Evaluation of the Effects of Drought Stress and Nitrogen-Sulfur Fertilization on Productivity and Yield Parameters of Spring Wheat
Abstract
:1. Introduction
2. Results and Discussion
2.1. The Dry Biomass Production of Spring Wheat During the Growing Season
2.2. The N and S Content and N/S Ratio of Spring Wheat During the Growing Season
2.3. Nitrogen and Sulfur Uptake by Spring Wheat Grain and Straw
3. Materials and Methods
3.1. Experimental Setup, Materials and Procedure
3.2. Methods for Analysis
3.3. Statistical Methods
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khalid, M.F.; Huda, S.; Yong, M.; Li, L.; Li, L.; Chen, Z.H.; Ahmed, T. Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies. Plant Growth Regul. 2023, 99, 177–194. [Google Scholar] [CrossRef]
- Pirkó, B.; Sándor, K.; Szabó, J.; Radimszky, L.; Csathó, P.; Árendás, T.; Fodor, N.; Szabóa, A. Results of hungarian field test trials set up for establishing new maximum permitted N dose values. Stud. Agric. Econ. 2020, 122, 77–85. [Google Scholar] [CrossRef]
- Koós, S.; Pirkó, B.; Szatmári, G.; Csathó, P.; Magyar, M.; Szabó, J.; Fodor, N.; Pásztor, L.; Laborczi, A.; Pokovai, K.; et al. Influence of the Shortening of the Winter Fertilization Prohibition Period in Hungary Assessed by Spatial Crop Simulation Analysis. Sustainability 2021, 13, 417. [Google Scholar] [CrossRef]
- Dostálová, Y.; Hřivna, L.; Kotková, B.; Buresova, I.; Janečková, M.; Sottnikova, V. Effect of nitrogen and sulphur fertilization on the quality of barley protein. Plant Soil Environ. 2015, 61, 399–404. [Google Scholar] [CrossRef]
- Yang, Y.; Ni, X.; Zhou, Z.; Yu, L.; Liu, B.; Yang, Y.; Wu, Y.-J. Performance of matrix-based slow-release urea in reducing nitrogen loss and improving maize yields and profits. Field Crops Res. 2017, 212, 73–81. [Google Scholar] [CrossRef]
- Péter, R.; Szabó, A.; Rékási, M.; Csathó, P.; Csontos, P. Effect of Different Macronutrient Supply Levels on the Drought Tolerance of Rainfed Grass Based on Biomass Production, Water Use Efficiency and Macroelement Content. Horticulturae 2023, 9, 1337. [Google Scholar] [CrossRef]
- Parsons, J.W.; Tinsley, J. Nitrogenous Substances. In Soil Components: Vol. 1: Organic Components; Gieseking, J.E., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 263–304. [Google Scholar]
- Mengel, K.; Kosegarten, H.; Appel, T.; Kirkby, E.A. Principles of Plant Nutrition; Springer: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Tisdale, S.L.; Nelson, W.L. Soil Fertility and Fertilizers. J. Range Manag. 1957, 19, 157. [Google Scholar]
- Gyori, Z. Sulphur Content of Winter Wheat Grain in Long Term Field Experiments. Commun. Soil Sci. Plant Anal. 2005, 36, 373–382. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, M.P. Effect of Sulphur Fertilization on Sulphur Balance in Soil and Productivity of Wheat in a Wheat–Rice Cropping System. Agric. Res. 2014, 3, 284–292. [Google Scholar] [CrossRef]
- Chan, K.X.; Wirtz, M.; Phua, S.Y.; Estavillo, G.M.; Pogson, B.J. Balancing metabolites in drought: The sulfur assimilation conundrum. Trends Plant Sci 2013, 18, 18–29. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Hossain, M.S.; Bhuyan, M.H.M.B.; Al Mahmud, J.; Nahar, K.; Fujita, M. The Role of Sulfur in Plant Abiotic Stress Tolerance: Molecular Interactions and Defense Mechanisms. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer: Singapore, 2018; pp. 221–252. [Google Scholar]
