Nickel, Cu, Fe, Zn, and Se Accumulation, and the Antioxidant Status of Mushrooms Grown in the Arctic Under Ni/Cu Pollution and in Unpolluted Areas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Soil Characteristics
2.2. Mushroom Mineral Composition
2.3. Biological Concentration Factor (BCF)
2.4. Antioxidant Status of Mushrooms
2.5. Mushroom Antioxidant/Se Defense Against Heavy Metal Uptake
2.6. Risks of Mushroom Consumption
3. Material and Methods
3.1. Study Area and Sample Preparation
3.2. Determination of pH
3.3. Mineral Content
3.4. Selenium Content
3.5. Organic Matter (OM)
3.6. Bio Concentration Factor (BCF)
3.7. Antioxidant Activity (AOA)
3.8. Total Polyphenols (TPs)
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Mohamadhasani, F.; Rahimi, M. Growth response and mycoremediation of heavy metals by fungus Pleurotus sp. Sci. Rep. 2022, 12, 19947. [Google Scholar]
- Adriaensen, K.; Vealstad, T.; Nobel, J.-P.; Vangrobaveld, J.; Colpaert, J.V. Copper-adapted Suillus luteus, a symbolic solution for lines colonizing Xu mine soils. Appl. Environ. Microbiol. 2005, 71, 7279–7284. [Google Scholar]
- Colpaert, J.V.; Vandenkoornhuyse, P.; Adriaensen, K.; Vangronsveld, G. Genetic variation and heavy metal tolerance in the ectomycorrhizal Basidimycete Suillus luteus. New Phytol. 2000, 147, 367–379. [Google Scholar]
- Kokkoris, V.; Massas, I.; Polemis, E.; Koutrotsios, G.; Zervakis, G.I. Accumulation of heavy metals by wild edible mushrooms with respect to soil substrates in the Athens metropolitan area (Greece). Sci. Total Environ. 2019, 685, 280–296. [Google Scholar] [PubMed]
- Lalotra, P.; Gupta, D.; Yangdol, R.; Sharma, Y.; Gupta, S. Bioaccumulation of heavy metals in the sporocarps of some wild mushrooms. Curr. Res. Environ. Appl. Mycol. 2016, 6, 159–165. [Google Scholar]
- Dowlati, M.; Sobhi, H.R.; Esrafili, A.; FarzadKia, M.; Yeganeh, M. Heavy metals content in edible mushrooms: A systematic review, meta-analysis and health risk assessment. Trends Food Sci. Technol. 2021, 109, 527–535. [Google Scholar]
- Qin, G.; Liu, J.; Zou, K.; He, F.; Li, Y.; Liu, R.; Zhang, P.; Zhao, G.; Wang, T.; Chen, B. Analysis of heavy metal characteristics and health risks of edible mushrooms in the mid-western region of China. Sci. Rep. 2024, 14, 26960. [Google Scholar]
- Širic, I.; Rukavina, K.; Miŏc, B.; Držaic, V.; Kumar, P.; Taher, M.A.; Eid, E.M. Bioaccumulation and health risk assessment of nickel uptake by five wild edible saprotrophic mushroom species collected from Croatia. Forests 2023, 14, 879. [Google Scholar] [CrossRef]
- Bucurica, I.A.; Dulama, I.D.; Radulescu, C.; Banica, A.L.; Stanescu, S.G. Heavy metals and associated risks of wild edible mushrooms consumption: Transfer factor, carcinogenic risk, and health risk index. J. Fungi 2024, 10, 844. [Google Scholar] [CrossRef]
- Radulescu, C.; Stihi, C.; Busuioc, G.; Gheboianu, A.I.; Popescu, I.V. Studies concerning heavy metals bioaccumulation of wild edible mushrooms from industrial area by using spectrometric techniques. Bull. Environ. Contam. Toxicol. 2010, 84, 641–646. [Google Scholar]
