Plant Growth and Metabolic Responses of Tomato Varieties to Salinity Stress After Thermopriming
Abstract
:1. Introduction
2. Results
2.1. Plant Height and Relative Growth Rate
2.2. Number of Leaves and BBCH Stages
2.3. The Height of the First Inflorescence
2.4. Onset of Inflorescence Flowering
2.5. Plant Fresh Matter
2.6. Plant Dry Matter
2.7. Chlorophyll Index
2.8. Flavonol Index
2.9. Anthocyanin Index
2.10. Total Chlorophyll Content
2.11. Total Carotenoid Content
2.12. Total Anthocyanin Content
2.13. Total Phenol Content
2.14. Flavonoid Content Specific for Flavanol and Flavone Luteolin
2.15. Flavonoid Content Specific for Rutin, Luteolin, and Catechin
3. Discussion
3.1. Stress-Induced Accumulation of Protective Leaf Compounds
3.2. Developmental Response to Abiotic (Priming) Stresses
3.3. Beyond Variety-Specific Responses to Thermopriming and Subsequent Stresses
4. Materials and Methods
4.1. Experimental Conditions
4.2. Plant Measurements
4.3. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Treat. | Variety | DAP | Plant Height | n | RGR | n | Leaf Number | n | |||
---|---|---|---|---|---|---|---|---|---|---|---|
[cm] | [cm cm−1 d−1] | ||||||||||
CC | Adeleza F1 | 0 | 7.52 | ±1.14 a | 98 | 0.12 | ±0.02 a | 98 | 2.0 | ±0.1 a | 98 |
7 | 10.31 | ±1.16 a | 72 | 0.14 | ±0.03 b | 72 | 4.1 | ±0.4 a | 72 | ||
14 | 27.78 | ±2.89 b | 96 | 0.14 | ±0.01 b | 96 | 6.7 | ±0.9 a | 96 | ||
21 | 60.62 | ±6.12 b | 60 | 0.12 | ±0.02 a | 60 | 9.9 | ±0.8 a | 60 | ||
28 | 90.67 | ±6.11 b | 33 | 0.06 | ±0.02 a | 29 | 12.4 | ±1.4 ab | 30 | ||
Bronski F1 | 0 | 4.58 | ±0.91 a | 95 | 0.11 | ±0.03 a | 93 | 1.9 | ±0.4 a | 95 | |
7 | 6.32 | ±1.26 a | 72 | 0.17 | ±0.06 b | 72 | 3.4 | ±0.6 a | 72 | ||
14 | 19.75 | ±3.42 a | 96 | 0.17 | ±0.02 b | 96 | 5.9 | ±0.8 a | 96 | ||
21 | 44.88 | ±3.98 a | 60 | 0.12 | ±0.02 b | 60 | 9.3 | ±0.7 a | 60 | ||
28 | 70.88 | ±7.48 a | 33 | 0.07 | ±0.01 ab | 27 | 11.5 | ±1.4 a | 30 | ||
Dunk F1 | 0 | 5.38 | ±1.00 a | 93 | 0.13 | ±0.03 a | 92 | 1.8 | ±0.5 b | 92 | |
7 | 7.15 | ±1.11 a | 72 | 0.17 | ±0.05 b | 72 | 3.4 | ±0.5 a | 72 | ||
14 | 21.93 | ±3.22 b | 96 | 0.16 | ±0.02 b | 96 | 5.8 | ±0.8 a | 96 | ||
21 | 53.73 | ±4.25 a | 60 | 0.13 | ±0.02 a | 60 | 9.4 | ±0.7 ab | 60 | ||
28 | 84.52 | ±6.03 b | 33 | 0.07 | ±0.01 a | 29 | 11.5 | ±1.3 a | 30 | ||
Goudski F1 | 0 | 4.39 | ±1.02 a | 84 | 0.12 | ±0.02 a | 72 | 1.6 | ±0.6 b | 76 | |
7 | 6.18 | ±1.04 a | 71 | 0.17 | ±0.06 b | 71 | 3.1 | ±0.6 a | 71 | ||
14 | 18.69 | ±2.65 b | 95 | 0.16 | ±0.02 b | 95 | 5.6 | ±0.9 a | 95 | ||
21 | 42.28 | ±6.50 b | 60 | 0.12 | ±0.03 a | 60 | 9.5 | ±0.8 ab | 60 | ||
28 | 67.52 | ±5.38 b | 33 | 0.07 | ±0.02 ab | 25 | 11.4 | ±0.7 a | 30 | ||
Saint Anna F1 | 0 | 4.81 | ±0.79 a | 98 | 0.11 | ±0.01 a | 98 | 2.0 | ±0.0 a | 98 | |
7 | 7.24 | ±1.02 b | 72 | 0.17 | ±0.05 b | 72 | 3.9 | ±0.3 a | 72 | ||
14 | 21.54 | ±2.35 b | 96 | 0.16 | ±0.02 b | 96 | 6.8 | ±0.9 b | 96 | ||
21 | 48.32 | ±3.29 c | 60 | 0.11 | ±0.02 a | 59 | 10.4 | ±0.5 a | 60 | ||
28 | 77.27 | ±4.26 b | 33 | 0.06 | ±0.01 a | 25 | 12.6 | ±1.0 a | 30 | ||
CS | Adeleza F1 | 21 | 59.38 | ±4.57 ab | 60 | 0.12 | ±0.02 a | 60 | 10.0 | ±0.6 a | 60 |
28 | 88.36 | ±4.62 ab | 33 | 0.06 | ±0.01 a | 27 | 12.2 | ±1.4 ab | 30 | ||
Bronski F1 | 21 | 44.75 | ±4.93 a | 60 | 0.11 | ±0.03 a | 60 | 9.1 | ±0.8 a | 60 | |
28 | 70.64 | ±6.71 a | 33 | 0.06 | ±0.01 a | 27 | 11.4 | ±1.4 a | 30 | ||
Dunk F1 | 21 | 53.75 | ±7.11 a | 60 | 0.12 | ±0.03 a | 60 | 9.5 | ±0.9 b | 60 | |
28 | 83.03 | ±8.99 b | 33 | 0.07 | ±0.02 a | 29 | 11.7 | ±2.0 a | 30 | ||
CS | Goudski F1 | 21 | 44.53 | ±4.02 b | 59 | 0.12 | ±0.02 a | 59 | 9.6 | ±0.8 b | 59 |
28 | 68.69 | ±4.57 b | 32 | 0.07 | ±0.01 a | 26 | 11.4 | ±1.1 a | 29 | ||
Saint Anna F1 | 21 | 47.05 | ±3.96 bc | 60 | 0.11 | ±0.02 a | 60 | 10.2 | ±0.9 a | 60 | |
28 | 72.88 | ±4.86 a | 33 | 0.07 | ±0.01 ab | 27 | 12.5 | ±1.0 a | 30 | ||
PC | Adeleza F1 | 0 | 8.33 | ±1.09 b | 99 | 0.13 | ±0.01 b | 98 | 2.0 | ±0.2 a | 99 |
7 | 10.77 | ±1.22 b | 72 | 0.12 | ±0.03 a | 72 | 4.3 | ±0.5 b | 72 | ||
14 | 26.83 | ±3.38 a | 96 | 0.13 | ±0.02 a | 95 | 7.0 | ±1.0 b | 96 | ||
21 | 59.82 | ±5.26 ab | 60 | 0.12 | ±0.02 a | 60 | 10.0 | ±0.7 a | 60 | ||
28 | 89.97 | ±6.53 ab | 33 | 0.06 | ±0.01 a | 29 | 12.3 | ±1.0 ab | 30 | ||
Bronski F1 | 0 | 5.97 | ±0.97 b | 98 | 0.14 | ±0.02 b | 96 | 1.8 | ±0.4 a | 95 | |
7 | 6.71 | ±1.12 b | 72 | 0.13 | ±0.05 a | 72 | 3.4 | ±0.5 a | 72 | ||
14 | 19.04 | ±2.68 a | 96 | 0.15 | ±0.02 a | 96 | 6.0 | ±0.9 a | 96 | ||
21 | 43.77 | ±4.86 a | 60 | 0.12 | ±0.02 ab | 60 | 9.3 | ±0.8 a | 60 | ||
28 | 71.00 | ±5.12 a | 33 | 0.07 | ±0.01 b | 27 | 11.6 | ±1.7 a | 30 | ||
Dunk F1 | 0 | 6.43 | ±1.09 b | 99 | 0.16 | ±0.02 b | 96 | 1.6 | ±0.5 a | 93 | |
7 | 7.03 | ±0.84 a | 72 | 0.12 | ±0.04 a | 72 | 3.4 | ±0.5 a | 72 | ||
14 | 19.36 | ±2.49 a | 96 | 0.14 | ±0.02 a | 96 | 5.8 | ±1.0 a | 96 | ||
21 | 49.08 | ±6.15 a | 60 | 0.14 | ±0.07 a | 60 | 9.4 | ±0.5 ab | 60 | ||
28 | 79.82 | ±4.86 a | 33 | 0.07 | ±0.01 a | 27 | 11.7 | ±1.0 a | 30 | ||
Goudski F1 | 0 | 4.83 | ±1.65 b | 99 | 0.15 | ±0.04 b | 75 | 1.2 | ±0.7 a | 82 | |
7 | 6.12 | ±1.01 a | 72 | 0.13 | ±0.05 a | 72 | 3.0 | ±0.6 a | 72 | ||
14 | 16.95 | ±2.69 a | 96 | 0.15 | ±0.02 a | 96 | 5.6 | ±0.9 a | 96 | ||
21 | 43.45 | ±4.48 b | 60 | 0.12 | ±0.03 a | 60 | 9.7 | ±0.9 b | 60 | ||
28 | 69.09 | ±6.05 b | 33 | 0.07 | ±0.01 a | 29 | 11.6 | ±0.9 a | 30 | ||
