Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status
Abstract
:1. Introduction
2. Results
2.1. Changes in Root Dry Matter (RDM), Shoot Dry Matter (SDM) and [H2O2] After NaCl and Si Treatments
2.2. Changes in Photosynthetic Pigment Concentrations After NaCl and Si Treatments
2.3. Changes in Accumulation of Macronutrients and Micronutrients in Shoots and Roots After NaCl and Si Treatments
3. Discussion
4. Materials and Methods
4.1. Localization and Growth Conditions
4.2. Plant Material and Nutrient Solution
4.3. Salt Stress and Si Treatments
4.4. Experimental Methods
4.4.1. Plant Growth Determination
4.4.2. Experimental Methods
4.4.3. Hydrogen Peroxide Determination
4.4.4. Macro- and Micronutrient Determination
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abbas, T.; Balal, R.; Shahid, M.; Pervez, M.; Ayyub, C.; Aqueel, M.A.; Javaid, M. Silicon-Induced Alleviation of NaCl Toxicity in Okra (Abelmoschus esculentus) Is Associated with Enhanced Photosynthesis, Osmoprotectants and Antioxidant Metabolism. Acta Physiol. Plant. 2015, 37, 6. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Mostofa, M.G.; Akter, M.M.; Srivastava, A.K.; Sayed, M.A.; Hasan, M.S.; Tran, L.-S.P. Impact of Salt-Induced Toxicity on Growth and Yield-Potential of Local Wheat Cultivars: Oxidative Stress and Ion Toxicity Are among the Major Determinants of Salt-Tolerant Capacity. Chemosphere 2017, 187, 385–394. [Google Scholar] [CrossRef]
- Munns, R.; James, R.; Gilliham, M.; Flowers, T.; Colmer, T. Tissue Tolerance: An Essential but Elusive Trait for Salt-Tolerant Crops. Funct. Plant Biol. 2016, 43, 1103–1113. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Gilliham, M. Salinity Tolerance of Crops—What Is the Cost? Tansley Insight Salinity Tolerance of Crops—What Is the Cost? New Phytol. 2015, 208, 668–673. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-H.; Khan, A.L.; Waqas, M.; Lee, I.-J. Silicon Regulates Antioxidant Activities of Crop Plants under Abiotic-Induced Oxidative Stress: A Review. Front. Plant Sci. 2017, 8, 510. [Google Scholar] [CrossRef] [PubMed]
- Kaya, M.D.; Akdoğan, G.; Kulan, E.G.; Dağhan, H.; Sari, A. Salinity Tolerance Classification of Sunflower (Helianthus annuus L.) and Safflower (Carthamus tinctorius L.) by Cluster and Principal Component Analysis. Appl. Ecol. Environ. Res. 2019, 17, 3849–3857. [Google Scholar] [CrossRef]
- De Oliveira, R.L.L.; Prado, R.M.; Felisberto, G.; Checchio, M.V.; Gratão, P.L. Silicon Mitigates Manganese Deficiency Stress by Regulating the Physiology and Activity of Antioxidant Enzymes in Sorghum Plants. J. Soil Sci. Plant Nutr. 2019, 19, 524–534. [Google Scholar] [CrossRef]
- Santos Silva, B.; de Mello Prado, R.; Calero Hurtado, A.; Aparecida de Andrade, R.; Pereira da Silva, G. Ammonia Toxicity Affect Cations Uptake and Growth in Papaya Plants Inclusive with Silicon Addition. Acta Biol. Colomb. 2020, 25, 345–353. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Chiconato, D.A.; de Mello Prado, R.; da Silveira Sousa Junior, G.; Felisberto, G. Silicon Attenuates Sodium Toxicity by Improving Nutritional Efficiency in Sorghum and Sunflower Plants. Plant Physiol. Biochem. 2019, 142, 224–233. [Google Scholar] [CrossRef]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawany, M.; Elhawat, N.; Al-Otaibi, A. Silica Nanoparticles Boost Growth and Productivity of Cucumber under Water Deficit and Salinity Stresses by Balancing Nutrients Uptake. Plant Physiol. Biochem. 2019, 139, 1–10. [Google Scholar] [CrossRef]