- Damodaran, D.; Balakrishnan, R.M.; Shetty, V.K. The uptake mechanism of Cd(II), Cr(VI), Cu(II), Pb(II), and Zn(II) by mycelia and fruiting bodies of Galerina vittiformis. BioMed Res. Int. 2013, 2013, 149120. [Google Scholar]
- Collin-Hansen, C.; Yttri, K.E.; Andersen, R.A.; Berthelsen, B.O.; Steinnes, E. Mushrooms from two metal-contaminated areas in Norway: Occurrence of metals and metallothionein-like proteins. Geochem. Explor. Environ. Anal. 2002, 2, 121–130. [Google Scholar]
- Kuziemska, B.; Wysokiński, A.; Jaremko, D.; Pakuła, K.; Popek, M.; Kożuchowska, M. The content of copper, zinc, and nickel in the selected species of edible mushrooms. Envrion. Prot. Nat. Res. 2019, 30, 7–10. [Google Scholar]
- Eisenman, H.C.; Casadevall, A. Synthesis and assembly of fungal melanin. Appl. Microbiol. Biotechnol. 2012, 93, 931–940. [Google Scholar]
- Phillips, J.M.; Ooi, S.L.; Pak, S.C. Health-promoting properties of medicinal mushrooms and their bioactive compounds for the COVID-19 era-an appraisal: Do the pro-health claims measure up? Molecules 2022, 27, 2302. [Google Scholar] [CrossRef]
- Árvay, J.; Tomáš, J.; Hauptvog, M.; Kopernická, M.; Kováčik, A.; Bajčan, D.; Massányi, P. Contamination of wild-grown edible mushrooms by heavy metals in a former mercury-mining area. J. Environ. Sci. Health B 2014, 4, 815–827. [Google Scholar]
- Zhou, Y.; Chu, M.; Ahmadi, F.; Agaa, O.T.; Barrow, C.J.; Dunshea, F.R.; Suleri, H.A.R. A comprehensive review on phytochemical profiling in mushrooms: Occurrence, biological activities, applications and future prospective. Food Rev. Int. 2024, 40, 924–951. [Google Scholar]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Toledo, E.; Delgado-Rodríguez, M.; Gaforio, J.J. Naturally lignan-rich foods: A dietary tool for health promotion? Molecules. 2019, 24, 917. [Google Scholar]
- Golubkina, N.; Mironov, J. Element composition of mushrooms in contrasting anthropogenic loading. Geochem. Int. 2018, 56, 1263–1275. [Google Scholar]
- Hansen, M.D.; Nøst, T.H.; Heimstad, E.S.; Evenset, A.; Dudarev, A.A.; Rautio, A.; Myllynen, P.; Dushkina, E.V.; Jagodic, M.; Christensen, G.N.; et al. The impact of a nickel-copper smelter on concentrations of toxic elements in local wild food from the Norwegian, Finnish, and Russian border regions. Int. J. Environ. Res. Public Health 2017, 14, 694. [Google Scholar]
- Gregurek, D.; Reimann, C.; Stumpf, E.F. Trace elements and precious metals in snow samples from the immediate vicinity of nickel processing plants, Kola Peninsula, northwest Russia. Environ. Pollut. 1998, 102, 221–232. [Google Scholar]
- Redkina, V.V.; Shalygina, R.R. Algae and cyanobacteria in soils polluted with heavy metals (Northwest Russia, Murmansk region). Czech Polar Rep. 2021, 11, 279–290. [Google Scholar]
- Evdokimova, G.A.; Mozgova, N.P.; Korneikova, M.V. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant. Eurasian Soil Sci. 2014, 47, 504–510. [Google Scholar]
- Nikonov, V.; Goryainova, V.; Lukina, N. Ni and Cu migration and accumulation in forest ecosystems on the Kola peninsula. Chemosphere 2001, 42, 93–100. [Google Scholar] [PubMed]