Saint Anna F1 | 0 | 5.15 | ±0.62 b | 99 | 0.12 | ±0.01 b | 99 | 2.0 | ±0.2 a | 99 | |
7 | 6.89 | ±1.05 a | 72 | 0.14 | ±0.04 a | 72 | 3.9 | ±0.4 a | 72 | ||
14 | 19.67 | ±2.81 a | 96 | 0.15 | ±0.01 a | 96 | 6.5 | ±1.1 a | 96 | ||
21 | 45.78 | ±4.26 ab | 60 | 0.12 | ±0.01 a | 60 | 10.3 | ±0.8 a | 60 | ||
28 | 72.58 | ±6.37 a | 33 | 0.07 | ±0.01 b | 27 | 12.5 | ±1.0 a | 30 | ||
PS | Adeleza F1 | 21 | 57.98 | ±5.92 a | 60 | 0.12 | ±0.03 a | 60 | 10.1 | ±0.5 a | 60 |
28 | 87.00 | ±4.56 a | 33 | 0.06 | ±0.01 a | 27 | 12.7 | ±1.7 b | 30 | ||
Bronski F1 | 21 | 44.68 | ±4.04 a | 60 | 0.12 | ±0.02 ab | 60 | 9.4 | ±0.7 a | 60 | |
28 | 69.52 | ±5.09 a | 33 | 0.07 | ±0.01 ab | 25 | 11.5 | ±1.4 a | 30 | ||
Dunk F1 | 21 | 48.38 | ±7.57 a | 58 | 0.12 | ±0.03 a | 58 | 9.0 | ±0.9 a | 58 | |
28 | 78.27 | ±8.00 a | 33 | 0.07 | ±0.02 a | 27 | 11.1 | ±0.9 a | 30 | ||
Goudski F1 | 21 | 36.60 | ±6.44 a | 58 | 0.11 | ±0.04 a | 58 | 9.2 | ±1.0 a | 58 | |
28 | 59.73 | ±5.64 a | 33 | 0.08 | ±0.02 b | 23 | 11.2 | ±1.1 a | 30 | ||
Saint Anna F1 | 21 | 44.70 | ±2.97 a | 60 | 0.12 | ±0.02 a | 60 | 10.4 | ±0.8 a | 60 | |
28 | 71.06 | ±4.44 a | 33 | 0.07 | ±0.01 ab | 25 | 12.2 | ±1.1 a | 30 |
Variety | Treat. | Inflorescence Height | n | |
---|---|---|---|---|
[cm] | ||||
Adeleza F1 | CC | 73.67 | ±4.42 b | 12 |
CS | 78.17 | ±4.69 b | 12 | |
PC | 73.33 | ±8.69 b | 12 | |
PS | 63.67 | ±4.03 a | 12 | |
Bronski F1 | CC | 51.00 | ±4.39 a | 12 |
CS | 50.83 | ±3.79 a | 12 | |
PC | 48.50 | ±4.50 a | 12 | |
PS | 49.17 | ±2.79 a | 12 | |
Dunk F1 | CC | 71.17 | ±5.37 b | 12 |
CS | 71.00 | ±3.52 b | 12 | |
PC | 61.67 | ±9.64 a | 12 | |
PS | 66.67 | ±9.02 ab | 12 | |
Goudski F1 | CC | 62.17 | ±4.15 c | 12 |
CS | 61.83 | ±3.69 c | 12 | |
PC | 57.50 | ±2.47 b | 12 | |
PS | 53.67 | ±2.67 a | 12 | |
Saint Anna F1 | CC | 53.67 | ±0.98 c | 12 |
CS | 51.17 | ±5.06 c | 12 | |
PC | 47.50 | ±3.34 b | 12 | |
PS | 43.83 | ±1.40 a | 12 |
Period | Variety | Treat. | Number Flowering Inflorescences | n | |
---|---|---|---|---|---|
2 | Adeleza F1 | CC | 1.0 | ±0.0 a | 32 |
CS | 1.0 | ±0.0 a | 39 | ||
PC | 1.0 | ±0.0 b | 86 | ||
PS | 1.0 | ±0.0 b | 102 | ||
2 | Bronski F1 | CC | 1.0 | ±0.0 a | 74 |
CS | 1.0 | ±0.0 a | 57 | ||
PC | 1.0 | ±0.0 a | 86 | ||
PS | 1.0 | ±0.0 a | 85 | ||
Dunk F1 | CC | 0.0 | ±0.0 a | 0 | |
CS | 1.0 | ±0.0 ab | 11 | ||
PC | 1.0 | ±0.0 b | 28 | ||
PS | 1.0 | ±0.0 b | 26 | ||
Goudski F1 | CC | 0.0 | ±0.0 a | 0 | |
CS | 0.0 | ±0.0 a | 0 | ||
PC | 1.0 | ±0.0 a | 6 | ||
PS | 0.0 | ±0.0 a | 0 | ||
Saint Anna F1 | CC | 1.0 | ±0.0 a | 108 | |
CS | 1.0 | ±0.0 a | 77 | ||
PC | 1.0 | ±0.0 a | 108 | ||
PS | 1.0 | ±0.0 a | 106 | ||
3 | Adeleza F1 | CC | 1.0 | ±0.1 a | 408 |
CS | 1.0 | ±0.2 a | 398 | ||
PC | 1.2 | ±0.4 b | 412 | ||
PS | 1.1 | ±0.4 b | 414 | ||
Bronski F1 | CC | 1.1 | ±0.3 a | 405 | |
CS | 1.1 | ±0.3 a | 411 | ||
PC | 1.2 | ±0.4 a | 407 | ||
PS | 1.2 | ±0.4 a | 416 | ||
Dunk F1 | CC | 1.0 | ±0.0 a | 343 | |
CS | 1.0 | ±0.1 a | 364 | ||
PC | 1.0 | ±0.1 a | 371 | ||
PS | 1.1 | ±0.2 a | 339 | ||
Goudski F1 | CC | 1.0 | ±0.1 b | 195 | |
CS | 1.0 | ±0.0 b | 227 | ||
PC | 1.0 | ±0.0 b | 246 | ||
PS | 1.0 | ±0.0 a | 113 | ||
Saint Anna F1 | CC | 1.2 | ±0.4 a | 420 | |
CS | 1.3 | ±0.4 a | 410 | ||
PC | 1.3 | ±0.5 a | 416 | ||
PS | 1.3 | ±0.5 a | 417 |
Variety | Treat. | FM Shoot | FM Leaf | DM Shoot | DM Leaf | n | ||||
---|---|---|---|---|---|---|---|---|---|---|
[g] | ||||||||||
Adeleza F1 | CC | 80 | ±12 b | 109 | ±9 a | 10 | ±2 ab | 20 | ±1 a | 24 |
CS | 76 | ±9 a | 115 | ±6 b | 9 | ±1 ab | 20 | ±1 a | 24 | |
PC | 80 | ±9 b | 110 | ±7 a | 10 | ±1 b | 19 | ±2 a | 24 | |
PS | 76 | ±10 ab | 110 | ±8 ab | 9 | ±1 a | 19 | ±2 a | 24 | |
Bronski F1 | CC | 70 | ±12 ab | 96 | ±8 ab | 8 | ±2 b | 18 | ±2 bc | 24 |
CS | 72 | ±11 b | 104 | ±7 c | 8 | ±1 b | 19 | ±2 c | 24 | |
PC | 68 | ±10 ab | 92 | ±11 a | 8 | ±1 a | 16 | ±2 a | 24 | |
PS | 67 | ±10 a | 98 | ±9 b | 8 | ±1 a | 17 | ±2 ab | 24 | |
Dunk F1 | CC | 76 | ±13 b | 99 | ±12 a | 9 | ±2 b | 17 | ±2 b | 24 |
CS | 74 | ±8 b | 108 | ±6 b | 8 | ±1 b | 17 | ±1 b | 24 | |
PC | 73 | ±12 b | 102 | ±9 a | 8 | ±2 b | 17 | ±1 b | 24 | |
PS | 67 | ±8 a | 98 | ±10 a | 8 | ±1 a | 16 | ±3 a | 24 | |
Goudski F1 | CC | 69 | ±10 c | 94 | ±8 b | 8 | ±1 b | 15 | ±1 b | 24 |
CS | 68 | ±9 c | 98 | ±7 c | 7 | ±2 b | 15 | ±2 b | 22 | |
PC | 65 | ±7 b | 89 | ±6 a | 7 | ±1 ab | 14 | ±1 a | 24 | |
PS | 59 | ±11 a | 88 | ±8 a | 7 | ±2 a | 14 | ±2 a | 24 | |
Saint Anna F1 | CC | 76 | ±7 c | 94 | ±7 a | 9 | ±1 b | 17 | ±1 b | 24 |
CS | 73 | ±6 bc | 100 | ±8 b | 8 | ±1 a | 16 | ±2 b | 24 | |
PC | 70 | ±7 ab | 85 | ±7 a | 8 | ±1 a | 15 | ±2 a | 24 | |
PS | 70 | ±7 a | 96 | ±9 a | 8 | ±1 a | 16 | ±2 ab | 24 |
Variety | Period | Treat. | Chlorophyll Index | Flavonol Index | Anthocyanin Index | n | |||
---|---|---|---|---|---|---|---|---|---|
Adeleza F1 | 1 | CC | 19.89 | ±3.93 a | 0.37 | ±0.13 b | 0.20 | ±0.05 b | 667 |
PC | 21.92 | ±4.44 b | 0.36 | ±0.13 a | 0.18 | ±0.04 a | 719 | ||
2 | CC | 21.05 | ±3.64 a | 0.33 | ±0.13 b | 0.21 | ±0.04 b | 359 | |
CS | 21.33 | ±3.54 a | 0.33 | ±0.12 ab | 0.20 | ±0.04 b | 338 | ||
PC | 22.95 | ±3.88 b | 0.32 | ±0.12 a | 0.20 | ±0.04 a | 347 | ||
PS | 23.02 | ±3.74 b | 0.32 | ±0.13 a | 0.19 | ±0.05 a | 370 | ||
3 | CC | 21.87 | ±2.54 a | 0.34 | ±0.15 a | 0.20 | ±0.03 b | 373 | |
CS | 21.76 | ±2.94 a | 0.33 | ±0.13 a | 0.22 | ±0.05 b | 349 | ||
PC | 23.47 | ±2.56 b | 0.33 | ±0.13 a | 0.18 | ±0.04 a | 369 | ||