- Deshmukh, R.; Sonah, H.; Belanger, R. New Evidence Defining the Evolutionary Path of Aquaporins Regulating Silicon Uptake in Land Plants. J. Exp. Bot. 2020, 71, 6775–6788. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Sun, W.; Zhu, Y.G.; Christie, P. Mechanisms of Silicon-Mediated Alleviation of Abiotic Stresses in Higher Plants: A Review. Environ. Pollut. 2007, 147, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Conceição, S.; Neto, C.; Marques, E.; Barbosa, A.; Galvão, J.; de Oliveira, T.; Okumura, R.; Martins, J.; Costa, T.; Gomes-Filho, E. Silicon Modulates the Activity of Antioxidant Enzymes and Nitrogen Compounds in Sunflower Plants under Salt Stress. Arch. Agron. Soil Sci. 2019, 65, 1237–1247. [Google Scholar] [CrossRef]
- Bosnic, P.; Bosnic, D.; Jasnic, J.; Nikolic, M. Silicon Mediates Sodium Transport and Partitioning in Maize under Moderate Salt Stress. Environ. Exp. Bot. 2018, 155, 681–687. [Google Scholar] [CrossRef]
- Flam-Shepherd, R.; Huynh, W.Q.; Coskun, D.; Hamam, A.M.; Britto, D.T.; Kronzucker, H.J. Membrane Fluxes, Bypass Flows, and Sodium Stress in Rice: The Influence of Silicon. J. Exp. Bot. 2018, 69, 1679–1692. [Google Scholar] [CrossRef]
- Liang, Y.; Zhang, W.; Chen, Q.; Liu, Y.; Ding, R. Effect of Exogenous Silicon (Si) on H+-ATPase Activity, Phospholipids and Fluidity of Plasma Membrane in Leaves of Salt-Stressed Barley (Hordeum vulgare L.). Environ. Exp. Bot. 2006, 57, 212–219. [Google Scholar] [CrossRef]
- Kumar, S.; Milstein, Y.; Brami, Y.; Elbaum, M.; Elbaum, R. Mechanism of Silica Deposition in Sorghum Silica Cells. New Phytol. 2017, 213, 791–798. [Google Scholar] [CrossRef]
- Ahmad, P.; Abass, M.; Alam, P.; Nasser, M.; Wijaya, L.; Ali, S.; Ashraf, M. Silicon (Si) Supplementation Alleviates NaCl Toxicity in Mung Bean [Vigna radiata (L.) Wilczek] through the Modifications of Physio-Biochemical Attributes and Key Antioxidant Enzymes. J. Plant Growth Regul. 2019, 38, 70–82. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Chiconato, D.A.; de Mello Prado, R.; da Silveria Sousa Junior, G.; Gratão, P.L.; Felisberto, G.; Olivera Viciedo, D.; Mathias dos Santos, D.M. Different Methods of Silicon Application Attenuate Salt Stress in Sorghum and Sunflower by Modifying the Antioxidative Defense Mechanism. Ecotoxicol. Environ. Saf. 2020, 203, 110964. [Google Scholar] [CrossRef]
- Alsaeedi, A.; El-Ramady, H.; Alshaal, T.; El-Garawani, M.; Elhawat, N.; Al-Otaibi, A. Exogenous Nanosilica Improves Germination and Growth of Cucumber by Maintaining K+/Na+ Ratio under Elevated Na+ Stress. Plant Physiol. Biochem. 2018, 125, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Xia, Y.C.; Liu, L.C.; Yin, J.L.; Ma, D.F. Beneficial Effects of Silicon on Salt Tolerance in Plants. J. Plant Nutr. Fertil. 2019, 25, 498–509. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.F.; Kuşvuran, S.; Rady, M.M. The Defensive Role of Silicon in Wheat against Stress Conditions Induced by Drought, Salinity or Cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Agarie, S.; Agata, W.; Kubota, H.; Kaufmann, P.B. Physiological Role of Silicon in Photosynthesis and Dry Matter Production in Rice Plants. Crop Sci. 1992, 61, 200–206. [Google Scholar]
- Etesami, H.; Jeong, B.R. Silicon (Si): Review and Future Prospects on the Action Mechanisms in Alleviating Biotic and Abiotic Stresses in Plants. Ecotoxicol. Environ. Saf. 2018, 147, 881–896. [Google Scholar] [CrossRef]
- Rios, J.J.; Martínez-Ballesta, M.C.; Ruiz, J.M.; Blasco, B.B.; Carvajal, M.; Martinez-Ballesta, M.C.; Ruiz, J.M.; Blasco, B.B.; Carvajal, M. Silicon-Mediated Improvement in Plant Salinity Tolerance: The Role of Aquaporins. Front. Plant Sci. 2017, 8, 948. [Google Scholar] [CrossRef]
