nitrogen-doped TiO2 prepared by ionothermal synthesis. Mater. Res. 2017, 20, 628–638. [Google Scholar] [CrossRef] [Green Version]
- Pratsinis, S.E. Flame aerosol synthesis of ceramic powders. Prog. Energy Combust. 1998, 24, 197–219. [Google Scholar] [CrossRef]
- Madler, L.; Kammler, H.K.; Mueller, R.; Pratsinis, S.E. Controlled synthesis of nanostructured particles by flame spray pyrolysis. Aerosol Sci. 2002, 33, 369–389. [Google Scholar] [CrossRef]
- Boningari, T.; Inturi, S.N.R.; Suidan, M.; Smirniotis, P.G. Novel one-step synthesis of nitrogen-doped TiO2 by flame aerosol technique for visible-light photocatalysis: Effect of synthesis parameters and secondary nitrogen (N) source. Chem. Eng. J. 2018, 350, 324–334. [Google Scholar] [CrossRef]
- Kim, T.H.; Go, G.-M.; Cho, H.-B.; Song, Y.; Lee, C.-G.; Choa, Y.-H. A Novel Synthetic Method for N Doped TiO2 Nanoparticles Through Plasma-Assisted Electrolysis and Photocatalytic Activity in the Visible Region. Front. Chem. 2018, 6, 458. [Google Scholar] [CrossRef] [Green Version]
- Nasirian, M.; Mehrvar, M. Photocatalytic degradation of aqueous Methyl Orange using nitrogen-doped TiO2 photocatalyst prepared by novel method of ultraviolet-assisted thermal synthesis. J. Environ. Sci. 2018, 66, 81–93. [Google Scholar] [CrossRef]
- Yin, S.; Liu, B.; Sato, T. Microwave-Assisted Hydrothermal Synthesis of Nitrogen-Doped Titania Nanoparticles. Funct. Mater. Lett. 2008, 1, 173–176. [Google Scholar] [CrossRef]
- Peng, Y.P.; Lo, S.L.; Ou, H.H.; Lai, S.W. Microwave-assisted hydrothermal synthesis of N-doped titanate nanotubes for visible-light-responsive photocatalysis. J. Hazard. Mater. 2010, 183, 754–758. [Google Scholar] [CrossRef]
- Peng, F.; Cai, L.; Yu, H.; Wang, H.; Yang, J. Synthesis and characterization of substitutional and interstitial nitrogen-doped titanium dioxides with visible light photocatalytic activity. J. Solid State Chem. 2008, 181, 130–136. [Google Scholar] [CrossRef]
- Irie, H.; Watanabe, Y.; Hashimoto, K. Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2−xNx Powders. J. Phys. Chem. B 2003, 107, 5483–5486. [Google Scholar] [CrossRef]
- Chen, X.; Burda, C. Photoelectron Spectroscopic Investigation of Nitrogen-Doped Titania Nanoparticles. J. Phys. Chem. B 2004, 108, 15446–15449. [Google Scholar] [CrossRef]
- Sathish, M.; Viswanathan, B.; Viswanath, R.P.; Gopinath, C.S. Synthesis, Characterization, Electronic Structure, and Photocatalytic Activity of Nitrogen-Doped TiO2 Nanocatalyst. Chem. Mater. 2005, 17, 6349–6353. [Google Scholar] [CrossRef]
- Lee, H.U.; Lee, Y.C.; Lee, S.C.; Park, S.Y.; Son, B.; Lee, J.W.; Lim, C.H.; Choi, C.J.; Choi, M.H.; Lee, S.Y.; et al. Visible-light-responsive bicrystalline (anatase/brookite) nanoporous nitrogen-doped TiO2 photocatalysts by plasma treatment. Chem. Eng. J. 2014, 254, 268–275. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.; Chen, F.; Anpo, M. Synthesis and Characterization of Nitrogen-Doped TiO2 Nanophotocatalyst with High Visible Light Activity. J. Phys. Chem. C 2007, 111, 6976–6982. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, H.; Kong, X.; Guo, X. Effect of calcination on the visible light photocatalytic activity of N-doped TiO2 prepared by the sol-gel method. J. Nanosci. Nanotechnol. 2014, 14, 3532–3537. [Google Scholar] [CrossRef]
- Suwannaruang, T.; Kidkhunthod, P.; Chanlek, N.; Soontaranon, S.; Wantala, K. High anatase purity of nitrogen-doped TiO2 nanorice particles for the photocatalytic treatment activity of pharmaceutical wastewater. Appl. Surf. Sci. 2019, 478, 1–14. [Google Scholar] [CrossRef]
- Mirzaei, A.; Eddah, M.; Roualdes, S.; Ma, D.; Chaker, M. Multiple-homojunction gradient nitrogen doped TiO2 for photocatalytic degradation of sulfamethoxazole, degradation mechanism, and toxicity assessment. Chem. Eng. J. 2021, 422, 130507. [Google Scholar] [CrossRef]