- Narayan, O.P.; Kumar, P.; Yadav, B.; Dua, M.; Johri, A.K. Sulfur nutrition and its role in plant growth and development. Plant Signal. Behav. 2023, 18, 2030082. [Google Scholar] [CrossRef] [PubMed]
- Blake-Kalff, M.M.A.; Hawkesford, M.J.; Zhao, F.J.; McGrath, S.P. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 2000, 225, 95–107. [Google Scholar] [CrossRef]
- Järvan, M.; Edesi, L.; Adamson, A.; Lukme, L.; Akk, A. The effect of sulphur fertilization on yield, quality of protein and baking properties of winter wheat. Agron. Res. 2008, 6, 459–469. [Google Scholar]
- Zhao, F.J.; Fortune, S.; Barbosa, V.L.; McGrath, S.P.; Stobart, R.; Bilsborrow, P.E.; Booth, E.J.; Brown, A.; Robson, P. Effects of sulphur on yield and malting quality of barley. J. Cereal Sci. 2006, 43, 369–377. [Google Scholar] [CrossRef]
- Schnug, E.; Haneklaus, S. The role of sulfur in sustainable agriculture. In Proceedings of the 1st Sino-German Workshop on Aspects of Sulfur Nutrition of Plants, Shenyang, China, 23–27 May 2004; 2005; pp. 131–135. [Google Scholar]
- Sharma, R.K.; Cox, M.S.; Oglesby, C.; Dhillon, J.S. Revisiting the role of sulfur in crop production: A narrative review. J. Agric. Food Res. 2024, 15, 101013. [Google Scholar] [CrossRef]
- Sonia Marli Zingaretti, M.C.I.; Lívia de Matos Pereira, T.A.P.a.; França, S.d.C. Water Stress and Agriculture. In Responses of Organisms to Water Stress; Akıncı, S., Ed.; 2013; pp. 151–179. [Google Scholar]
- Imadi, S.; Gul, A.; Dikilitas, M.; Karakas, S.; Sharma, I.; Ahmad, P. Water Stress: Types, Causes, and Impact on Plant Growth and Development. In Water Stress and Crop Plants: A Sustainable Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; pp. 343–355. [Google Scholar]
- Gupta, N.; Gupta, S.; Kumar, A. Effect of Water Stress on Physiological Attributes and their Relationship with Growth and Yield of Wheat Cultivars at Different Stages. J. Agron. Crop Sci. 2008, 186, 55–62. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Alqudah, A.M.; Samarah, N.H.; Mullen, R.E. Drought Stress Effect on Crop Pollination, Seed Set, Yield and Quality. In Alternative Farming Systems, Biotechnology, Drought Stress and Ecological Fertilisation; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 193–213. [Google Scholar]
- Henriet, C.; Aimé, D.; Térézol, M.; Kilandamoko, A.; Rossin, N.; Combes-Soia, L.; Labas, V.; Serre, R.-F.; Prudent, M.; Kreplak, J.; et al. Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. J. Exp. Bot. 2019, 70, 4287–4304. [Google Scholar] [CrossRef]
- Gent, M.; Kiyomoto, R. Assimilation and Distribution of Photosynthate in Winter Wheat Cultivars Differing in Harvest Index. Crop Sci.—CROP SCI 1989, 29, 120–125. [Google Scholar] [CrossRef]
- Unkovich, M.; Baldock, J.; Forbes, M. Chapter 5—Variability in Harvest Index of Grain Crops and Potential Significance for Carbon Accounting: Examples from Australian Agriculture. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2010; Volume 105, pp. 173–219. [Google Scholar]