PS | 22.54 | ±2.89 ab | 0.36 | ±0.14 a | 0.19 | ±0.05 ab | 374 | ||
Bronski F1 | 1 | CC | 20.61 | ±4.27 a | 0.32 | ±0.12 b | 0.20 | ±0.04 b | 705 |
PC | 22.31 | ±4.58 b | 0.31 | ±0.12 a | 0.18 | ±0.04 a | 755 | ||
2 | CC | 22.04 | ±3.81 a | 0.30 | ±0.11 b | 0.17 | ±0.03 c | 381 | |
CS | 22.28 | ±3.75 b | 0.29 | ±0.11 a | 0.17 | ±0.04 b | 373 | ||
PC | 23.49 | ±4.00 c | 0.30 | ±0.12 ab | 0.19 | ±0.05 a | 378 | ||
PS | 23.74 | ±3.90 c | 0.27 | ±0.11 a | 0.18 | ±0.04 a | 372 | ||
3 | CC | 22.91 | ±2.49 ab | 0.30 | ±0.12 a | 0.19 | ±0.04 a | 663 | |
CS | 22.44 | ±2.38 a | 0.30 | ±0.12 a | 0.19 | ±0.04 a | 717 | ||
PC | 23.71 | ±2.76 b | 0.30 | ±0.12 a | 0.17 | ±0.03 a | 743 | ||
PS | 22.85 | ±3.31 ab | 0.30 | ±0.12 a | 0.20 | ±0.05 a | 690 | ||
Dunk F1 | 1 | CC | 21.51 | ±4.40 a | 0.36 | ±0.12 a | 0.19 | ±0.04 b | 745 |
PC | 23.37 | ±4.78 b | 0.36 | ±0.14 a | 0.17 | ±0.04 a | 744 | ||
2 | CC | 23.20 | ±3.95 ab | 0.32 | ±0.11 a | 0.19 | ±0.04 c | 743 | |
CS | 22.83 | ±4.10 a | 0.32 | ±0.12 a | 0.20 | ±0.04 c | 687 | ||
PC | 24.77 | ±4.30 c | 0.32 | ±0.13 a | 0.17 | ±0.04 a | 719 | ||
PS | 24.53 | ±3.98 b | 0.31 | ±0.13 a | 0.17 | ±0.04 b | 736 | ||
3 | CC | 23.74 | ±3.29 a | 0.31 | ±0.10 a | 0.15 | ±0.04 ab | 734 | |
CS | 23.13 | ±3.68 a | 0.30 | ±0.11 a | 0.16 | ±0.04 b | 753 | ||
PC | 25.30 | ±2.71 b | 0.31 | ±0.11 a | 0.17 | ±0.04 a | 728 | ||
PS | 22.66 | ±3.97 a | 0.33 | ±0.15 a | 0.17 | ±0.04 b | 693 | ||
Goudski F1 | 1 | CC | 20.10 | ±4.10 a | 0.33 | ±0.11 a | 0.21 | ±0.04 b | 724 |
PC | 22.13 | ±4.62 b | 0.34 | ±0.13 a | 0.19 | ±0.04 a | 756 | ||
2 | CC | 21.45 | ±3.90 a | 0.30 | ±0.12 a | 0.18 | ±0.03 b | 401 | |
CS | 22.00 | ±3.91 a | 0.30 | ±0.10 a | 0.18 | ±0.05 b | 402 | ||
PC | 23.58 | ±3.75 b | 0.30 | ±0.11 a | 0.17 | ±0.05 a | 413 | ||
PS | 23.27 | ±4.23 b | 0.31 | ±0.14 a | 0.19 | ±0.05 a | 398 | ||
3 | CC | 22.30 | ±2.96 ab | 0.31 | ±0.13 ab | 0.24 | ±0.07 ab | 395 | |
CS | 22.17 | ±3.54 ab | 0.28 | ±0.09 a | 0.19 | ±0.05 ab | 391 | ||
PC | 23.36 | ±2.95 b | 0.28 | ±0.10 a | 0.19 | ±0.04 a | 411 | ||
PS | 21.78 | ±4.16 a | 0.33 | ±0.15 b | 0.18 | ±0.05 b | 406 | ||
Saint Anna F1 | 1 | CC | 19.72 | ±3.91 a | 0.33 | ±0.13 a | 0.21 | ±0.04 b | 708 |
PC | 22.34 | ±4.08 b | 0.33 | ±0.11 a | 0.18 | ±0.04 a | 737 | ||
2 | CC | 21.13 | ±3.44 a | 0.30 | ±0.11 a | 0.15 | ±0.03 b | 411 | |
CS | 20.66 | ±3.29 a | 0.30 | ±0.12 a | 0.17 | ±0.04 b | 417 | ||
PC | 23.50 | ±3.27 b | 0.30 | ±0.12 a | 0.20 | ±0.07 a | 400 | ||
PS | 23.18 | ±3.63 b | 0.30 | ±0.11 a | 0.18 | ±0.04 a | 406 | ||
3 | CC | 19.80 | ±3.12 a | 0.35 | ±0.12 a | 0.18 | ±0.05 b | 403 | |
CS | 19.66 | ±2.98 a | 0.35 | ±0.14 a | 0.18 | ±0.06 b | 394 | ||
PC | 22.57 | ±3.70 b | 0.31 | ±0.12 a | 0.20 | ±0.07 a | 390 | ||
PS | 21.71 | ±3.55 b | 0.32 | ±0.10 a | 0.20 | ±0.06 a | 403 |
Variety | Period | Treat. | Chlorophyll Index | Flavonol Index | Anthocyanin Index | n | |||
---|---|---|---|---|---|---|---|---|---|
Adeleza F1 | 1 | CC | 26.29 | ±4.26 a | 0.40 | ±0.09 a | 0.12 | ±0.03 a | 96 |
PC | 27.19 | ±3.85 a | 0.38 | ±0.10 a | 0.11 | ±0.03 a | 94 | ||
2 | CC | 28.98 | ±4.10 a | 0.43 | ±0.11 a | 0.10 | ±0.03 a | 422 | |
CS | 28.81 | ±3.56 a | 0.44 | ±0.10 a | 0.10 | ±0.03 a | 423 | ||
PC | 28.85 | ±3.78 a | 0.42 | ±0.11 a | 0.10 | ±0.02 a | 419 | ||
PS | 28.55 | ±3.71 a | 0.42 | ±0.10 a | 0.10 | ±0.02 a | 419 | ||
3 | CC | 31.14 | ±3.56 a | 0.60 | ±0.17 a | 0.09 | ±0.02 a | 409 | |
CS | 31.78 | ±3.47 a | 0.58 | ±0.15 a | 0.09 | ±0.02 a | 410 | ||
PC | 30.96 | ±3.40 a | 0.62 | ±0.18 a | 0.09 | ±0.02 a | 403 | ||
PS | 30.81 | ±3.70 a | 0.62 | ±0.19 a | 0.10 | ±0.02 a | 400 | ||
Bronski F1 | 1 | CC | 24.27 | ±3.50 a | 0.34 | ±0.12 b | 0.14 | ±0.02 a | 94 |
PC | 24.05 | ±3.10 a | 0.30 | ±0.12 a | 0.13 | ±0.02 a | 92 | ||
2 | CC | 25.61 | ±3.11 a | 0.41 | ±0.12 b | 0.13 | ±0.02 a | 418 | |
CS | 25.19 | ±3.40 a | 0.39 | ±0.12 ab | 0.13 | ±0.03 a | 425 | ||
PC | 25.16 | ±3.14 a | 0.37 | ±0.13 a | 0.13 | ±0.03 a | 421 | ||
PS | 24.91 | ±2.78 a | 0.38 | ±0.13 ab | 0.13 | ±0.02 a | 421 | ||
3 | CC | 27.05 | ±3.02 a | 0.64 | ±0.22 a | 0.13 | ±0.03 a | 407 | |
CS | 27.08 | ±3.11 a | 0.65 | ±0.20 a | 0.12 | ±0.03 a | 413 | ||
PC | 26.90 | ±2.93 a | 0.64 | ±0.21 a | 0.13 | ±0.02 a | 411 | ||
PS | 27.21 | ±2.92 a | 0.63 | ±0.20 a | 0.12 | ±0.02 a | 412 | ||
Dunk F1 | 1 | CC | 26.45 | ±4.49 a | 0.36 | ±0.10 b | 0.12 | ±0.03 a | 94 |
PC | 26.78 | ±3.28 a | 0.33 | ±0.10 a | 0.11 | ±0.03 a | 96 | ||
2 | CC | 28.91 | ±3.77 c | 0.40 | ±0.11 c | 0.10 | ±0.02 a | 417 | |
CS | 28.22 | ±3.77 bc | 0.38 | ±0.11 ab | 0.10 | ±0.03 ab | 416 | ||
PC | 27.84 | ±3.63 ab | 0.39 | ±0.13 bc | 0.11 | ±0.02 bc | 418 | ||
PS | 27.28 | ±2.88 a | 0.36 | ±0.12 a | 0.11 | ±0.02 c | 420 | ||
3 | CC | 30.54 | ±3.20 ab | 0.67 | ±0.19 b | 0.10 | ±0.02 ab | 402 | |
CS | 31.31 | ±3.39 b | 0.57 | ±0.16 a | 0.09 | ±0.02 a | 404 | ||
PC | 29.73 | ±3.39 a | 0.67 | ±0.21 b | 0.10 | ±0.03 b | 407 | ||
PS | 30.27 | ±3.73 ab | 0.59 | ±0.21 a | 0.10 | ±0.02 ab | 402 | ||
Goudski F1 | 1 | CC | 24.68 | ±4.41 a | 0.31 | ±0.11 a | 0.13 | ±0.03 a | 93 |
PC | 25.10 | ±3.58 a | 0.31 | ±0.10 a | 0.13 | ±0.02 a | 94 | ||
2 | CC | 26.18 | ±3.67 b | 0.36 | ±0.12 b | 0.12 | ±0.03 ab | 417 | |
CS | 25.97 | ±3.44 b | 0.37 | ±0.12 b | 0.12 | ±0.03 a | 414 | ||
PC | 25.91 | ±3.05 b | 0.36 | ±0.11 b | 0.13 | ±0.03 ab | 423 | ||
PS | 25.23 | ±3.16 a | 0.33 | ±0.11 a | 0.13 | ±0.02 b | 419 | ||