- Rani, A.; Dhiman, R.L.; Singh, V.; Kumar, S.; Kumar, S. Photocatalytic study of Ni-N-codoped TiO2 nanoparticles under visible light irradiation. Nano Express 2021, 2, 030002. [Google Scholar] [CrossRef]
- Alotaibi, A.M.; Promdet, P.; Hwang, G.B.; Li, J.; Nair, S.P.; Sathasivam, S.; Kafizas, A.; Carmalt, C.J.; Parkin, I.P. Zn and N Codoped TiO2 Thin Films: Photocatalytic and Bactericidal Activity. ACS Appl. Mater. Interfaces 2021, 13, 10480–10489. [Google Scholar] [CrossRef]
- Selcuk, M.Z.; Boroglu, M.S.; Boz, I. Hydrogen production by photocatalytic water-splitting using nitrogen and metal co-doped TiO2 powder photocatalyst. Reac. Kinet. Mech. Catal. 2012, 106, 313–324. [Google Scholar] [CrossRef]
- Lin, H.; Shih, C. Efficient one-pot microwave-assisted hydrothermal synthesis of M (M=Cr, Ni, Cu, Nb) and nitrogen co-doped TiO2 for hydrogen production by photocatalytic water splitting. J. Mol. Catal. A Chem. 2016, 411, 128–137. [Google Scholar] [CrossRef]
- Abdelraheem, W.H.M.; Patil, M.K.; Nadagouda, M.N.; Dionysiou, D.D. Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl. Catal. B Environ. 2019, 241, 598–611. [Google Scholar] [CrossRef]
- Abdelraheem, W.H.M.; Nadagouda, M.N.; Dionysiou, D.D. Solar light-assisted remediation of domestic wastewater by NB-TiO2 nanoparticles for potable reuse. Appl. Catal. B Environ. 2020, 269, 118807. [Google Scholar] [CrossRef]
- Cong, Y.; Zhang, J.; Chen, F.; Anpo, M.; He, D. Preparation, Photocatalytic Activity, and Mechanism of Nano-TiO2 Co-Doped with Nitrogen and Iron (III). J. Phys. Chem. C 2007, 111, 10618–10623. [Google Scholar] [CrossRef]
- Chen, D.; Jiang, Z.; Geng, J.; Wang, Q.; Yang, D. Carbon and Nitrogen Co-doped TiO2 with Enhanced Visible-Light Photocatalytic Activity. Ind. Eng. Chem. Res. 2007, 46, 2741–2746. [Google Scholar] [CrossRef]
- Yu, T.; Tan, X.; Zhao, L.; Yin, Y.; Chen, P.; Wei, J. Characterization, activity and kinetics of a visible light driven photocatalyst: Cerium and nitrogen co-doped TiO2 nanoparticles. Chem. Eng. J. 2010, 157, 86–92. [Google Scholar] [CrossRef]
- Thind, S.S.; Wu, G.; Chen, A. Synthesis of mesoporous nitrogen–tungsten co-doped TiO2 photocatalysts with high visible light activity. Appl. Catal. B Environ. 2012, 111–112, 38–45. [Google Scholar] [CrossRef]
- Kuvarega, A.T.; Krause, R.W.M.; Mamba, B.B. Nitrogen/Palladium-Codoped TiO2 for Efficient Visible Light Photocatalytic Dye Degradation. J. Phys. Chem. C 2011, 115, 22110–22120. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Zhu, Z.; Yan, N.; Liu, Q. Preparation and properties of sliver and nitrogen co-doped TiO2 photocatalyst. Mater. Res. Bull. 2013, 48, 4872–4876. [Google Scholar] [CrossRef]
- Jaiswal, R.; Bharambe, J.; Patel, N.; Dashora, A.; Kothari, D.C.; Miotello, A. Copper and Nitrogen co-doped TiO2 photocatalyst with enhanced optical absorption and catalytic activity. Appl. Catal. B Environ. 2015, 168–169, 333–341. [Google Scholar] [CrossRef]
- El-Sheikh, S.M.; Khedr, T.M.; Hakki, A.; Ismail, A.A.; Badawy, W.A.; Bahnemann, D.W. Visible light activated carbon and nitrogen co-doped mesoporous TiO2 as efficient photocatalyst for degradation of ibuprofen. Sep. Purif. Technol. 2017, 173, 258–268. [Google Scholar] [CrossRef]
- Rajoriya, S.; Bargole, S.; George, S.; Saharan, V.K.; Gogate, P.R.; Pandit, A.B. Synthesis and characterization of samarium and nitrogen doped TiO2 photocatalysts for photo-degradation of 4-acetamidophenol in combination with hydrodynamic and acoustic cavitation. Sep. Purif. Technol. 2019, 209, 254–269. [Google Scholar] [CrossRef]
- Sharotri, N.; Sharma, D.; Sud, D. Experimental and theoretical investigations of Mn-N-co-doped TiO2 photocatalyst for visible light induced degradation of organic pollutants. J. Mater. Res. Technol. 2019, 8, 3995–4009. [Google Scholar] [CrossRef]
- Park, I.-S.; Chung, K.-H.; Kim, S.-C.; Kim, S.-J.; Park, Y.-K.; Jung, S.-C. Photocatalytic degradation of 1,4-dioxane and hydrogen production using liquid phase plasma on N- and Ni- codoped TiO2 photocatalyst. Mater. Lett. 2021, 283, 128751. [Google Scholar] [CrossRef]