- Steinnes, E.; Lukina, N.; Nikonov, V.; Aamlid, D.; Royset, O. A gradient study of 34 elements in the vicinity of a copper-nickel smelter in the Kola peninsula. Environ. Monit. Assess. 2000, 60, 71–88. [Google Scholar]
- Makkonen, H.V.; Halkoaho, T.; Konnunaho, J.; Rasilainen, K.; Kontinen, A.; Eilu, P. Ni-(Cu-PGE) deposits in Finland—Geology and exploration potential. Ore Geol. Rev. 2017, 90, 667–696. [Google Scholar]
- Golubkina, N.; Sheshnitsan, S.; Koshevarov, A.; Pirogov, N.; Plotnikova, U.; Tallarita, A.V.; Murariu, O.C.; Merlino, L.; Caruso, G. Peculiarities of plant mineral composition in semi-desert conditions. Int. J. Plant Biol. 2024, 15, 1229–1249. [Google Scholar] [CrossRef]
- Falandysz, J. Selenium in edible mushrooms. J. Environ. Sci. Health C 2008, 26, 256–299. [Google Scholar]
- Leonhardt, T.; Borovička, J.; Sácký, J.; Šantrůček, J.; Kameník, J.; Kotrba, P. Zn overaccumulating Russula species clade together and use the same mechanism for the detoxification of excess Zn. Chemosphere 2019, 225, 618–626. [Google Scholar]
- Singh, P.; Singh, A.; D’Souza, L.M.; Roy, U.; Singh, S.M. Chemical constituents and antioxidant activity of the Arctic mushroom Pers. Polar Res. 2012, 31, 17329. [Google Scholar]
- Buruleanu, L.C.; Radulescu, C.; Georgescu, A.A.; Dulama, I.D.; Nicolescu, K.M.; Olteanu, R.L.; Stanescu, G. Chemometric assessment of the interactions between the metal contents, antioxidant activity, total phenolics, and flavonoids in mushrooms. Anal. Lett. 2019, 52, 1195–1214. [Google Scholar] [CrossRef]
- Golubkina, N.A.; Kekina, H.G.; Molchanova, A.V.; Antoshkina, M.S.; Nadezhkin, S.M.; Soldatenko, A.V. Plants Antioxidants and Methods of Their Determination; Infra-M: Moscow, Russia, 2020. (In Russian) [Google Scholar] [CrossRef]
- Golubkina, N.; Skrypnik, L.; Logvinenko, L.; Zayachkovsky, V.; Smirnova, A.; Krivenkov, L.; Romanov, V.; Kharchenko, V.; Poluboyarinov, P.; Sekara, A.; et al. The ‘Edge Effect’ phenomenon in plants: Morphological, biochemical and mineral characteristics of border tissues. Diversity 2023, 15, 123. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 756120. [Google Scholar] [CrossRef]
- Asgher, M.; Rehaman, A.; Islam, S.N.; Arshad, M.; Khan, N.A. Appraisal of functions and role of selenium in heavy metal stress adaptation in plants. Agriculture 2023, 13, 1083. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Naozuka, J.; Landero-Figuera, J.A. The protective role of selenium against uptake and accumulation of cadmium and lead in white oyster (Pleurotus ostreatus) and pink oyster (Pleurotus djamor) mushrooms. Food Addit. Contam. A 2022, 39, 508–524. [Google Scholar] [CrossRef]
- de Oliveira, A.P.; Naozuka, J.; Figueroa, J.A.L. Feasibility study for mercury remediation by selenium competition in Pleurotus mushrooms. J. Hazard. Mater. 2023, 451, 131098. [Google Scholar] [CrossRef]
- Kapahi, M.; Sachdeva, S. Mycoremediation potential of Pleurotus species for heavy metals: A review. Bioresour. Bioprocess. 2017, 4, 32. [Google Scholar] [CrossRef] [PubMed]