3 | CC | 28.29 | ±3.43 a | 0.66 | ±0.18 b | 0.12 | ±0.03 b | 406 | |
CS | 29.66 | ±3.08 b | 0.59 | ±0.17 a | 0.11 | ±0.02 a | 402 | ||
PC | 28.24 | ±3.32 a | 0.66 | ±0.20 b | 0.12 | ±0.03 b | 403 | ||
PS | 28.63 | ±3.88 a | 0.57 | ±0.16 a | 0.12 | ±0.03 ab | 392 | ||
Saint Anna F1 | 1 | CC | 26.31 | ±4.94 a | 0.32 | ±0.09 a | 0.12 | ±0.03 a | 92 |
PC | 26.16 | ±4.08 a | 0.30 | ±0.10 a | 0.12 | ±0.03 a | 93 | ||
2 | CC | 28.69 | ±3.82 b | 0.39 | ±0.10 b | 0.11 | ±0.03 a | 421 | |
CS | 27.92 | ±4.04 ab | 0.37 | ±0.09 a | 0.11 | ±0.03 a | 415 | ||
PC | 27.77 | ±3.58 ab | 0.36 | ±0.10 a | 0.11 | ±0.02 a | 424 | ||
PS | 27.31 | ±3.45 a | 0.36 | ±0.10 a | 0.11 | ±0.03 a | 423 | ||
3 | CC | 31.26 | ±3.26 a | 0.58 | ±0.14 b | 0.11 | ±0.02 c | 414 | |
CS | 31.87 | ±4.12 a | 0.53 | ±0.13 a | 0.10 | ±0.02 a | 409 | ||
PC | 30.88 | ±3.81 a | 0.53 | ±0.12 a | 0.10 | ±0.02 bc | 412 | ||
PS | 31.58 | ±3.59 a | 0.56 | ±0.17 ab | 0.10 | ±0.02 ab | 412 |
Variety | Treat. | Leaf Age | DAP | TCC | TcarC | TAC | n | |||
---|---|---|---|---|---|---|---|---|---|---|
[µg mg−1 DM−1] | [µg CyEs mg−1 DM−1] | |||||||||
Adeleza F1 | CC | Mature | 14 | 1.6 | ±0.3 a | 1.4 | ±0.2 a | 1.7 | ±0.7 a | 46 |
21 | 1.7 | ±0.4 a | 1.3 | ±0.2 a | 2.0 | ±0.5 b | 30 | |||
28 | 1.7 | ±0.6 a | 1.4 | ±0.3 b | 1.8 | ±0.6 a | 30 | |||
Young | 28 | 2.4 | ±0.9 a | 1.9 | ±0.6 ab | 1.1 | ±0.7 a | 29 | ||
CS | Mature | 21 | 1.6 | ±0.3 a | 1.3 | ±0.3 a | 1.7 | ±0.3 a | 27 | |
28 | 1.8 | ±0.7 a | 1.1 | ±0.2 a | 1.7 | ±0.5 a | 30 | |||
Young | 28 | 2.6 | ±1.0 a | 1.9 | ±0.7 a | 1.2 | ±0.6 a | 30 | ||
PC | Mature | 14 | 1.7 | ±0.3 b | 1.4 | ±0.2 a | 1.6 | ±0.5 a | 48 | |
21 | 1.8 | ±0.4 a | 1.4 | ±0.3 a | 1.9 | ±0.5 ab | 30 | |||
28 | 1.8 | ±0.6 a | 1.4 | ±0.2 b | 1.7 | ±0.5 a | 30 | |||
Young | 28 | 2.5 | ±0.8 a | 2.1 | ±0.6 b | 1.2 | ±0.5 a | 29 | ||
PS | Mature | 21 | 1.8 | ±0.4 a | 1.4 | ±0.2 a | 1.8 | ±0.5 ab | 30 | |
28 | 1.7 | ±0.7 a | 1.2 | ±0.3 ab | 1.6 | ±0.5 a | 30 | |||
Young | 28 | 2.5 | ±0.8 a | 1.9 | ±0.6 a | 1.0 | ±0.5 a | 29 | ||
Bronski F1 | CC | Mature | 14 | 1.7 | ±0.3 a | 1.4 | ±0.3 a | 1.8 | ±0.6 a | 47 |
21 | 1.6 | ±0.4 ab | 1.3 | ±0.2 ab | 2.0 | ±0.4 ab | 28 | |||
28 | 1.6 | ±0.9 a | 1.1 | ±0.2 a | 1.7 | ±0.6 ab | 30 | |||
Young | 28 | 2.3 | ±0.9 a | 2.0 | ±0.7 a | 1.2 | ±0.6 a | 30 | ||
CS | Mature | 21 | 1.5 | ±0.2 a | 1.2 | ±0.1 a | 1.7 | ±0.3 a | 25 | |
28 | 1.5 | ±0.7 a | 1.0 | ±0.1 a | 1.6 | ±0.6 a | 30 | |||
Young | 28 | 2.4 | ±1.0 a | 1.8 | ±0.8 a | 1.2 | ±0.7 a | 29 | ||
PC | Mature | 14 | 1.9 | ±0.3 b | 1.6 | ±0.2 b | 1.8 | ±0.5 a | 48 | |
21 | 1.8 | ±0.4 bc | 1.4 | ±0.3 bc | 1.9 | ±0.4 ab | 30 | |||
28 | 1.7 | ±0.7 a | 1.3 | ±0.3 b | 1.7 | ±0.5 ab | 30 | |||
Young | 28 | 2.5 | ±0.9 a | 2.0 | ±0.7 a | 1.2 | ±0.7 a | 30 | ||
PS | Mature | 21 | 1.9 | ±0.3 c | 1.5 | ±0.2 c | 2.1 | ±0.6 b | 25 | |
28 | 1.7 | ±0.8 a | 1.2 | ±0.2 a | 1.8 | ±0.4 b | 30 | |||
Young | 28 | 2.5 | ±1.1 a | 1.9 | ±0.8 a | 1.2 | ±0.6 a | 30 | ||
Dunk F1 | CC | Mature | 14 | 1.6 | ±0.2 a | 1.4 | ±0.2 a | 1.6 | ±0.6 a | 48 |
21 | 1.7 | ±0.4 a | 1.4 | ±0.2 ab | 1.8 | ±0.4 a | 27 | |||
28 | 2.0 | ±0.9 a | 1.5 | ±0.3 b | 1.8 | ±0.6 a | 30 | |||
Young | 28 | 2.5 | ±1.0 a | 2.0 | ±0.7 a | 1.2 | ±0.6 a | 29 | ||
Dunk F1 | CS | Mature | 21 | 1.8 | ±0.5 ab | 1.3 | ±0.2 a | 2.0 | ±0.6 a | 29 |
28 | 1.7 | ±0.6 a | 1.2 | ±0.2 b | 1.6 | ±0.4 a | 28 | |||
Young | 28 | 2.6 | ±0.9 a | 2.0 | ±0.7 a | 1.2 | ±0.6 a | 30 | ||
PC | Mature | 14 | 2.0 | ±0.3 b | 1.7 | ±0.2 b | 1.7 | ±0.5 a | 48 | |
21 | 2.0 | ±0.4 c | 1.5 | ±0.2 b | 1.7 | ±0.5 a | 29 | |||
28 | 2.0 | ±0.8 a | 1.5 | ±0.2 a | 1.6 | ±0.5 a | 30 | |||
Young | 28 | 2.5 | ±0.9 a | 2.0 | ±0.6 a | 1.2 | ±0.7 a | 30 | ||
PS | Mature | 21 | 1.9 | ±0.3 bc | 1.5 | ±0.2 ab | 1.9 | ±0.6 a | 29 | |
28 | 2.0 | ±0.9 a | 1.2 | ±0.3 a | 1.7 | ±0.4 a | 30 | |||
Young | 28 | 2.7 | ±1.0 a | 1.9 | ±0.7 a | 1.3 | ±0.8 a | 29 | ||
Goudski F1 | CC | Mature | 14 | 1.6 | ±0.3 a | 1.4 | ±0.3 a | 1.7 | ±0.6 a | 48 |
21 | 1.5 | ±0.5 a | 1.3 | ±0.2 ab | 1.7 | ±0.4 ab | 27 | |||
28 | 1.6 | ±0.8 a | 1.3 | ±0.3 a | 1.5 | ±0.5 a | 29 | |||
Young | 28 | 2.3 | ±0.7 a | 1.9 | ±0.6 a | 1.1 | ±0.5 ab | 29 | ||
CS | Mature | 21 | 1.6 | ±0.4 ab | 1.2 | ±0.2 a | 2.0 | ±0.7 b | 28 | |
28 | 1.9 | ±1.0 ab | 1.2 | ±0.4 a | 1.6 | ±0.5 a | 30 | |||
Young | 28 | 2.5 | ±0.9 ab | 2.0 | ±0.7 a | 1.2 | ±0.6 ab | 30 | ||
PC | Mature | 14 | 1.8 | ±0.3 b | 1.6 | ±0.2 b | 1.8 | ±0.5 a | 39 | |
21 | 1.8 | ±0.3 ab | 1.5 | ±0.2 c | 1.7 | ±0.6 a | 29 | |||
28 | 1.8 | ±0.9 ab | 1.5 | ±0.4 b | 1.6 | ±0.5 a | 30 | |||
Young | 28 | 2.3 | ±0.8 a | 1.9 | ±0.7 a | 1.1 | ±0.6 a | 30 | ||
PS | Mature | 21 | 1.8 | ±0.3 b | 1.4 | ±0.2 bc | 1.9 | ±0.6 b | 29 | |
28 | 1.8 | ±0.7 b | 1.3 | ±0.2 ab | 1.5 | ±0.5 a | 29 | |||
Young | 28 | 2.6 | ±0.8 b | 2.0 | ±0.7 a | 1.3 | ±0.6 b | 29 | ||
Saint Anna F1 | CC | Mature | 14 | 1.6 | ±0.2 a | 1.4 | ±0.2 a | 1.7 | ±0.6 a | 47 |
21 | 1.5 | ±0.4 a | 1.2 | ±0.2 a | 1.9 | ±0.4 b | 26 | |||
28 | 1.3 | ±0.9 a | 1.0 | ±0.3 a | 1.7 | ±0.4 b | 30 | |||
Young | 28 | 2.8 | ±0.9 a | 2.2 | ±0.6 a | 1.4 | ±0.6 a | 28 | ||
CS | Mature | 21 | 1.6 | ±0.5 a | 1.3 | ±0.3 a | 1.8 | ±0.6 ab | 31 | |
28 | 1.5 | ±0.9 ab | 1.0 | ±0.3 a | 1.7 | ±0.6 ab | 30 | |||
Young | 28 | 3.1 | ±0.9 ab | 2.3 | ±0.6 ab | 1.6 | ±0.8 ab | 30 | ||
PC | Mature | 14 | 1.8 | ±0.3 b | 1.5 | ±0.2 b | 1.7 | ±0.6 a | 48 | |