- Liu, B.; Soundararajan, P.; Manivannan, A. Mechanisms of Silicon-Mediated Amelioration of Salt Stress in Plants. Plants 2019, 8, 307. [Google Scholar] [CrossRef]
- Fialová, I.; Šimková, L.; Vaculíková, M.; Luxová, M. Effect of Si on the Antioxidative Defense of Young Maize Roots under NaCl Stress. Silicon 2018, 10, 2911–2914. [Google Scholar] [CrossRef]
- Zhu, Z.; Wei, G.; Li, J.; Qian, Q.; Yu, J. Silicon Alleviates Salt Stress and Increases Antioxidant Enzymes Activity in Leaves of Salt-Stressed Cucumber (Cucumis sativus L.). Plant Sci. 2004, 167, 527–533. [Google Scholar] [CrossRef]
- Gomathi, R.; Rakkiyapan, P. Comparative Lipid Peroxidation, Leaf Membrane Thermostability, and Antioxidant System in Four Sugarcane Genotypes Differing in Salt Tolerance. Int. J. Plant Physiol. Biochem. 2011, 3, 67–74. [Google Scholar]
- Coskun, D.; Britto, D.T.; Huynh, W.Q.; Kronzucker, H.J. The Role of Silicon in Higher Plants under Salinity and Drought Stress. Front. Plant Sci. 2016, 7, 1072. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Bélanger, R.R. The Controversies of Silicon’s Role in Plant Biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhang, W.; Chen, Q.; Ding, R. Effects of Silicon on H+-ATPase and H+-PPase Activity, Fatty Acid Composition and Fluidity of Tonoplast Vesicles from Roots of Salt-Stressed Barley (Hordeum vulgare L.). Environ. Exp. Bot. 2005, 53, 29–37. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, X.; Hu, Y.; Han, W.; Yin, J.; Li, H.; Gong, H. Silicon Improves Salt Tolerance by Increasing Root Water Uptake in Cucumis sativus L. Plant Cell Rep. 2015, 34, 1629–1646. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Pilbeam, D.J.; Gunes, A. Interactive Effects of Salicylic Acid and Silicon on Oxidative Damage and Antioxidant Activity in Spinach (Spinacia oleracea L. Cv. Matador) Grown under Boron Toxicity and Salinity. Plant Growth Regul. 2008, 55, 207–219. [Google Scholar] [CrossRef]
- Calero Hurtado, A.; Aparecida Chiconato, D.; de Mello Prado, R.; da Silveira Sousa Junior, G.; Olivera Viciedo, D.; de Cássia Piccolo, M. Silicon Application Induces Changes C:N:P Stoichiometry and Enhances Stoichiometric Homeostasis of Sorghum and Sunflower Plants under Salt Stress. Saudi J. Biol. Sci. 2020, 27, 3711–3719. [Google Scholar] [CrossRef]
- Khoshgoftarmanesh, A.H.; Khodarahmi, S.; Haghighi, M. Effect of Silicon Nutrition on Lipid Peroxidation and Antioxidant Response of Cucumber Plants Exposed to Salinity Stress. Arch. Agron. Soil Sci. 2014, 60, 639–653. [Google Scholar] [CrossRef]
- Gurmani, A.; Bano, A.; Ullah, N.; Khan, H.; Jahangir, M.; Flowers, T.J. Exogenous Abscisic Acid (ABA) and Silicon (Si) Promote Salinity Tolerance by Reducing Sodium (Na+) Transport and Bypass Flow in Rice (“Oryza sativa” Indica). Aust. J. Crop Sci. 2013, 7, 1219–1226. [Google Scholar]
- Liu, P.; Yin, L.; Wang, S.; Zhang, M.; Deng, X.; Zhang, S.; Tanaka, K. Enhanced Root Hydraulic Conductance by Aquaporin Regulation Accounts for Silicon Alleviated Salt-Induced Osmotic Stress in Sorghum bicolor L. Environ. Exp. Bot. 2015, 111, 42–51. [Google Scholar] [CrossRef]
- Li, H.; Zhu, Y.; Hu, Y.; Han, W.; Gong, H. Beneficial Effects of Silicon in Alleviating Salinity Stress of Tomato Seedlings Grown under Sand Culture. Acta Physiol. Plant. 2015, 37, 71. [Google Scholar] [CrossRef]