- Park, K.-H.; Park, Y.-D.; Lee, J.-R.; Hahn, H.-S.; Lee, S.-J.; Bae, C.-D.; Yang, J.-M.; Kim, D.-E.; Hahn, M.-J. Inhibition kinetics of mushroom tyrosinase by copper-chelating ammonium tetrathiomolybdate. Biochim. Biophys. Acta (BBA) Gen. Subj. 2005, 1726, 115–120. [Google Scholar] [CrossRef]
- Hartikainen, S.; Lankinen, P.; Rajasärkkä, J.; Hilkka, K.; Virta, M.; Hatakka, A.; Kähkönen, M.A. Impact of copper and zinc on the growth of saprotrophic fungi and the production of extracellular enzymes. Boreal Environ. Res. 2012, 17, 210–218. [Google Scholar]
- Anyachor, C.P.; Dooka, D.B.; Orish, C.N.; Amadi, C.N.; Bocca, B.; Ruggieri, F.; Senofonte, M.; Frazzoli, C.; Orisakwe, O.E. Mechanistic considerations and biomarkers level in nickel-induced neurodegenerative diseases: An updated systematic review. IBRO Neurosci. Rep. 2022, 13, 136–146. [Google Scholar] [CrossRef]
- Schrauzer, G.N. Selenium and selenium-antagonistic elements in nutritional cancer prevention. Crit. Rev. Biotechnol. 2009, 29, 10–17. [Google Scholar] [PubMed]
- Courtecuisse, R.; Duhem, B. (Eds.) Mushrooms and Toadstools of Britain and Europe; HarperCollins: London, UK, 1995. [Google Scholar]
- Gorlenko, M.V.; Bondartseva, M.A.; Garibova, L.V.; Sidorova, I.I.; Sizova, T.P. Mushrooms of USSR; Misl: Moscow, Russia, 1980. [Google Scholar]
- Kidin, V.V.; Derugin, I.P.; Kobzarenko, V.I. Workshop on Agrochemistry; Kolos: Moscow, Russia, 2008. [Google Scholar]
- Alfthan, G.V. A micromethod for the determination of selenium in tissues and biological fluids by single-test-tube fluorimetry. Anal. Chim. Acta 1984, 165, 187–194. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon and organic matter. In Methods of Soil Analysis; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; Soil Science Society of America: Madison WI, USA, 1982; Chapter 2. [Google Scholar]
- Alonso, J.; Garcia, M.A.; Parez-Lopez, M.; Melgar, M.J. The concentrations and bioconcentration factors of copper and zinc in edible mushrooms. Arch. Environ. Contam. Toxicol. 2003, 44, 180–188. [Google Scholar] [PubMed]
No. * | pH | Ni | Cu | Fe | Zn | Se | OM, % |
---|---|---|---|---|---|---|---|
1 | 4.4 | 162.16 a | 35.22 c | 233 a | 11.66 a | 0.259 a | 12.1 a |
2 | 4.4 | 0.20 e | 55.24 b | 204 a | 9.35 a | 0.207 b | 11.0 ab |
3 | 4.3 | 42.48 c | 2.21 d | 209 a | 0.86 e | 0.219 bc | 9.8 bc |
4 | 4.2 | 6.63 d | 0.3 e | 166 c | 0.25 f | 0.198 c | 1.6 e |
5 | 4.6 | 37.02 c | 83.15 a | 226 a | 1.53 d | 0.201 c | 11.2 a |
6 | 4.6 | 167.65 a | 82.2 a | 218 a | 3.00 b | 0.176 d | 7.8 cd |
7 | 4.7 | 61.68 b | 30.92 c | 182 b | 2.40 c | 0.170 d | 6.5 d |
M | 4.45 | 68.26 | 41.28 | 205.4 | 4.15 | 0.197 | 8.6 |
SD | 0.18 | 69.29 | 34.14 | 24.0 | 4.48 | 0.016 | 3.7 |
CV (%) | 4.0 | 101.5 | 82.7 | 11.7 | 108 | 8.1 | 42.7 |
Species | No. * | n | Ni | Fe | Cu | Zn | Se |
---|---|---|---|---|---|---|---|
Downy milk cap (Lactarius pubescens) | 6 | 6 | 0.43 k | 40.2 d | 13.6 e | 24.5 c | 0.540 e |
Autumn honey mushroom (Armillaria mellea) | 6 | 15 | 1.60 g | 111.5 b | 16.3 d | 32.3 b | 0.240 g |