21 | 1.6 | ±0.5 a | 1.3 | ±0.3 a | 1.7 | ±0.6 a | 30 | |||
28 | 1.7 | ±1.0 b | 1.3 | ±0.3 b | 1.5 | ±0.5 a | 30 | |||
Young | 28 | 3.2 | ±0.7 b | 2.5 | ±0.5 b | 1.8 | ±0.7 b | 30 | ||
PS | Mature | 21 | 1.7 | ±0.4 a | 1.3 | ±0.3 a | 1.8 | ±0.7 ab | 30 | |
28 | 1.4 | ±0.9 ab | 1.0 | ±0.2 a | 1.5 | ±0.4 ab | 26 | |||
Young | 28 | 2.9 | ±0.9 ab | 2.2 | ±0.7 a | 1.4 | ±0.7 ab | 29 |
Variety | Treat. | Leaf Age | DAP | TPC | FCQuercetin | FCCatechin | n | |||
---|---|---|---|---|---|---|---|---|---|---|
[µg GAE mg−1 DM−1] | [µg QE mg−1 DM−1] | [µg CE mg−1 DM−1] | ||||||||
Adeleza F1 | CC | Mature | 14 | 6.2 | ±2.7 a | 10.3 | ±1.3 a | 11.2 | ±2.3 b | 46 |
21 | 8.0 | ±1.6 b | 10.3 | ±1.4 a | 14.2 | ±4.5 b | 30 | |||
28 | 7.6 | ±1.3 a | 10.5 | ±2.2 a | 13.0 | ±4.5 a | 30 | |||
Young | 28 | 12.7 | ±1.7 a | 13.9 | ±1.8 a | 18.4 | ±6.5 ab | 29 | ||
CS | Mature | 21 | 7.0 | ±0.7 a | 9.7 | ±1.8 a | 11.7 | ±2.9 a | 27 | |
28 | 7.4 | ±1.6 a | 10.2 | ±2.7 a | 13.3 | ±5.9 a | 30 | |||
Young | 28 | 12.1 | ±2.2 a | 14.1 | ±2.0 a | 18.3 | ±6.2 a | 30 | ||
PC | Mature | 14 | 5.8 | ±2.1 a | 10.2 | ±1.3 a | 10.9 | ±2.3 a | 48 | |
21 | 7.0 | ±1.2 a | 10.2 | ±1.6 a | 12.4 | ±4.4 a | 30 | |||
28 | 7.4 | ±1.0 a | 10.3 | ±2.3 a | 13.0 | ±4.6 a | 30 | |||
Young | 28 | 13.8 | ±2.5 b | 14.6 | ±1.4 a | 20.9 | ±3.0 b | 29 | ||
PS | Mature | 21 | 6.6 | ±0.9 a | 10.1 | ±1.8 a | 12.1 | ±4.7 a | 30 | |
28 | 7.5 | ±1.3 a | 10.4 | ±3.2 a | 12.9 | ±5.8 a | 30 | |||
Young | 28 | 12.9 | ±1.6 ab | 14.0 | ±1.2 a | 19.9 | ±4.7 ab | 29 | ||
Bronski F1 | CC | Mature | 14 | 6.1 | ±2.2 a | 10.3 | ±1.5 a | 11.1 | ±2.6 a | 47 |
21 | 6.9 | ±1.1 a | 9.7 | ±1.5 a | 12.4 | ±4.2 a | 28 | |||
28 | 7.1 | ±1.3 a | 9.3 | ±2.5 a | 11.8 | ±4.6 a | 30 | |||
Young | 28 | 15.7 | ±3.1 b | 15.4 | ±1.8 a | 21.1 | ±3.5 a | 30 | ||
CS | Mature | 21 | 6.4 | ±0.8 a | 9.3 | ±1.6 a | 11.4 | ±4.2 a | 25 | |
28 | 7.2 | ±1.9 a | 9.4 | ±2.5 a | 12.6 | ±5.9 a | 30 | |||
Young | 28 | 15.0 | ±3.0 ab | 15.3 | ±1.4 a | 20.5 | ±4.4 a | 29 | ||
PC | Mature | 14 | 5.9 | ±2.0 a | 10.6 | ±1.3 b | 10.6 | ±1.9 a | 48 | |
21 | 7.0 | ±1.1 a | 10.5 | ±1.3 b | 12.1 | ±3.8 a | 30 | |||
28 | 7.2 | ±1.0 a | 10.1 | ±2.0 b | 12.4 | ±4.1 a | 30 | |||
Young | 28 | 13.8 | ±2.9 a | 14.9 | ±2.0 a | 20.8 | ±4.9 a | 30 | ||
PS | Mature | 21 | 7.2 | ±1.5 a | 10.5 | ±1.6 b | 11.9 | ±3.7 a | 25 | |
28 | 7.0 | ±0.9 a | 9.8 | ±2.1 ab | 12.4 | ±4.8 a | 30 | |||
Young | 28 | 14.1 | ±2.3 a | 14.8 | ±1.9 a | 20.3 | ±5.8 a | 30 | ||
Dunk F1 | CC | Mature | 14 | 5.9 | ±2.3 a | 10.1 | ±1.2 a | 10.7 | ±2.3 a | 48 |
21 | 7.1 | ±1.1 b | 9.9 | ±1.5 a | 13.2 | ±5.3 a | 27 | |||
28 | 7.0 | ±1.1 a | 10.8 | ±1.7 a | 12.9 | ±4.7 ab | 30 | |||
Dunk F1 | CC | Young | 28 | 12.6 | ±2.0 a | 14.1 | ±1.3 a | 19.6 | ±4.5 a | 29 |
CS | Mature | 21 | 7.2 | ±1.4 b | 10.1 | ±1.6 ab | 13.0 | ±5.4 a | 29 | |
28 | 7.2 | ±2.3 a | 10.0 | ±2.3 a | 12.0 | ±4.5 ab | 28 | |||
Young | 28 | 13.3 | ±2.4 ab | 14.2 | ±1.4 a | 20.9 | ±4.1 a | 30 | ||
PC | Mature | 14 | 5.7 | ±2.5 a | 10.9 | ±1.4 b | 11.0 | ±2.4 a | 48 | |
21 | 6.2 | ±1.0 a | 10.2 | ±1.6 ab | 12.6 | ±6.2 a | 29 | |||
28 | 6.8 | ±0.6 a | 10.5 | ±2.0 a | 11.7 | ±3.9 a | 30 | |||
Young | 28 | 14.0 | ±3.3 b | 15.1 | ±1.6 a | 21.5 | ±7.0 a | 30 | ||
PS | Mature | 21 | 6.7 | ±1.5 ab | 10.5 | ±1.6 b | 12.6 | ±3.9 a | 29 | |
28 | 7.2 | ±1.3 a | 10.7 | ±2.9 a | 13.9 | ±6.3 b | 30 | |||
Young | 28 | 12.7 | ±2.2 a | 15.2 | ±2.9 a | 19.3 | ±5.6 a | 29 | ||
Goudski F1 | CC | Mature | 14 | 5.8 | ±1.9 a | 9.8 | ±1.4 a | 10.4 | ±2.2 a | 48 |
21 | 6.8 | ±1.0 a | 9.5 | ±1.7 a | 11.3 | ±4.5 a | 27 | |||
28 | 7.0 | ±1.1 b | 9.4 | ±2.2 a | 11.5 | ±4.1 a | 29 | |||
Young | 28 | 13.7 | ±1.8 a | 14.5 | ±1.7 a | 21.3 | ±4.1 a | 29 | ||
CS | Mature | 21 | 7.3 | ±1.9 a | 9.9 | ±1.3 a | 11.5 | ±3.4 a | 28 | |
28 | 6.4 | ±0.8 a | 9.8 | ±2.6 a | 11.4 | ±4.4 a | 30 | |||
Young | 28 | 13.3 | ±3.3 a | 15.1 | ±2.5 a | 20.5 | ±4.6 a | 30 | ||
PC | Mature | 14 | 6.1 | ±2.4 a | 10.3 | ±1.4 b | 10.6 | ±2.5 a | 39 | |
21 | 6.7 | ±1.9 a | 10.0 | ±1.8 a | 11.9 | ±6.1 a | 29 | |||
28 | 6.7 | ±0.7 ab | 10.0 | ±1.8 a | 11.5 | ±3.9 a | 30 | |||
Young | 28 | 13.1 | ±1.7 a | 14.4 | ±2.3 a | 19.4 | ±5.4 a | 30 | ||
PS | Mature | 21 | 7.0 | ±1.7 a | 10.1 | ±1.6 a | 11.9 | ±4.1 a | 29 | |
28 | 6.8 | ±1.5 ab | 9.7 | ±1.9 a | 12.4 | ±4.3 a | 29 | |||
Young | 28 | 12.5 | ±2.2 a | 14.1 | ±2.9 a | 19.2 | ±4.7 a | 29 | ||
Saint Anna F1 | CC | Mature | 14 | 5.7 | ±2.1 a | 9.9 | ±1.3 a | 10.7 | ±2.2 a | 47 |
21 | 6.8 | ±1.1 a | 9.0 | ±2.0 ab | 10.6 | ±3.0 a | 26 | |||
28 | 7.2 | ±1.2 a | 8.8 | ±2.4 a | 11.8 | ±4.6 a | 30 | |||
Young | 28 | 14.3 | ±2.5 a | 14.7 | ±1.8 a | 21.5 | ±4.1 a | 28 | ||
CS | Mature | 21 | 6.6 | ±1.2 a | 9.5 | ±2.0 ab | 12.0 | ±4.4 a | 31 | |
28 | 6.9 | ±1.1 a | 9.4 | ±3.4 ab | 11.4 | ±5.9 a | 30 | |||
Young | 28 | 13.4 | ±2.6 a | 14.9 | ±2.0 ab | 20.8 | ±5.5 a | 30 | ||
PC | Mature | 14 | 5.5 | ±2.2 a | 10.2 | ±1.2 b | 10.7 | ±2.6 a | 48 | |
21 | 6.3 | ±1.1 a | 9.1 | ±1.9 a | 11.5 | ±5.3 a | 30 | |||
28 | 6.8 | ±0.8 a | 9.6 | ±2.7 b | 11.4 | ±4.3 a | 30 | |||
Young | 28 | 14.8 | ±3.0 a | 15.9 | ±2.3 b | 25.0 | ±4.1 b | 30 | ||
PS | Mature | 21 | 6.8 | ±1.2 a | 9.9 | ±2.1 b | 12.4 | ±4.6 a | 30 | |
28 | 6.8 | ±0.8 a | 8.7 | ±2.5 ab | 11.6 | ±5.1 a | 26 | |||
Young | 28 | 13.8 | ±2.6 a | 15.1 | ±3.2 ab | 22.6 | ±6.7 ab | 29 |
References
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar] [CrossRef]