- Varga, B.; Varga-László, E.; Bencze, S.; Balla, K.; Veisz, O. Water use of winter cereals under well-watered and drought-stressed conditions. Plant Soil Environ. 2013, 59, 150–155. [Google Scholar] [CrossRef]
- Reussi Calvo, N.; Echeverría, H.; Sainz Rozas, H. Diagnosing sulfur deficiency in spring red wheat: Plant analysis. J. Plant Nutr. 2011, 34, 573–589. [Google Scholar] [CrossRef]
- Spencer, K.; Freney, J.R. Assessing the Sulfur Status of Field-Grown Wheat by Plant Analysis. Agron. J. 1980, 72, 469–472. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, B. Drought and Heat Stress Injury to Two Cool-Season Turfgrasses in Relation to Antioxidant Metabolism and Lipid Peroxidation. Crop Sci. 2001, 41, 436–442. [Google Scholar] [CrossRef]
- Abdallah, M.; Dubousset, L.; Meuriot, F.; Etienne, P.; Avice, J.-C.; Ourry, A. Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L. J. Exp. Bot. 2010, 61, 2635–2646. [Google Scholar] [CrossRef]
- McGrath, S.; Zhao, F.; Withers, P. Development of sulphur deficiency in crops and its treatment. Proc. Fertil. Soc. 1996, 379, 3–47. [Google Scholar]
- Kopriva, S.; Malagoli, M.; Takahashi, H. Sulfur nutrition: Impacts on plant development, metabolism, and stress responses. J. Exp. Bot. 2019, 70, 4069–4073. [Google Scholar] [CrossRef]
- Dijkshoorn, W.; van Wijk, A.L. The sulphur requirements of plants as evidenced by the sulphur-nitrogen ratio in the organic matter a review of published data. Plant Soil 1967, 26, 129–157. [Google Scholar] [CrossRef]
- Klikocka, H.; Cybulska, M.; Nowak, A. Efficiency of Fertilization and Utilization of Nitrogen and Sulphur by Spring Wheat. Pol. J. Environ. Stud. 2017, 26, 2029. [Google Scholar] [CrossRef]
- Randall, P.; Spencer, K.; Freney, J. Sulfur and nitrogen fertilizer effects on wheat. I. Concentrations of sulfur and nitrogen and the nitrogen to sulfur ratio in grain, in relation to the yield response. Aust. J. Agric. Res. 1981, 32, 203–212. [Google Scholar] [CrossRef]
- Dash, A.K.; Singh, H.K.; Mahakud, T.; Pradhan, K.C.; Jena, D. Interaction Effect of Nitrogen, Phosphorus, Potassium with Sulphur, Boron and Zinc on Yield and Nutrient Uptake by Rice Under Rice—Rice Cropping System in Inceptisol of Coastal Odisha. Int. Res. J. Agric. Sci. Soil Sci. 2015, 5, 14–21. [Google Scholar] [CrossRef]
- Assefa, S.; Haile, W.; Tena, W. Effects of phosphorus and sulfur on yield and nutrient uptake of wheat (Triticum aestivum L.) on Vertisols, North Central, Ethiopia. Heliyon 2021, 7, e06614. [Google Scholar] [CrossRef] [PubMed]
- MÉM-NAK. Fertilization Guidelines and Calculation Methods (in Hungarian); Mezőgazdasági Kiadó: Budapest, Hungary, 1979. [Google Scholar]
- Balanagoudar, S.R.; Satyanarayana, T. Depth distribution of different forms of sulphur in Vertisols and Alfisols. J. Indian Soc. Soil Sci. 1990, 38, 634–640. [Google Scholar]
- Bankole, G.O.; Sakariyawo, O.S.; Odelana, T.B.; Aghorunse, A.C.; Adejuyigbe, C.O.; Azeez, J.O. Sulfur Fractions, Distribution and Sorption Characteristics in Some Soils of Ogun State, Southwestern Nigeria. Commun. Soil Sci. Plant Anal. 2022, 53, 1887–1902. [Google Scholar] [CrossRef]