Xerocomus illudens (Peck) Singer | 2 | 7 | 1.00 h | 194.1 a | 7.9 f | 19.1 d | 0.715 cd |
Orange-cap boletus (Leccinum aurantiacum) | 1 | 5 | 11.30 c | 93.6 b | 24.2 c | 22.4 cd | 0.835 ab |
3 | 4 | 3.20 e | 73.4 c | 31.2 b | 26.3 c | 0.756 bc | |
4 | 4 | 7.60 d | 63.5 c | 31.8 b | 34.5 b | 0.642 de | |
5 | 6 | 0.82 hj | 44.6 d | 22.1 c | 25.6 c | 0.812 b | |
Brown-cap boletus (Leccinum scrabum) | 1 | 5 | 15.16 b | 65.3 c | 13.1 e | 32.9 b | 0.940 a |
Russula (Russula vesca) | 4 | 5 | 39.70 a | 203.0 a | 44.9 a | 46.1 a | 0.655 d |
6 | 5 | 1.90 f | 40.5 d | 11.1 e | 30.0 b | 0.300 f | |
7 | 6 | 0.8 j | 33.7 f | 25.0 c | 26.6 c | 0.548 e | |
Puffball (Lycoperpon molle Pers.) | 6 | 4 | 0.75 j | 46.4 d | 45.9 a | 42.5 a | 0.910 a |
M | 6.96 | 84.1 | 23.9 | 30.2 | 0.658 | ||
SD | 11.40 | 58.2 | 12.6 | 8.0 | 0.221 | ||
CV, % | 163.8 | 69.2 | 52.7 | 26.5 | 33.6 |
Species Gathered at the Sampling Site 7 | Ni | Fe | Cu | Zn |
---|---|---|---|---|
Blueberry leaves (Vaccinium myrtillus) | 1.39 a | 2.62 d | 0.22 b | 0.27 d |
Heather (Callúna vulgáris) | 1.15 ab | 7.15 bc | 0.37 a | 0.53 c |
Willow (Salix caprea) | 1.03 b | 9.16 a | 0.38 a | 2.64 a |
Clubmoss (Lycopodium) | 0.54 c | 3.04 d | 0.17 c | 0.64 c |
Nettles (Urtica) | 0.24 d | 6.13 c | 0.37 a | 1.94 b |
Cowberry leaves (Vaccinim vitis-idaea) | 0.19 e | 1.91 e | 0.18 c | 0.55 c |
Horsetail (Equisétum arvénse) | 0.10 f | 8.29 ab | 0.10 e | 0.59 c |
M ± SD | 0.66 ± 0.52 | 5.47 ± 2.93 | 0.26 ± 0.12 | 1.02 ± 0.90 |
CV (%) | 78.8 | 53.6 | 46.2 | 88.2 |
Species | No. * | Ni | Fe | Cu | Zn | Se |
---|---|---|---|---|---|---|
Downy milk cap (Lactarius pubescens) | 6 | 0.0026 | 0.18 | 0.17 | 8.2 | 3.07 |
Autumn honey mushroom Armillaria mellea | 6 | 0.0095 | 0.51 | 0.20 | 10.8 | 1.36 |
Xerocomus illudens (Peck) Singer | 2 | 5.00 | 0.95 | 0.14 | 2.0 | 3.45 |
Orange-cap boletus Leccinum aurantiacum | 1 | 0.07 | 0.40 | 0.69 | 1.9 | 3.22 |
3 | 0.075 | 0.35 | 14.10 | 30.6 | 3.45 | |
4 | 1.14 | 0.38 | 106.00 | 138.0 | 3.24 | |
5 | 0.02 | 0.20 | 0.27 | 16.7 | 4.04 | |
Brown cap boletus Leccinum scrabum | 1 | 0.09 | 0.28 | 0.37 | 2.8 | 3.63 |
Russulavesca | 4 | 6.0 | 1.22 | 150.00 | 184.0 | 2.31 |
6 | 0.011 | 0.19 | 0.14 | 10.0 | 1.70 | |
7 | 0.013 | 0.19 | 0.81 | 11.1 | 3.22 | |
Puffball Lycoperpon molle Pers. | 6 | 0.009 | 0.20 | 0.55 | 14.2 | 5.17 |
Minimum | 0.0026 | 0.18 | 0.17 | 1.9 | 1.36 | |
Maximum | 5.00 | 1.22 | 153 | 184.0 | 5.17 |
Species | No. * | АОА | ТР | % TP |
---|---|---|---|---|
mg GAE g−1 d.w. | ||||
Downy milk cap Lactarius pubescens | 6 | 32.3 ± 3.1 cde | 11.3 ± 1.0 ef | 35.0 |
Autumn honey mushrooms Armillaria mellea | 6 | 19.5 ± 1.3 g | 7.9 ± 0.7 gh | 40.5 |
Xerocomus illudens (Peck) Singer | 2 | 35.3 ± 3.1 c | 14.1 ± 1.1 de | 39.9 |
Orange-cap boletus Leccinum aurantiacum | 1 | 38.7 ± 3.3 c | 17.3 ± 1.2 b | 44.7 |
3 | 27.5 ± 2.2 ef | 14.4 ± 1.1 cd | 52.4 | |
4 | 32.7 ± 2.9 cd | 18.9 ± 1.3 b | 57.8 | |
5 | 36.8 ± 3.1 cd | 19.7 ± 1.3 b | 53.5 | |
Brown cap boletus Leccinum scrabum | 4 | 47.9 ± 4.1 b | 18.2 ± 1.3 b | 38.0 |