- Yin, L.; Wang, S.; Tanaka, K.; Fujihara, S.; Itai, A.; Den, X.; Zhang, S. Silicon-Mediated Changes in Polyamines Participate in Silicon-Induced Salt Tolerance in Sorghum bicolor L. Plant Cell Environ. 2016, 39, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.F. Characterization of the System and Molecular Mapping of the Silicon Transporter Gene in Rice. Plant Physiol. 2004, 136, 3284–3289. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.X.; Ma, Y.P.; Liu, Y.L. Effects of Silicon (Si) on Growth, Quality and Ionic Homeostasis of Aloe under Salt Stress. S. Afr. J. Bot. 2015, 98, 26–36. [Google Scholar] [CrossRef]
- Hurtado, A.C.; Chiconato, D.A.; de Mello Prado, R.; da Silveira Sousa Junior, G.; Viciedo, D.O.; Díaz, Y.P.; Peña Calzada, K.; Gratão, P.L. Silicon Alleviates Sodium Toxicity in Sorghum and Sunflower Plants by Enhancing Ionic Homeostasis in Roots and Shoots and Increasing Dry Matter Accumulation. Silicon 2020, 12, 475–486. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants without Soil. Circ. Calif. Agric. Exp. Stn. 1950, 347, 39. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Buschmann, C.; Knapp, M. How to Correctly Determine the Different Chlorophyll Fluorescence Parameters and the Chlorophyll Fluorescence Decrease Ratio RFd of Leaves with the PAM Fluorometer. Photosynthetica 2005, 43, 379–393. [Google Scholar] [CrossRef]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The Effect of Drought and Ultraviolet Radiation on Growth and Stress Markers in Pea and Wheat. Plant. Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Bataglia, O.C.; Teixeira, J.P.F.; Furlani, P.R.; Furlani, A.M.C.; Gallo, J.R. Métodos de Análise Química de Plantas, 1st ed.; Instituto Agronômico de Campinas: Campinas, SP, Brazil, 1983. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
Treatments | H2O2 Concentration | RDM | SDM | |
---|---|---|---|---|
NaCl | Si | |||
mM | µMol g−1 FM | g plant−1 | ||
0 | 0 | 6.97 ± 0.27 aB | 0.95 ± 0.01 aA | 2.46 ± 0.07 bA |
2 | 6.79 ± 0.14 aB | 0.97 ± 0.03 aA | 2.48 ± 0.06 bA | |
100 | 0 | 22.15 ± 0.51 aA | 0.29 ± 0.03 bB | 1.35 ± 0.05 bB |
2 | 11.78 ± 0.34 bA | 0.46 ± 0.03 aB | 1.73 ± 0.07 aB |
Treatments | Photosynthetic Pigments | ||||
---|---|---|---|---|---|
NaCl | Si | Chla | Chlb | Total Chl | CAs |
mM | µg cm−2 | ||||
0 | 0 | 0.40 ± 0.01 aA | 0.38 ± 0.01 aA | 0.78 ± 0.01 aA | 3.04 ± 0.01 aA |
2 | 0.41 ± 0.01 aA | 0.39 ± 0.01 aA | 0.80 ± 0.02 aA | 3.06 ± 0.02 aA | |
100 | 0 | 0.12 ± 0.01 bB | 0.08 ± 0.01 bB | 0.20 ± 0.02 bB | 1.57 ± 0.03 bB |
2 | 0.25 ± 0.01 aB | 0.18 ± 0.01 aB | 0.43 ± 0.01 aB | 2.21 ± 0.02 aB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calero Hurtado, A.; Aparecida Chiconato, D.; Sousa Junior, G.d.S.; Prado, R.d.M.; Peña Calzada, K.; Olivera Viciedo, D. Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status. Stresses 2024, 4, 860-869. https://doi.org/10.3390/stresses4040057
Calero Hurtado A, Aparecida Chiconato D, Sousa Junior GdS, Prado RdM, Peña Calzada K, Olivera Viciedo D. Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status. Stresses. 2024; 4(4):860-869. https://doi.org/10.3390/stresses4040057
Chicago/Turabian StyleCalero Hurtado, Alexander, Denise Aparecida Chiconato, Gilmar da Silveira Sousa Junior, Renato de Mello Prado, Kolima Peña Calzada, and Dilier Olivera Viciedo. 2024. "Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status" Stresses 4, no. 4: 860-869. https://doi.org/10.3390/stresses4040057
APA StyleCalero Hurtado, A., Aparecida Chiconato, D., Sousa Junior, G. d. S., Prado, R. d. M., Peña Calzada, K., & Olivera Viciedo, D. (2024). Silicon Induces Salt Stress Amelioration in Sunflower Plants by Improving Photosynthetic Pigments and Mineral Status. Stresses, 4(4), 860-869. https://doi.org/10.3390/stresses4040057