- Dai, J.; Bean, B.; Brown, B.; Bruening, W.; Edwards, J.; Flowers, M.; Karow, R.; Lee, C.; Morgan, G.; Ottman, M.; et al. Harvest index and straw yield of five classes of wheat. Biomass Bioenergy 2016, 85, 223–227. [Google Scholar] [CrossRef]
Treatments | BBCH 30–32 | BBCH 61–65 | BBCH 89 | BBCH 89 | BBCH 89 | ||
---|---|---|---|---|---|---|---|
g/3 Plants | g/3 Plants | Straw (g/Pot) | Grain (g/Pot) | HI | |||
Adequate watering (60%) | N0S0 | control | 4.17 ± 0.12 a | 17.10 ± 0.89 ab | 20.30 ± 0.82 b | 8.20 ± 0.29 ab | 0.288 bc |
N112S22.4 | N:S = 1:0.2 | 4.83 ± 0.06 ab | 21.00 ± 1.93 c | 25.43 ± 1.64 d | 14.76 ± 0.65 c | 0.368 c | |
N112S28 | N:S = 1:0.25 | 5.00 ± 0.35 b | 19.23 ± 1.72 bc | 23.83 ± 1.80 cd | 11.25 ± 3.05 bc | 0.314 bc | |
N112S56 | N:S = 1:0.5 | 5.03 ± 0.25 b | 20.43 ± 1.00 c | 26.37 ± 1.36 d | 15.84 ± 2.16 d | 0.374 c | |
Reduced watering (40%) | N0S0 | control | 4.50 ± 0.36 ab | 15.50 ± 0.20 a | 16.73 ± 0.40 a | 4.80 ± 0.96 a | 0.222 ab |
N112S22.4 | N:S = 1:0.2 | 4.50 ± 0.26 ab | 15.83 ± 0.72 a | 20.87 ± 0.90 bc | 4.37 ± 1.19 a | 0.171 a | |
N112S28 | N:S = 1:0.25 | 4.67 ± 0.40 ab | 15.63 ± 0.60 a | 21.40 ± b1.21 c | 3.88 ± 1.36 a | 0.151 a | |
N112S56 | N:S = 1:0.5 | 4.77 ± 0.21 ab | 15.83 ± 0.40 a | 20.43 ± 0.51 b | 4.69 ± 1.11 a | 0.186 a |
Treatments | BBCH 30–32 | BBCH 61–65 | BBCH 89 | |||
---|---|---|---|---|---|---|
Straw | Grain | |||||
N% | ||||||
Adequate watering (60%) | N0S0 | Control | 3.19 ± 0.24 a | 1.11 ± 0.11 a | 0.34 ± 0.03 a | 2.05 ± 0.05 a |
N112S22.4 | N:S = 1:0.2 | 4.84 ± 0.11 b | 1.25 ± 0.03 a | 0.36 ± 0.08 a | 1.95 ± 0.07 a | |
N112S28 | N:S = 1:0.25 | 4.62 ± 0.33 b | 1.37 ± 0.12 ab | 0.42 ± 0.16 a | 2.05 ± 0.16 a | |
N112S56 | N:S = 1:0.5 | 4.62 ± 0.39 b | 1.25 ± 0.05 a | 0.32 ± 0.06 a | 1.80 ± 0.13 a | |
Reduced watering (40%) | N0S0 | Control | 3.35 ± 0.17 a | 1.67 ± 0.08 b | 0.54 ± 0.12 a | 2.94 ± 0.43 b |
N112S22.4 | N:S = 1:0.2 | 4.94 ± 0.09 b | 2.59 ± 0.30 c | 0.96 ± 0.06 b | 4.21 ± 0.29 c | |
N112S28 | N:S = 1:0.25 | 4.81 ± 0.15 b | 2.63 ± 0.10 c | 0.94 ± 0.06 b | 4.45 ± 0.33 c | |
N112S56 | N:S = 1:0.5 | 4.69 ± 0.19 b | 2.56 ± 0.08 c | 0.83 ± 0.02 b | 3.91 ± 0.25 c | |
S% | ||||||
Adequate watering (60%) | N0S0 | Control | 0.28 ± 0.06 a | 0.21 ± 0.03 abc | 0.29 ± 0.04 a | 0.20 ± 0.01 cd |
N112S22.4 | N:S = 1:0.2 | 0.33 ± 0.03 a | 0.17 ± 0.00 a | 0.25 ± 0.02 a | 0.15 ± 0.01 a | |
N112S28 | N:S = 1:0.25 | 0.31 ± 0.01 a | 0.17 ± 0.00 a | 0.27 ± 0.03 a | 0.17 ± 0.01 ab | |
N112S56 | N:S = 1:0.5 | 0.32 ± 0.03 a | 0.19 ± 0.01 ab | 0.28 ± 0.02 a | 0.18 ± 0.01 abc | |
Reduced watering (40%) | N0S0 | Control | 0.31 ± 0.01 a | 0.18 ± 0.01 a | 0.24 ± 0.03 a | 0.15 ± 0.01 a |
N112S22.4 | N:S = 1:0.2 | 0.28 ± 0.02 a | 0.25 ± 0.02 c | 0.31 ± 0.02 a | 0.24 ± 0.02 d | |
N112S28 | N:S = 1:0.25 | 0.27 ± 0.01 a | 0.24 ± 0.03 bc | 0.32 ± 0.06 a | 0.23 ± 0.01 d | |
N112S56 | N:S = 1:0.5 | 0.29 ± 0.01 a | 0.21 ± 0.01 ab | 0.30 ± 0.03 a | 0.19 ± 0.01 bcd | |
N/S | ||||||
Adequate watering (60%) | N0S0 | Control | 11.68 ± 1.97 ab | 5.18 ± 0.72 a | 1.17 ± 0.20 a | 10.08 ± 0.45 a |
N112S22.4 | N:S = 1:0.2 | 14.81 ± 1.52 bc | 7.32 ± 0.08 b | 1.39 ± 0.18 ab | 12.80 ± 0.30 a | |