- Ohtani, B. Photocatalysis A to Z—What we know and what we do not know in a scientific sense. J. Photochem. Photobiol. C Photochem. Rev. 2010, 11, 157–178. [Google Scholar] [CrossRef] [Green Version]
- Natarajan, T.S.; Thampi, K.R.; Tayade, R.J. Visible light driven redox-mediator-free dual semiconductor photocatalytic systems for pollutant degradation and the ambiguity in applying Z-scheme concept. Appl. Catal. B Environ. 2018, 227, 296–311. [Google Scholar] [CrossRef]
- Nakada, A.; Nishioka, S.; Vequizo, J.J.M.; Muraoka, K.; Kanazawa, T.; Yamakata, A.; Nozawa, S.; Kumagai, H.; Adachi, S.; Ishitani, O.; et al. Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst. J. Mater. Chem. A 2017, 5, 11710–11719. [Google Scholar] [CrossRef]
- Miyoshi, A.; Kato, K.; Yokoi, T.; Wiesfeld, J.J.; Nakajima, K.; Yamakara, A.; Maeda, K. Nano vs. bulk rutile TiO2:N,F in Z-scheme overall water splitting under visible light. J. Mater. Chem. A 2020, 8, 11996–12002. [Google Scholar] [CrossRef]
- Burda, C.; Lou, Y.; Chen, X.; Samia, A.C.S.; Stout, J.; Gole, J.L. Enhanced Nitrogen Doping in TiO2 Nanoparticles. Nano Lett. 2003, 3, 1049–1051. [Google Scholar] [CrossRef]
- Nosaka, Y.; Matsushita, M.; Nishino, J.; Nosaka, A.Y. Nitrogen-doped titanium dioxide photocatalysts for visible response prepared by using organic compounds. Sci. Technol. Adv. Mater. 2005, 6, 143–148. [Google Scholar] [CrossRef]
- Kalantari, K.; Kalbasi, M.; Sohrabi, M.; Royaee, S.J. Synthesis and characterization of N-doped TiO2 nanoparticles and their application in photocatalytic oxidation of dibenzothiophene under visible light. Ceram. Int. 2016, 42, 14834–14842. [Google Scholar] [CrossRef]
- RamezaniSani, S.; Rajabi, M.; Mohseni, F. Influence of nitrogen doping on visible light photocatalytic activity of TiO2 nanowires with anatase-rutile junction. Chem. Phys. Lett. 2020, 744, 137217. [Google Scholar] [CrossRef]
- Bakre, P.V.; Tilve, S.G.; Shirsat, R.N. Influence of N sources on the photocatalytic activity of N-doped TiO2. Arab. J. Chem. 2020, 13, 7637–7651. [Google Scholar] [CrossRef]
- Huang, J.; Dou, L.; Li, J.; Zhong, J.; Li, M.; Wang, T. Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants. J. Hazard. Mater. 2021, 403, 123857. [Google Scholar] [CrossRef]
- Zeng, X.; Sun, X.; Wang, Y. Photocatalytic degradation of flumequine by N-doped TiO2 catalysts under simulated sunlight. Environ. Eng. Res. 2021, 26, 200524. [Google Scholar] [CrossRef]
- Tryba, B.; Wozniak, M.; Zolnierkiewicz, G.; Guskos, N.; Morawski, A.; Colbeau-Justin, C.; Wrobel, R.; Nitta, A.; Ohtani, B. Influence of an Electronic Structure of N-TiO2 on Its Photocatalytic Activity towards Decomposition of Acetaldehyde under UV and Fluorescent Lamps Irradiation. Catalysts 2018, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Haneda, H.; Hishita, S.; Ohashi, N. Visible-light-driven nitrogen-doped TiO2 photocatalysts: Effect of nitrogen precursors on their photocatalysis for decomposition of gas-phase organic pollutants. Mater. Sci. Eng. B 2005, 117, 67–75. [Google Scholar] [CrossRef]
- Aoki, K.; Morikawa, T.; Ohwaki, T.; Taga, Y. Photocatalytic Degradation of Formaldehyde and Toluene Mixtures in Air with a Nitrogen-doped TiO2 Photocatalyst. Chem. Lett. 2006, 35, 616–617. [Google Scholar] [CrossRef]
- Jo, W.-K.; Kim, J.-T. Application of visible-light photocatalysis with nitrogen-doped or unmodified titanium dioxide for control of indoor-level volatile organic compounds. J. Hazard. Mater. 2009, 164, 360–366. [Google Scholar] [CrossRef]
- He, F.; Ma, F.; Li, T.; Li, G. Solvothermal synthesis of N-doped TiO2 nanoparticles using different nitrogen sources, and their photocatalytic activity for degradation of benzene. Chin. J. Catal. 2013, 34, 2263–2270. [Google Scholar] [CrossRef]