- Cook, B.I.; Smerdon, J.E.; Cook, E.R.; Williams, A.P.; Anchukaitis, K.J.; Mankin, J.S.; Allen, K.; Andreu-Hayles, L.; Ault, T.R.; Belmecheri, S.; et al. Megadroughts in the Common Era and the Anthropocene. Nat. Rev. Earth Env. 2022, 3, 741–757. [Google Scholar] [CrossRef]
- Lu, J.; Carbone, G.J.; Huang, X.; Lackstrom, K.; Gao, P. Mapping the sensitivity of agriculture to drought and estimating the effect of irrigation in the United States, 1950–2016. Agric. For. Meteorol. 2020, 292–293, 108124. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2022; ISBN 9781009157988. [Google Scholar]
- Park, B.-M.; Jeong, H.-B.; Yang, E.-Y.; Kim, M.-K.; Kim, J.-W.; Chae, W.; Lee, O.-J.; Kim, S.G.; Kim, S. Differential Responses of Cherry Tomatoes (Solanum lycopersicum) to Long-Term Heat Stress. Horticulturae 2023, 9, 343. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Polycarpou, P.; Kitta, E.; Katsoulas, N. Energy and Water Related Parameters in Tomato and Cucumber Greenhouse Crops in Semiarid Mediterranean Regions. A Review, Part II: Irrigation and Fertigation. Horticulturae 2021, 7, 548. [Google Scholar] [CrossRef]
- Flowers, T.J. Improving crop salt tolerance. J. Exp. Bot. 2004, 55, 307–319. [Google Scholar] [CrossRef]
- Munns, R.; Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Zhu, J.K. Plant salt tolerance. Trends Plant Sci. 2001, 6, 66–71. [Google Scholar] [CrossRef]
- Ehret, D.L.; Usher, K.; Helmer, T.; Block, G.; Steinke, D.; Frey, B.; Kuang, T.; Diarra, M. Tomato fruit antioxidants in relation to salinity and greenhouse climate. J. Agric. Food Chem. 2013, 61, 1138–1145. [Google Scholar] [CrossRef]
- Sgherri, C.; Navari-Izzo, F.; Pardossi, A.; Soressi, G.P.; Izzo, R. The influence of diluted seawater and ripening stage on the content of antioxidants in fruits of different tomato genotypes. J. Agric. Food Chem. 2007, 55, 2452–2458. [Google Scholar] [CrossRef] [PubMed]
- Magán, J.J.; Gallardo, M.; Thompson, R.B.; Lorenzo, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- Rodrigues, F.; Sousa, B.; Soares, C.; Moreira, D.; Pereira, C.; Moutinho-Pereira, J.; Cunha, A.; Fidalgo, F. Are tomato plants co-exposed to heat and salinity able to ensure a proper carbon metabolism?—An insight into the photosynthetic hub. Plant Physiol. Biochem. 2023, 206, 108270. [Google Scholar] [CrossRef] [PubMed]
- Balfagón, D.; Zandalinas, S.I.; Mittler, R.; Gómez-Cadenas, A. High temperatures modify plant responses to abiotic stress conditions. Physiol. Plant. 2020, 170, 335–344. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, Y. Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol. 2018, 217, 523–539. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization: Rome, Italy, 1985; ISBN 9251022631. [Google Scholar]
- Mizrahi, Y.; Taleisnik, E.; Kagan-Zur, V.; Zohar, Y.; Offenbach, R.; Matan, E.; Golan, R. A Saline Irrigation Regime for Improving Tomato Fruit Quality Without Reducing Yield. J. Am. Soc. Hort. Sci. 1988, 113, 202–205. [Google Scholar] [CrossRef]
- Botella, M.Á.; Hernández, V.; Mestre, T.; Hellín, P.; García-Legaz, M.F.; Rivero, R.M.; Martínez, V.; Fenoll, J.; Flores, P. Bioactive Compounds of Tomato Fruit in Response to Salinity, Heat and Their Combination. Agriculture 2021, 11, 534. [Google Scholar] [CrossRef]
- Qaryouti, M.M.; Qawasmi, W.; Hamdan, H.; Edwan, M. Influence of NaCl Salinity Stress on Yield, Plant Water Uptake and Drainage Water of Tomato Grown in Soilless Culture. Acta Hortic. 2007, 747, 539–545. [Google Scholar] [CrossRef]
- Zhang, P.; Senge, M.; Yoshiyama, K.; Ito, K.; Dai, Y.; Zhang, F. Effects of Low Salinity Stress on Growth, Yield and Water Use Efficiency of Tomato under Soilless Cultivation. J. Irrig. Drain. Rural. Eng. 2017, 85, I15–I21. [Google Scholar] [CrossRef]
- Kumar, R.R.; Goswami, S.; Dubey, K.; Singh, K.; Singh, J.P.; Kumar, A.; Rai, G.K.; Singh, S.D.; Bakshi, S.; Singh, B.; et al. RuBisCo activase—A catalytic chaperone involved in modulating the RuBisCo activity and heat stress-tolerance in wheat. J. Plant Biochem. Biotechnol. 2019, 28, 63–75. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, F.; He, Z.; Liu, Y.; Chen, Z.; Ottosen, C.-O.; Mittler, R.; Wu, Z.; Zhou, R. Higher Intensity of Salt Stress Accompanied by Heat Inhibits Stomatal Conductance and Induces ROS Accumulation in Tomato Plants. Antioxidants 2024, 13, 448. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, M.R.; Ayyub, C.M.; Amjad, M.; Waraich, E.A. Morpho-physiological evaluation of tomato genotypes under high temperature stress conditions. J. Sci. Food Agric. 2016, 96, 2698–2704. [Google Scholar] [CrossRef] [PubMed]
- Martinez, V.; Mestre, T.C.; Rubio, F.; Girones-Vilaplana, A.; Moreno, D.A.; Mittler, R.; Rivero, R.M. Accumulation of Flavonols over Hydroxycinnamic Acids Favors Oxidative Damage Protection under Abiotic Stress. Front. Plant Sci. 2016, 7, 838. [Google Scholar] [CrossRef]
- Rivero, R.M.; Mestre, T.C.; Mittler, R.; Rubio, F.; Garcia-Sanchez, F.; Martinez, V. The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ. 2014, 37, 1059–1073. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Bassil, E.; Hamilton, J.S.; Inupakutika, M.A.; Zandalinas, S.I.; Tripathy, D.; Luo, Y.; Dion, E.; Fukui, G.; Kumazaki, A.; et al. ABA Is Required for Plant Acclimation to a Combination of Salt and Heat Stress. PLoS ONE 2016, 11, e0147625. [Google Scholar] [CrossRef]