N112S28 | N:S = 1:0.25 | 14.87 ± 1.41 bc | 8.06 ± 0.58 bc | 1.54 ± 0.40 ab | 12.38 ± 0.41 a | |
N112S56 | N:S = 1:0.5 | 14.58 ± 1.53 bc | 6.61 ± 0.42 ab | 1.13 ± 0.23 a | 10.20 ± 1.15 a | |
Reduced watering (40%) | N0S0 | Control | 10.99 ± 0.13 a | 9.38 ± 0.51 cd | 2.27 ± 0.53 bc | 19.34 ± 2.75 b |
N112S22.4 | N:S = 1:0.2 | 17.58 ± 1.01 c | 10.75 ± 0.35 de | 3.11 ± 0.05 c | 19.49 ± 1.15 b | |
N112S28 | N:S = 1:0.25 | 17.54 ± 0.05 c | 11.09 ± 1.13 de | 2.96 ± 0.49 c | 19.52 ± 0.14 b | |
N112S56 | N:S = 1:0.5 | 16.33 ± 0.35 c | 12.04 ± 0.76 e | 2.74 ± 0.34 c | 20.14 ± 0.94 b |
Treatments | N Uptake (mg/Pot) | S Uptake (mg/pot) | ||||
---|---|---|---|---|---|---|
Grain | Straw | Grain | Straw | |||
Adequate watering (60%) | N0S0 | Control | 168.3 ± 1.4 a | 69.8 ± 4.3 a | 16.69 ± 0.68 abc | 59.32 ± 3.83 ab |
N112S22.4 | N:S = 1:0.2 | 288.7 ± 9.9 b | 88.5 ± 12.8 a | 22.56 ± 2.05 cd | 63.19 ± 5.02 ab | |
N112S28 | N:S = 1:0.25 | 227.5 ± 33.9 ab | 100.2 ± 19.2 a | 18.50 ± 6.01 bc | 65.24 ± 4.83 ab | |
N112S56 | N:S = 1:0.5 | 286.7 ± 27.5 b | 83.4 ± 5.9 a | 28.13 ± 5.52 d | 74.42 ± 4.09 b | |
Reduced watering (40%) | N0S0 | Control | 138.6 ± 5.7 a | 90.0 ± 8.9 a | 7.30 ± 1.48 a | 39.83 ± 3.03 a |
N112S22.4 | N:S = 1:0.2 | 181.6 ± 19.6 ab | 199.9 ± 9.8 b | 9.36 ± 2.38 ab | 64.32 ± 3.69 ab | |
N112S28 | N:S = 1:0.25 | 169.7 ± 25.1 a | 201.6 ± 5.3 b | 8.71 ± 2.61 a | 68.27 ± 6.68 ab | |
N112S56 | N:S = 1:0.5 | 182.2 ± 19.3 ab | 169.9 ± 4.1 b | 9.11 ± 2.26 ab | 62.09 ± 3.92 ab |
Water Supply | Field Water Capacity | N:S Ratio | N Doses (kg/ha) | N Doses (g/10 kg) | S Doses (kg/ha) | S Doses (g/10 kg) |
---|---|---|---|---|---|---|
Adequate | 60% | - | 0 | 0 | 0 | 0 |
1:0.2 | 112 | 0.3733 | 22.4 | 0.0746 | ||
1:0.25 | 112 | 0.3733 | 28 | 0.0933 | ||
1:0.5 | 112 | 0.3733 | 56 | 0.1866 | ||
Reduced | 40% | - | 0 | 0 | 0 | 0 |
1:0.2 | 112 | 0.3733 | 22.4 | 0.0746 | ||
1:0.25 | 112 | 0.3733 | 28 | 0.0933 | ||
1:0.5 | 112 | 0.3733 | 56 | 0.1866 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Juhász, E.K.; Kremper, R.; Tállai, M.; Béni, Á.; Novák, T.; Balla Kovács, A. Evaluation of the Effects of Drought Stress and Nitrogen-Sulfur Fertilization on Productivity and Yield Parameters of Spring Wheat. Stresses 2024, 4, 850-859. https://doi.org/10.3390/stresses4040056
Juhász EK, Kremper R, Tállai M, Béni Á, Novák T, Balla Kovács A. Evaluation of the Effects of Drought Stress and Nitrogen-Sulfur Fertilization on Productivity and Yield Parameters of Spring Wheat. Stresses. 2024; 4(4):850-859. https://doi.org/10.3390/stresses4040056
Chicago/Turabian StyleJuhász, Evelin Kármen, Rita Kremper, Magdolna Tállai, Áron Béni, Tibor Novák, and Andrea Balla Kovács. 2024. "Evaluation of the Effects of Drought Stress and Nitrogen-Sulfur Fertilization on Productivity and Yield Parameters of Spring Wheat" Stresses 4, no. 4: 850-859. https://doi.org/10.3390/stresses4040056
APA StyleJuhász, E. K., Kremper, R., Tállai, M., Béni, Á., Novák, T., & Balla Kovács, A. (2024). Evaluation of the Effects of Drought Stress and Nitrogen-Sulfur Fertilization on Productivity and Yield Parameters of Spring Wheat. Stresses, 4(4), 850-859. https://doi.org/10.3390/stresses4040056