- Priya, V.S.; Philip, L. Photocatalytic Degradation of Aqueous VOCs Using N Doped TiO2: Comparison of Photocatalytic Degradation under Visible and Sunlight Irradiation. Int. J. Environ. Sci. Dev. 2015, 6, 286–291. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Wang, Z.; Chen, X.; Chu, H.; Fu, H.; Wang, C.-C. Robust photocatalytic benzene degradation using mesoporous disk-like N-TiO2 derived from MIL-125(Ti). Chin. J. Catal. 2020, 41, 1186–1197. [Google Scholar] [CrossRef]
- Suda, Y.; Kawasaki, H.; Ueda, T.; Ohshima, T. Preparation of high quality nitrogen doped TiO2 thin film as a photocatalyst using a pulsed laser deposition method. Thin Solid Film. 2004, 453–454, 162–166. [Google Scholar] [CrossRef]
- Joung, S.-K.; Amemiya, T.; Murabayashi, M.; Itoh, K. Relation between photocatalytic activity and preparation conditions for nitrogen-doped visible light-driven TiO2 photocatalysts. Appl. Catal. A Gen. 2006, 312, 20–26. [Google Scholar] [CrossRef]
- Fang, J.; Wang, F.; Qian, K.; Bao, H.; Jiang, Z.; Huang, W. Bifunctional N-Doped Mesoporous TiO2 Photocatalysts. J. Phys. Chem. C 2008, 112, 18150–18156. [Google Scholar] [CrossRef]
- Xing, M.; Zhang, J.; Chen, F. New approaches to prepare nitrogen-doped TiO2 photocatalysts and study on their photocatalytic activities in visible light. Appl. Catal. B Environ. 2009, 89, 563–569. [Google Scholar] [CrossRef]
- Tang, Y.C.; Huang, X.H.; Yu, H.Q.; Tang, L.H. Nitrogen-Doped Photocatalyst Prepared by Mechanochemical Method: Doping Mechanisms and Visible Photoactivity of Pollutant Degradation. Int. J. Photoenergy 2011, 2012, 960726. [Google Scholar]
- Powell, M.J.; Dunnill, C.W.; Parkin, I.P. N-doped TiO2 visible light photocatalyst films via a sol–gel route using TMEDA as the nitrogen source. J. Photochem. Photobiol. A Chem. 2014, 281, 27–34. [Google Scholar] [CrossRef]
- Vaiano, V.; Sacco, O.; Sannino, D.; Ciambelli, P. Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Appl. Catal. B Environ. 2015, 170–171, 153–161. [Google Scholar] [CrossRef]
- Huang, W.C.; Ting, J.M. Novel nitrogen-doped anatase TiO2 mesoporous bead photocatalysts for enhanced visible light response. Ceram. Int. 2017, 43, 9992–9997. [Google Scholar] [CrossRef]
- Calisir, M.D.; Gungor, M.; Demir, A.; Kilic, A.; Khan, M.M. Nitrogen-doped TiO2 fibers for visible-light-induced photocatalytic activities. Ceram. Int. 2020, 46, 16743–16753. [Google Scholar] [CrossRef]
- Divyasri, Y.V.; Reddy, N.L.; Lee, K.; Sakar, M.; Rao, V.N.; Venkatramu, V.; Shankar, M.V.; Reddy, N.C.G. Optimization of N doping in TiO2 nanotubes for the enhanced solar light mediated photocatalytic H2 production and dye degradation. Environ. Pollut. 2021, 269, 116170. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, P.S.; Jadhav, T.; Bhosale, M.; Jadhav, C.H.; Pawar, V.C. Structural and optical properties of N-doped TiO2 nanomaterials. Mater. Today Proc. 2021, 43, 2763–2767. [Google Scholar] [CrossRef]
- Fiorenza, R.; Mauro, A.D.; Cantarella, M.; Gulino, A.; Spitaleri, L.; Privitera, V.; Impellizzeri, G. Molecularly imprinted N-doped TiO2 photocatalysts for the selective degradation of o-phenylphenol fungicide from water. Mater. Sci. Semicond. Process. 2020, 112, 105019. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Peng, D.; Sheng, D.; Di Ma, Y.T.; Zhang, Y. Nitrogen-doped mixed-phase TiO2 with controllable phase junction as superior visible-light photocatalyst for selective oxidation of cyclohexane. Appl. Surf. Sci. 2021, 536, 147953. [Google Scholar] [CrossRef]
- Tzeng, J.-H.; Weng, C.-H.; Yen, L.-T.; Gaybullaev, G.; Chang, C.-J.; de Luna, M.D.G.; Lin, Y.-T. Inactivation of pathogens by visible light photocatalysis with nitrogen-doped TiO2 and tourmaline-nitrogen co-doped TiO2. Sep. Purif. Technol. 2021, 274, 118979. [Google Scholar] [CrossRef]
- Lu, G.; Wang, X.; Wang, Y.; Shi, G.; Xie, X.; Sun, J. Anti-oxidative microstructure design of ultra-stable N-TiO2 composite for the gaseous photodegradation reactions. Chem. Eng. J. 2021, 408, 127257. [Google Scholar] [CrossRef]