- Hossain, M.A. Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants; Elsevier Science & Technology: San Diego, CA, USA, 2020; ISBN 978-0-12-817892-8. [Google Scholar]
- Ferreira-Silva, S.L.; Voigt, E.L.; Silva, E.N.; Maia, J.M.; de Fontenele, A.V.; Silveira, J.A.G. High temperature positively modulates oxidative protection in salt-stressed cashew plants. Environ. Exp. Bot. 2011, 74, 162–170. [Google Scholar] [CrossRef]
- Pérez-Salamó, I.; Papdi, C.; Rigó, G.; Zsigmond, L.; Vilela, B.; Lumbreras, V.; Nagy, I.; Horváth, B.; Domoki, M.; Darula, Z.; et al. The heat shock factor A4A confers salt tolerance and is regulated by oxidative stress and the mitogen-activated protein kinases MPK3 and MPK6. Plant Physiol. 2014, 165, 319–334. [Google Scholar] [CrossRef]
- Li, W.; Zhang, C.; Lu, Q.; Wen, X.; Lu, C. The combined effect of salt stress and heat shock on proteome profiling in Suaeda salsa. J. Plant Physiol. 2011, 168, 1743–1752. [Google Scholar] [CrossRef]
- Anwar Hossain, M.; Golam Mostofa, M.; Fujita, M. Heat-shock positively modulates oxidative protection of salt and drought-stressed mustard (Brassica campestris L.) seedlings. J. Plant Sci. Mol. Breed. 2013, 2, 2. [Google Scholar] [CrossRef]
- De las Capobianco-Uriarte, M.M.; Aparicio, J.; de Pablo-Valenciano, J.; Del Casado-Belmonte, M.P. The European tomato market. An approach by export competitiveness maps. PLoS ONE 2021, 16, e0250867. [Google Scholar] [CrossRef]
- Collins, E.J.; Bowyer, C.; Tsouza, A.; Chopra, M. Tomatoes: An Extensive Review of the Associated Health Impacts of Tomatoes and Factors That Can Affect Their Cultivation. Biology 2022, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Alsamir, M.; Mahmood, T.; Trethowan, R.; Ahmad, N. An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi J. Biol. Sci. 2021, 28, 1654–1663. [Google Scholar] [CrossRef]
- Machado, R.; Serralheiro, R. Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae 2017, 3, 30. [Google Scholar] [CrossRef]
- Sonneveld, C. Effects of salinity on the growth and mineral composition of sweet pepper and eggplant grown under glass. Acta Hortic. 1979, 89, 71–78. [Google Scholar] [CrossRef]
- Ehret, D.L.; Ho, L.C. The effects of salinity on dry matter partitioning and fruit growth in tomatoes grown in nutrient film culture. J. Hortic. Sci. 1986, 61, 361–367. [Google Scholar] [CrossRef]
- Adams, P.; Ho, L.C. The susceptibility of modern tomato cultivars to blossom- end rot in relation to salinity. J. Hortic. Sci. 1992, 67, 827–839. [Google Scholar] [CrossRef]
- Adams, P.; Holder, R. Effects of humidity, Ca and salinity on the accumulation of dry matter and Ca by the leaves and fruit of tomato (Lycopersicon esculentum). J. Hortic. Sci. 1992, 67, 137–142. [Google Scholar] [CrossRef]
- Bacha, H.; Tekaya, M.; Drine, S.; Guasmi, F.; Touil, L.; Enneb, H.; Triki, T.; Cheour, F.; Ferchichi, A. Impact of salt stress on morpho-physiological and biochemical parameters of Solanum lycopersicum cv. Microtom leaves. South. Afr. J. Bot. 2017, 108, 364–369. [Google Scholar] [CrossRef]
- Al Hassan, M.; Fuertes, M.M.; Sánchez, F.J.R.; Vicente, O.; Boscaiu, M. Effects of Salt and Water Stress on Plant Growth and on Accumulation of Osmolytes and Antioxidant Compounds in Cherry Tomato. Not. Bot. Horti Agrobo 2015, 43, 1–11. [Google Scholar] [CrossRef]
- Delgado-Vargas, V.A.; Ayala-Garay, O.J.; de Arévalo-Galarza, M.L.; Gautier, H. Increased Temperature Affects Tomato Fruit Physicochemical Traits at Harvest Depending on Fruit Developmental Stage and Genotype. Horticulturae 2023, 9, 212. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signalling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef] [PubMed]
- Bogoutdinova, L.R.; Khaliluev, M.R.; Chaban, I.A.; Gulevich, A.A.; Shelepova, O.V.; Baranova, E.N. Salt Tolerance Assessment of Different Tomato Varieties at the Seedling Stage. Horticulturae 2024, 10, 598. [Google Scholar] [CrossRef]
- Jameel, J.; Anwar, T.; Siddiqi, E.H.; Alomrani, S.O. Alleviation of NaCl stress in tomato varieties by promoting morpho-physiological attributes and biochemical characters. Sci. Hortic. 2024, 323, 112496. [Google Scholar] [CrossRef]
- Bhattarai, S.; Harvey, J.T.; Lee, C.; Joshi, V.; Leskovar, D.I. Assessment of physiological and biochemical thermotolerance traits in tomato genotypes. Sci. Hortic. 2024, 324, 112561. [Google Scholar] [CrossRef]
- Chaudhry, S.; Sidhu, G.P.S. Climate change regulated abiotic stress mechanisms in plants: A comprehensive review. Plant Cell Rep. 2022, 41, 1–31. [Google Scholar] [CrossRef]
- Des Marais, D.L.; Hernandez, K.M.; Juenger, T.E. Genotype-by-Environment Interaction and Plasticity: Exploring Genomic Responses of Plants to the Abiotic Environment. Annu. Rev. Ecol. Evol. Syst. 2013, 44, 5–29. [Google Scholar] [CrossRef]
- Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; van Dam, N.M.; Conrath, U. Recognizing Plant Defense Priming. Trends Plant Sci. 2016, 21, 818–822. [Google Scholar] [CrossRef]
- Körner, T.; Gierholz, R.; Zinkernagel, J.; Röhlen-Schmittgen, S. Heat-Induced Cross-Tolerance to Salinity Due to Thermopriming in Tomatoes. Metabolites 2024, 14, 213. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; The European Green Deal: Brussels, Belgium, 2019. Available online: https://eur-lex.europa.eu/resource.html?uri=cellar:b828d165-1c22-11ea-8c1f-01aa75ed71a1.0002.02/DOC_1&format=PDF (accessed on 5 August 2024).