Russula vesca | 4 | 25.5 ± 2.0 f | 9.4 ± 0.9 fg | 36.9 |
6 | 20.4 ± 2.0 g | 7.2 ± 0.7 h | 35.3 | |
7 | 19.2 ± 1.3 g | 9.4 ± 0.9 fg | 49.0 | |
Puffball Lycoperdon molle Pers. | 6 | 92.0 ± 8.8 a | 29.2 ± 2.2 a | 31.7 |
M ± SD | 35.7 ± 19.7 | 14.8 ± 6.34 | 42.9 ± 8.5 | |
CV (%) | 55.3 | 43.0 | 19.8 |
Species | No. on the Map * | % of the Recommended Daily Allowance (mg per Day) | ||||
---|---|---|---|---|---|---|
Ni (0.35) ** | Fe (20–40) ** | Cu (1.5–2.0) ** | Zn (7.2–15) ** | Se (0.070) ** | ||
L. pubescens | 6 | 3.7 | 6.0–3.0 | 27.2–20.4 | 10.2–4.9 | 23.1 |
A. mellea | 6 | 27.4 | 17.7–8.4 | 32.6–24.5 | 13.5–6.5 | 10.3 |
X. illudens | 2 | 8.6 | 29.1–14.6 | 15.8–11.9 | 8–3.8 | 30.6 |
L. auranticum | 1 | 98.9 | 14–7 | 48.4–36.3 | 9.3–4.5 | 35.8 |
3 | 27.4 | 11.0–5.5 | 62.4–46.8 | 11.0–5.3 | 32.4 | |
4 | 65.1 | 9.5–4.75 | 63.6–47.7 | 14.4–6.9 | 27.5 | |
5 | 7.0 | 6.7–3.3 | 44.2–33.2 | 10.7–5.1 | 34.8 | |
L. scrabum | 1 | 130.0 | 9.8–4.9 | 26.2–19.7 | 13.2–6.6 | 40.3 |
Russula vesca | 4 | 340.0 | 30.5–15.2 | 89.8–67.4 | 19.3–9.2 | 28.1 |
7 | 0.7 | 5.1–2.5 | 50–37.5 | 11.1–5.3 | 23.5 | |
6 | 16.3 | 6.1–3.0 | 22.2–16.7 | 12.5–6.0 | 12.9 | |
Lycoperpon molle Pers. | 6 | 6.4 | 7.0–3.5 | 91.8–68.9 | 17.7–8.5 | 39.0 |
No. on the Map | Coordinates | Distance to the Smelting Plant (km) |
---|---|---|
1 | 69.344954° N; 30.047419° E | 10.8 |
2 | 69.346596° N; 30.068108° E | 10.1 |
3 | 69.370320° N; 30.152712° E | 6.0 |
4 | 69.419159° N; 30.395873° E | 6.2 |
5 | 69.141556° N; 29.249279° E | 49.6 |
6 | 69.137638° N; 29.243715° E | 50.0 |
7 | 69.020210° N; 29.005869° E | 65.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golubkina, N.; Plotnikova, U.; Koshevarov, A.; Sosna, E.; Hlebosolova, O.; Polikarpova, N.; Murariu, O.C.; Tallarita, A.V.; Caruso, G. Nickel, Cu, Fe, Zn, and Se Accumulation, and the Antioxidant Status of Mushrooms Grown in the Arctic Under Ni/Cu Pollution and in Unpolluted Areas. Stresses 2025, 5, 25. https://doi.org/10.3390/stresses5020025
Golubkina N, Plotnikova U, Koshevarov A, Sosna E, Hlebosolova O, Polikarpova N, Murariu OC, Tallarita AV, Caruso G. Nickel, Cu, Fe, Zn, and Se Accumulation, and the Antioxidant Status of Mushrooms Grown in the Arctic Under Ni/Cu Pollution and in Unpolluted Areas. Stresses. 2025; 5(2):25. https://doi.org/10.3390/stresses5020025
Chicago/Turabian StyleGolubkina, Nadezhda, Uliana Plotnikova, Andrew Koshevarov, Evgeniya Sosna, Olga Hlebosolova, Natalia Polikarpova, Otilia Cristina Murariu, Alessio Vincenzo Tallarita, and Gianluca Caruso. 2025. "Nickel, Cu, Fe, Zn, and Se Accumulation, and the Antioxidant Status of Mushrooms Grown in the Arctic Under Ni/Cu Pollution and in Unpolluted Areas" Stresses 5, no. 2: 25. https://doi.org/10.3390/stresses5020025
APA StyleGolubkina, N., Plotnikova, U., Koshevarov, A., Sosna, E., Hlebosolova, O., Polikarpova, N., Murariu, O. C., Tallarita, A. V., & Caruso, G. (2025). Nickel, Cu, Fe, Zn, and Se Accumulation, and the Antioxidant Status of Mushrooms Grown in the Arctic Under Ni/Cu Pollution and in Unpolluted Areas. Stresses, 5(2), 25. https://doi.org/10.3390/stresses5020025