- Li, H.; Yin, S.; Wang, Y.; Sato, T. Persistent Fluorescence-Assisted TiO2−xNy-Based Photocatalyst for Gaseous Acetaldehyde Degradation. Environ. Sci. Technol. 2012, 46, 7741–7745. [Google Scholar] [CrossRef]
- Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based Photocatalytic Hydrogen Generation. Chem. Rev. 2010, 110, 6503–6570. [Google Scholar] [CrossRef]
- Samokhvalov, A. Hydrogen by photocatalysis with nitrogen codoped titanium dioxide. Renew. Sustain. Energy Rev. 2017, 72, 981–1000. [Google Scholar] [CrossRef]
- Kumaravel, V.; Mathew, S.; Bartlett, J.; Pillai, S.C. Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances. Appl. Catal. B Environ. 2019, 244, 1021–1064. [Google Scholar] [CrossRef]
- Do, H.H.; Nguyen, D.L.T.; Nguyen, X.C.; Le, T.-H.; Nguyen, T.P.; Trinh, Q.T.; Ahn, S.H.; Vo, D.-V.N.; Kim, S.Y.; Le, Q.V. Recent progress in TiO2-based photocatalysts for hydrogen evolution reaction: A review. Arab. J. Chem. 2020, 13, 3653–3671. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Kibria, M.G.; Mullins, C.B. Metal-free photocatalysts for hydrogen evolution. Chem. Soc. Rev. 2020, 49, 1887–1931. [Google Scholar] [CrossRef]
- Babu, V.J.; Kumar, M.K.; Nair, A.S.; Kheng, T.L.; Allakhverdiev, S.I.; Ramakrishna, S. Visible light photocatalytic water splitting for hydrogen production from N-TiO2 rice grain shaped electrospun nanostructures. Int. J. Hydrog. Energy 2012, 37, 8897–8904. [Google Scholar] [CrossRef]
- Zhang, X.; Song, P.; Cui, X. Nitrogen-doped TiO2 Photocatalysts Synthesized from Titanium Nitride: Characterizations and Photocatalytic Hydrogen Evolution Performance. J. Adv. Oxid. Technol. 2013, 16, 131–136. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q.-Q.; Huang, J.-Q.; Deng, Z.-H.; Shi, H.-L.; Wu, L.; Liu, Z.-G.; Cao, Y.-G. Effective water splitting using N-doped TiO2 films: Role of preferred orientation on hydrogen production. Int. J. Hydrog. Energy 2014, 39, 1967–1971. [Google Scholar] [CrossRef]
- Fakhouri, H.; Pulpytel, J.; Smith, W.; Zolfaghari, A.; Mortaheb, H.R.; Meshkini, F.; Jafari, R.; Sutter, E.; Arefi-Khonsari, F. Control of the visible and UV light water splitting and photocatalysis of nitrogen doped TiO2 thin films deposited by reactive magnetron sputtering. Appl. Catal. B Environ. 2014, 144, 12–21. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Gao, P.; Yang, Y.; Yang, P.; Chen, Y.; Wang, Y. N-Doped TiO2 Nanobelts with Coexposed (001) and (101) Facets and Their Highly Efficient Visible-Light-Driven Photocatalytic Hydrogen Production. ACS Appl. Mater. Interfaces 2016, 8, 18126–18131. [Google Scholar] [CrossRef]
- Esmat, M.; El-Hosainy, H.; Tahawy, R.; Jevasuwan, W.; Tsunoji, N.; Fukata, N.; Ide, Y. Nitrogen doping-mediated oxygen vacancies enhancing co-catalyst-free solar photocatalytic H2 production activity in anatase TiO2 nanosheet assembly. Appl. Catal. B Environ. 2021, 285, 119755. [Google Scholar] [CrossRef]
- Villa, K.; Black, A.; Domènech, X.; Peral, J. Nitrogen doped TiO2 for hydrogen production under visible light irradiation. Sol. Energy 2012, 86, 558–566. [Google Scholar] [CrossRef]
- Lin, H.; Shih, C. Efficient One-Pot Microwave-Assisted Hydrothermal Synthesis of Nitrogen-Doped TiO2 for Hydrogen Production by Photocatalytic Water Splitting. Catal. Surv. Asia 2012, 16, 231–239. [Google Scholar] [CrossRef]
- Wang, C.; Hu, Q.Q.; Huang, J.Q.; Wu, L.; Deng, Z.H.; Liu, Z.G.; Liu, Y.; Cao, Y.G. Efficient hydrogen production by photocatalytic water splitting using N-doped TiO2 film. Appl. Surf. Sci. 2013, 283, 188–192. [Google Scholar] [CrossRef]
- Preethi, L.K.; Antony, R.P.; Mathews, T.; Loo, S.C.J.; Wong, L.H.; Dash, S.; Tyagi, A.K. Nitrogen doped anatase-rutile heterostructured nanotubes for enhanced photocatalytic hydrogen production: Promising structure for sustainable fuel production. Int. J. Hydrog. Energy 2016, 41, 5865–5877. [Google Scholar] [CrossRef]