- UN DESA. The Sustainable Development Goals Report. 2024—June 2024; United Nations Publications: New York, NY, USA, 2024; ISBN 978-92-1-101460-0. [Google Scholar]
- Roussos, P.A.; Pontikis, C.A. Long term effects of sodium chloride salinity on growing in vitro, proline and phenolic compound content of jojoba explants. Eur. J. Hortic. Sci. 2003, 68, 38–44. [Google Scholar] [CrossRef]
- Ashraf, M.A.; Ashraf, M.; Ali, Q. Response of two genetically diverse wheat cultivars to salt stress at different growth stages: Leaf lipid peroxidation and phenolic contents. Pak. J. Bot. 2010, 42, 559–565. [Google Scholar]
- Liu, B.; Zhang, L.; Rusalepp, L.; Kaurilind, E.; Sulaiman, H.Y.; Püssa, T.; Niinemets, Ü. Heat priming improved heat tolerance of photosynthesis, enhanced terpenoid and benzenoid emission and phenolics accumulation in Achillea millefolium. Plant Cell Environ. 2021, 44, 2365–2385. [Google Scholar] [CrossRef]
- Hussain, M.; Park, H.W.; Farooq, M.; Jabran, K.; Lee, D.J. Morphological and Physiological Basis of Salt Resistance in Different Rice Genotypes. Int. J. Agric. Biol. 2013, 15, 113–118. [Google Scholar]
- Reginato, M.A.; Castagna, A.; Furlán, A.; Castro, S.; Ranieri, A.; Luna, V. Physiological responses of a halophytic shrub to salt stress by Na2SO4 and NaCl: Oxidative damage and the role of polyphenols in antioxidant protection. AoB Plants 2014, 6, plu042. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.E. Enhanced Level of Anthocyanin Leads to Increased Salt Tolerance in Arabidopsis PAP1-D Plants upon Sucrose Treatment. J. Korean Soc. Appl. Biol. Chem. 2011, 54, 79–88. [Google Scholar] [CrossRef]
- Faqir Napar, W.P.; Kaleri, A.R.; Ahmed, A.; Nabi, F.; Sajid, S.; Ćosić, T.; Yao, Y.; Liu, J.; Raspor, M.; Gao, Y. The anthocyanin-rich tomato genotype LA-1996 displays superior efficiency of mechanisms of tolerance to salinity and drought. J. Plant Physiol. 2022, 271, 153662. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, J.-R.; Wang, G.-D.; Liang, X.-Q.; Li, X.-D.; Meng, Q.-W. An R2R3-MYB gene, LeAN2, positively regulated the thermo-tolerance in transgenic tomato. J. Plant Physiol. 2015, 175, 1–8. [Google Scholar] [CrossRef]
- Gill, S.S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.; Li, X.; Mendanha Dos Santos, T.; Rosenqvist, E.; Ottosen, C.-O. Combined high light and heat stress induced complex response in tomato with better leaf cooling after heat priming. Plant Physiol. Biochem. 2020, 151, 1–9. [Google Scholar] [CrossRef]
- Zhou, R.; Yu, X.; Ottosen, C.-O.; Rosenqvist, E.; Zhao, L.; Wang, Y.; Yu, W.; Zhao, T.; Wu, Z. Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biol. 2017, 17, 24. [Google Scholar] [CrossRef]
- Körner, T.; Zinkernagel, J.; Röhlen-Schmittgen, S. Induction of Time-Dependent Tolerance through Thermopriming in Tomatoes. Sustainability 2024, 16, 1163. [Google Scholar] [CrossRef]
- Körner, T.; Zinkernagel, J.; Röhlen-Schmittgen, S. Thermopriming Induces Time-Limited Tolerance to Salt Stress. Int. J. Mol. Sci. 2024, 25, 7698. [Google Scholar] [CrossRef]
- Li, N.; Euring, D.; Cha, J.Y.; Lin, Z.; Lu, M.; Huang, L.-J.; Kim, W.Y. Plant Hormone-Mediated Regulation of Heat Tolerance in Response to Global Climate Change. Front. Plant Sci. 2020, 11, 627969. [Google Scholar] [CrossRef] [PubMed]
- Ristic, Z.; Bukovnik, U.; Prasad, P.V. Correlation between Heat Stability of Thylakoid Membranes and Loss of Chlorophyll in Winter Wheat under Heat Stress. Crop Sci. 2007, 47, 2067–2073. [Google Scholar] [CrossRef]
- Wang, X.; Cai, J.; Liu, F.; Dai, T.; Cao, W.; Wollenweber, B.; Jiang, D. Multiple heat priming enhances thermo-tolerance to a later high temperature stress via improving subcellular antioxidant activities in wheat seedlings. Plant Physiol. Biochem. 2014, 74, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Olas, J.J.; Apelt, F.; Annunziata, M.G.; John, S.; Richard, S.I.; Gupta, S.; Kragler, F.; Balazadeh, S.; Mueller-Roeber, B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol. Plant 2021, 14, 1508–1524. [Google Scholar] [CrossRef]
- Lopez-Delacalle, M.; Silva, C.J.; Mestre, T.C.; Martinez, V.; Blanco-Ulate, B.; Rivero, R.M. Synchronization of proline, ascorbate and oxidative stress pathways under the combination of salinity and heat in tomato plants. Environ. Exp. Bot. 2021, 183, 104351. [Google Scholar] [CrossRef]
- Taffouo, V.; Nouck, A.; Dibong, S.; Amougou, Y.A. Effects of salinity stress on seedlings growth, mineral nutrients and total chlorophyll of some tomato (Lycopersicum esculentum L.) cultivars. Afr. J. Biotechnol. 2010, 9, 5366–5372. [Google Scholar]
- Berova, M.; Stoeva, N.; Zlatev, Z.; Ganeva, D. Physiological response of some tomato genotypes (Lycopersicon esculentum L.) to high-temperature stress. J. Cent. Eur. Agric. 2008, 9, 723–732. [Google Scholar]
- Muhammad, M.; Waheed, A.; Wahab, A.; Majeed, M.; Nazim, M.; Liu, Y.-H.; Li, L.; Li, W.-J. Soil salinity and drought tolerance: An evaluation of plant growth, productivity, microbial diversity, and amelioration strategies. Plant Stress. 2024, 11, 100319. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, C.; Huang, Z.; Abid, M.; Jiang, S.; Dai, T.; Zhang, W.; Ma, S.; Jiang, D.; Han, X. Heat Priming During Early Reproductive Stages Enhances Thermo-Tolerance to Post-anthesis Heat Stress via Improving Photosynthesis and Plant Productivity in Winter Wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 805. [Google Scholar] [CrossRef]
- Wigge, P.A. Ambient temperature signalling in plants. Curr. Opin. Plant Biol. 2013, 16, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.K.; Delgado-Baquerizo, M.; Egidi, E.; Guirado, E.; Leach, J.E.; Liu, H.; Trivedi, P. Climate change impacts on plant pathogens, food security and paths forward. Nat. Rev. Microbiol. 2023, 21, 640–656. [Google Scholar] [CrossRef] [PubMed]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018; p. 129. [Google Scholar] [CrossRef]
- Hunt, R. Plant Growth Curves; Edward Arnold: London, UK, 1982. [Google Scholar]
- Dörr, O.S.; Zimmermann, B.F.; Kögler, S.; Mibus, H. Influence of leaf temperature and blue light on the accumulation of rosmarinic acid and other phenolic compounds in Plectranthus scutellarioides (L.). Environ. Exp. Bot. 2019, 167, 103830. [Google Scholar] [CrossRef]
- Pękal, A.; Pyrzynska, K. Evaluation of Aluminium Complexation Reaction for Flavonoid Content Assay. Food Anal. Methods 2014, 7, 1776–1782. [Google Scholar] [CrossRef]
- Baskerville, G.L.; Emin, P. Rapid Estimation of Heat Accumulation from Maximum and Minimum Temperatures. Ecology 1969, 50, 514–517. [Google Scholar] [CrossRef]
- Zalom, F.G.; Wilson, L.T. Predicting phenological events of California processing tomatoes. Acta Hortic. 1999, 487, 41–48. [Google Scholar] [CrossRef]
Sets: | 3 |
---|---|
Duration: | 44 days |
Period: | |
Set 1: | 17 April–31 May 2024 |
Set 2: | 21 May–4 July 2024 |
Set 3: | 19 June–2 August 2024 |
Timing of thermopriming (days after sowing): | 9–16 |
Timing of recurrent salt stress (days after sowing): | |
1st stress event: | 30 |
2nd stress event: | 37 |
Number of varieties: | 5 |
Number of treatments: | 20 |
Number of blocks (tables): | 4 |
Number of parcels per block: | 20 |
Number of plants per parcel: | 3 |
Total number of plants per treatment: | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Körner, T.; Zinkernagel, J.; Röhlen-Schmittgen, S. Plant Growth and Metabolic Responses of Tomato Varieties to Salinity Stress After Thermopriming. Stresses 2025, 5, 27. https://doi.org/10.3390/stresses5020027
Körner T, Zinkernagel J, Röhlen-Schmittgen S. Plant Growth and Metabolic Responses of Tomato Varieties to Salinity Stress After Thermopriming. Stresses. 2025; 5(2):27. https://doi.org/10.3390/stresses5020027
Chicago/Turabian StyleKörner, Tobias, Jana Zinkernagel, and Simone Röhlen-Schmittgen. 2025. "Plant Growth and Metabolic Responses of Tomato Varieties to Salinity Stress After Thermopriming" Stresses 5, no. 2: 27. https://doi.org/10.3390/stresses5020027
APA StyleKörner, T., Zinkernagel, J., & Röhlen-Schmittgen, S. (2025). Plant Growth and Metabolic Responses of Tomato Varieties to Salinity Stress After Thermopriming. Stresses, 5(2), 27. https://doi.org/10.3390/stresses5020027