- Reddy, P.A.K.; Reddy, P.V.L.; Kim, K.H.; Kumar, M.K.; Manvitha, C.; Shim, J.J. Novel approach for the synthesis of nitrogen-doped titania with variable phase composition and enhanced production of hydrogen under solar irradiation. J. Ind. Eng. Chem. 2017, 53, 253–260. [Google Scholar] [CrossRef]
- Liu, S.H.; Tang, W.T.; Lin, W.X. Self-assembled ionic liquid synthesis of nitrogen-doped mesoporous TiO2 for visible-light-responsive hydrogen production. Int. J. Hydrog. Energy 2017, 42, 24006–24013. [Google Scholar] [CrossRef]
- Xu, X.L.; Song, W. Enhanced H2 production activity under solar irradiation over N-doped TiO2 prepared using pyridine as a precursor: A typical sample of N-doped TiO2 series. Mater. Technol. 2017, 32, 52–63. [Google Scholar] [CrossRef]
- Zangeneh, H.; Farhadiana, M.; Zinatizadeh, A.A. A reusable visible driven N and C–N doped TiO2 magnetic nanocomposites for photodegradation of direct red 16 azo dye in water and wastewater. Environ. Technol. 2020, 1–16. [Google Scholar] [CrossRef]
Catalyst | Synthesis Method | Nitrogen Source | Applications | Process Condition | Catalytic Efficiency | Ref. |
---|---|---|---|---|---|---|
N-xFe-TiO2 | Precipitation-Hydrothermal Method | Ammonium Chloride | RhB | Conc.: 20 mg/L, Vol.: 50 mL, 300 W HPMV Lamp (UV), 1000 W Halogen Lamp (visible) | N-0.5Fe-TiO2-75% (visible) and 5% (UV) | [98] |
C-N-TiO2 Cx−Ny−TiO2 | Sol–Gel | Urea | Methylene Blue (MB) | Conc.: 1.8 × 10−5 M, Vol.: 100 mL, 150 W Xe Arc Lamp | C-N-TiO2 Higher Activity than the N-TiO2, C-TiO2 and TiO2 | [99] |
Ce-N-TiO2 Ti1−xCexO1−yNy | One-Step Modified Technique | Urea | MB | Conc.: 15 mg/L, Vol.: 50 mL, 30 W Fluorescent Lamp (365, 420, 500, 550, 600 nm) | Ti0.993Ce0.007O2−xNx (x = 0.0070) NPs Higher Activity than the Bare TiO2 | [100] |
N,W Co-Doped TiO2 | Solution Combustion Method | Urea | Rhodamine B (RhB) | Conc.: 25 μM, Vol.: 20 mL, 300 W Xe Arc Lamp | TiO2: N–W (1.5%) Showed 14 Times Higher Activity than the P25 and Bare TiO2 | [101] |
N/Pd-TiO2 | Modified Sol–Gel Method | Ammonium Hydroxide | Eosin Yellow | Conc.: 15 ppm, Vol.: 100 mL, 150 W Xe Arc Lamp | N/Pd-TiO2 (0.6% Pd)-Complete Degradation | [102] |
Ag-N-TiO2 | Sol–Gel-Microwave Chemical Method | Urea | MB | Conc.: 10 mg/L, Vol.: 50 mL, 30 W Fluorescence Lamp | 93.44% (Ag-N-TiO2 39.40% (P25) | [103] |
Cu-N-TiO2 | Sol–Gel | Triethylamine | MB and p-Nitrophenol (PNP) | Conc.: 0.01 mM (MB), 10 ppm (PNP), Vol.: 50 mL, 150 W Xe Lamp | 2at.%Cu–3at.%N–TiO2: 100%, MB and 45% PNP | [104] |
Mesoporous C and N- co-doped TiO2 | One-Pot Hydrothermal | Glycine | Ibuprofen | Conc.: 20 ppm, Vol.: 220 mL (UV), 200 mL (Vis), 150 W HPMV (UV), LED Lamp (420 nm) | 98.9% (N-TiO2, UV), 100% (visible) | [105] |
Anatase B and N- TiO2 | Hydrothermal | Three Different Borane Tert-Butylamine Complex | Bisphenol A | Conc.: 1 μM, Vol.: 400 mL, 500 W Xe Lamp | 100% (2.0%NBT-350) | [96] |
Sm and N- TiO2 | Sol–Gel Process and Ultrasound Assisted Sol–Gel Process | Urea | 4-acetamidophenol (4-AMP) | Conc.: 50 ppm, Vol.: 50 mL, 300 W UV and Incandescent Lamp (>420 nm) | 87% (photo with ultrasound) and 91% (photo with hydrodynamic Cavitation) | [106] |
Mn and N-TiO2 | Cavitation Induced Synthetic Greener Methodology | Hydroxylamine Hydrochloride | Quinalphos and 2-Chlorophenol (2-CP) | Conc.: NA, Vol.: 50 mL, LED Lamp (660, 565 and 490 nm) | 87.5% (quinalphos), 91.7% (2-CP) with 660 nm LED Lamp | [107] |
N-Ni-TiO2 | Sol–Gel | Diethanolamine | 1,4-Dioxane Degradation and H2 Production Simultaneously | Conc.: NA, Vol.: NA, Visible Light | N-Ni-TiO2 Showed Higher Activity than the TiO2 | [108] |
Catalyst | Synthesis Method | Nitrogen Source | Doping Mechanism | Pollutants | Process Condition | Degradation Efficiency | Ref. |
---|---|---|---|---|---|---|---|
N-TiO2 Thin Film TiO2−xNx | Pulsed Laser Deposition (PLD) | TiN and N2/O2 Mixture | Substitutional Sites of Oxygen in TiO2 | MB Dye | Conc.: 50 mmol/L Vol.: 150 mL, Black Light Lamp (362 nm, 50 mW/cm2) and Fluorescent Light (540–620 nm, 120 mW/cm2) | Same Degradation Activity Under UV (both TiO2 and N-TiO2 Thin Film) and N-TiO2 Thin Film showed Higher Activity than the TiO2 Film (visible light) | [127] |
N-TiO2 | Sol–Gel and Calcination | NH3 | Ti–O–N | Trichloroethylene (TCE) | Con.: 1.8 × 10−4 mol/L, Vol.: NA, Visible Light | N-TiO2 showed Higher Activity than the TiO2 | [128] |
N-TiO2 | Microemulsion−hydrothermal method | Triethylamine, Urea, Thiourea, and Hydrazine hydrate | Substitutional Doping and the Doped Nitrogen are N−Ti−O and Ti−O−N. | RhB and 2,4-dichlorophenol (2,4-DCP) | Con.: 20 mg/L(RhB), and 100 mg/L (2,4-DCP), Vol.: 50 mL, 1000 W Halogen Lamp | N-TiO2 with N/Ti Ratio of 2 showed Higher Activity | [88] |
N-TiO2 | Precipitation | Ammonium Hydroxide (NH3·H2O) | Interstitial Site in TiO2 | Methyl Orange (MO) | Con.: 20 mg/L, Vol.: 80 mL, UV Lamp (8 W, 320–400 nm), Visible Light (400–650 nm) | N-TiO2-400 Catalyst showed Higher Activity than the Undoped TiO2 and other Concentration Loaded TiO2 | [129] |
N-TiO2 | Sol Gel | NH4NO3/NH3·H2O | Substitutional Doping | 2,4-DCP | Con.: 200 mg/L, Vol.: 80 mL, 1000 W Halogen Lamp | N-TiO2 Prepared at pH Value of 5.87, N/Ti Ratio of 2.0 and H2O/Ti Ratio of 76 showed Higher Degradation Activity | [130] |
N-TiO2 | Mechanochemical | NH4F | - | PNP and Methyl Orange (MO) | Con.: 10 mg/L Vol.: 140 mL, UV Lamp (254 nm) | N-TiO2 showed Higher Activity than the TiO2 | [131] |
N-TiO2 film | Sol Gel Method and Dip Coating | N,N,N′,N′-Tetramethylethane-1,2-Diamine (TMEDA) | Interstitial Nitrogen Doping | Resazurin Redox Dye and Stearic Acid | Con.: NA Vol.: NA, Fluorescent Lamp (9500 lx) | N-TiO2 Film showed Higher Activity than the TiO2 | [132] |
N- TiO2 coated glass spheres | Sol Gel Method and Dip Coating | Aqueous Ammonia Solution | - | MB and Eriochrome Black-T (EBT) | Con.: 5 mg/L Vol.: 140 mL, White Light LEDs Strip (400–800 nm), UV Emitting LEDs Strip (365–400 nm) | 52% (MB, UV and Visible Light), 41% and 31% (EBT, UV and visible light) | [133] |
Anatase N-TiO2 | Sol Gel Method | Urea, 1,6-Diaminohexane, Triethylamine | Interstitial Doping in TiO2 Lattice | MB | Con.: 100 mg/L Vol.: 100 mL, 300 W Halogen Lamp | 1, 6-Diaminohexane based N-TiO2 showed Higher Activity | [134] |
N-TiO2 | Ultraviolet-Assisted Thermal Synthesis | HNO3 | Substitutional or Interstitial | MO | Con.: 30 mg/L Vol.: NA, UV-A (254 nm), UV-B (310 nm), UV-C (365 nm) and Visible Light (470 nm), 9W Each | 2.17% (visible), 26.54% (UV-A), 34.92% (UV-B), and75.88% (UV-C) | [80] |
N-TiO2 | Hydrothermal | Urea | Substitutional and/or Interstitial Site | Ciprofloxacin | Con.: 20 ppm Vol.: NA, 365 nm UV-A Lamps (20W) | 94.29% | [90] |
N-TiO2 fibers | Centrifugal Spinning and Subsequent Calcination | Polyvinylpyrrolidone | – | MB | Con.: 10 ppm Vol.: 20 mL, UV and Visible Light (9W) | 68.00% | [135] |
N-TiO2 | Decomposition | Urea, Semicarbazide and N,N′-Dimethyl urea | TiO2 Lattice | MB and RhB | Con.: 10 ppm (MB), 20 ppm (RhB) Vol.: 25 mL, UV and Visible Light | N-TiO2 showed Higher Activity than the TiO2 | [117] |
Gradient N-TiO2 | Pulsed Laser Deposition | Substitutional | Sulfamethoxazole (SMX) | Con.: 1 mg/L Vol.: 50 mL, Solar Simulator | 85% | [91] | |
N-TiO2 nanotube | Solid State Dispersion | Urea | – | MO | Con.: 3 × 10−5 mol/L, Vol.: 100 mL, Solar Light | 91% | [136] |
N-TiO2 | Wet Chemical Method | Urea | Substitutional Doping in TiO2 Lattice | MB | Con.: 10 mg/L, Vol.: 10 mL, Visible Light | 72% | [137] |
Molecularly imprinted N-TiO2 | Sol–Gel Technique | NH4NO3 | Interstitial Nitrogen Doping in TiO2 Lattice | o-Phenylphenol Fungicide | Con.: 1 × 10−4 M, Vol.: 4 mL, UV Lamp | ~46% | [138] |
N-mixed-phase TiO2 | Pyrolysis | Urea | Interstitial N Atoms in TiO2 Lattice | Selective Oxidation of Cyclohexane | Con.: 1 × 10−4 M, Vol.: 4 mL, 300 W Xe Lamp | N-TiO2 showed Higher Activity and Selectivity | [139] |
N-TiO2 and Tourmaline-nitrogen co-doped TiO2 | Sol–Gel | Ammonium Hydroxide | – | Bacteria, Mycobacteria, and Fungi | Con.: 105 to 107 CFU/mL, Vol.: NA, Fluorescent Lamp | Tourmaline-Nitrogen Co-Doped TiO2 showed High Inactivation Efficiency | [140] |
Gaseous | |||||||
Yellow-Colored N-TiO2 | Spray Pyrolysis | Urea, Guanidine, or Ammonium Fluoride | – | Acetaldehyde and TCE | Con.: 930 ppm, Vol.: NA, 150 W Xe Lamp | N-TiO2 showed Higher Activity in Acetaldehyde and TCE Degradation | [121] |
Ultrastable N-TiO2 | Sol–Gel | Urea | Interstitial N Atoms | Acetaldehyde | Con.: 1000 ppm, Flow Rate: 10 mL/min Vol.: NA, 400 W Xe Lamp | 25% | [141] |
N-TiO2 | Solvothermal Method | Ammonia (ANT), Hydrazine Hydrate (HNT), Ammonium Nitrate (NNT) | Benzene | Con.: 2 μL (180 mg/m3), Vol.: NA, 250 WUV Lamp (Hg) | 91% | [124] | |
TiO2−xNy Coupled with Long-Afterglow Phosphors | Hydrothermal | Hexamethylenetetramine | – | Acetaldehyde | Con.: 10 Mass %, Vol.: NA, 10 W Black Light | 60 Mass % CaAl2O4:(Eu, Nd)/40 Mass % TiO2−xNy showed Higher Activity | [142] |
Catalyst | Synthesis Method | Nitrogen Source | Doping Mechanism | Medium Used for Water Splitting | Process Condition | H2O Splitting Efficiency | Ref. |
---|---|---|---|---|---|---|---|
N-TiO2 | Solid State and Sol Gel | Urea and NH4NO3 | Surface Doping | Aqueous Solution of Formic Acid | 25 W Black-Light Compact Fluorescent UVA Lamps or 4 × 15 W Visible Compact Fluorescent Lamps | 24.5 μmol H2 (TiO2, UVA), 3.2 μmol (TiO2, visible), 72.7 μmol H2 (N-TiO2, UVA) | [154] |
N-TiO2 | Microwave-Assisted Hydrothermal | Urea | Interstitial N Doping | Aqueous Solution of Methanol | Vol.: 100 mL (vol. ratio of MeOH:H2O = 1:5), 500 W Halogen and 400 W Medium Pressure Halide Lamp | 4386 μmol/g/h (UV), 185 μmol/g/h (visible) | [155] |
N-TiO2 film | RF Reactive Magnetron Sputtering | Mixture of N2, O2 and Ar | TiO2 Lattice | Aqueous Solution of Methanol | Vol.: 100 mL (CH3OH: H2O = 1:10 v/v), 300 W Xe Lamp | 601 μmol/g/h | [156] |
N-doped anatase-rutile TiO2 | Potentiostatic Rapid Breakdown Anodization Technique | NH3 | Interstitial Nitrogen and Surface Adsorbed N Atoms | Aqueous Solution of Ethanol | Vol.: 50 mL, Solar Simulator (145 mW/cm2) | ~30 mmol/h/g | [157] |
N-doped multiphase TiO2 (e.g., anatase (69%)/brookite (17%)/rutile (14%)) | Hydrothermal | Urea | Substitutional N Doping | Water | Vol.: 50 mL, Solar Light (100,000 L) | 10,500 μmol/h/g,P25 (1700 μmol/h/g) | [158] |
N-doped mesoporous TiO2 | Simple Solvent Evaporation Induced Self-Assembly | N-Containing Ionic Liquid | Substitutional N Doping | Aqueous Solution of Methanol | Vol.: 155 mL (25.8 vol%), 450 W Xe Lamp | 39.1 μmol/g/h | [159] |
N-TiO2 | Single-Step Hydrolysis Method | Pyridine | Interstitially N Doping | Aqueous Solution of Methanol | Solar Light | 3500 μ mol/h/g | [160] |
N-TiO2 nanotube | Solid State Dispersion | Urea | Substitutional N Doping | H2O + Glycerol | Vol.: 50 mL (5 vol%), Solar Light (110,000 to 140,000 l×) | 19,848 μmol/h/g | [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natarajan, T.S.; Mozhiarasi, V.; Tayade, R.J. Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem 2021, 1, 371-410. https://doi.org/10.3390/photochem1030024
Natarajan TS, Mozhiarasi V, Tayade RJ. Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem. 2021; 1(3):371-410. https://doi.org/10.3390/photochem1030024
Chicago/Turabian StyleNatarajan, Thillai Sivakumar, Velusamy Mozhiarasi, and Rajesh J. Tayade. 2021. "Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications" Photochem 1, no. 3: 371-410. https://doi.org/10.3390/photochem1030024
APA StyleNatarajan, T. S., Mozhiarasi, V., & Tayade, R. J. (2021). Nitrogen Doped Titanium Dioxide (N-TiO2): Synopsis of Synthesis Methodologies, Doping Mechanisms, Property Evaluation and Visible Light Photocatalytic Applications. Photochem, 1(3), 371-410. https://doi.org/10.3390/photochem1030024