Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets?
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Species
4.2. Plant Sampling
4.3. Greenhouse Experiment
4.4. Plant Biomass Measurement
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mareri, L.; Parrotta, L.; Cai, G. Environmental Stress and Plants. Int. J. Mol. Sci. 2022, 23, 5416. [Google Scholar] [CrossRef] [PubMed]
- Lichtenthaler, H.K. The Stress Concept in Plants: An Introduction. Ann. N. Y. Acad. Sci. 1998, 851, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Abrahamson, W.G. Demography and vegetative reproduction. In Demography and the Evolution of Plant Populations, 1st ed.; Solbrig, O.T., Ed.; Blackwell Scientific: Oxford, England, 1980; pp. 89–106. [Google Scholar]
- Bloom, A.J.; Chapin, F.S., III; Mooney, H.A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Stearns, S.C. The Evolution of Life Histories, 1st ed.; Oxford University Press: London, UK, 1992; 249p. [Google Scholar]
- Janeček, Š.; Patáčová, E.; Klimešová, J. Effects of fertilization and competition on plant biomass allocation and internal resources: Does Plantago lanceolata follow the rules of economic theory? Folia Geobot. 2014, 49, 49–64. [Google Scholar] [CrossRef]
- Martínková, J.; Klimeš, A.; Klimešová, J. Young clonal and non-clonal herbs differ in growth strategy but not in aboveground biomass compensation after disturbance. Oecologia 2020, 193, 925–935. [Google Scholar] [CrossRef]
- Roff, D.A. Life History Evolution, 1st ed.; Sinauer Associates: Sunderland, ON, USA, 2002; 527p. [Google Scholar]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Mastalerczuk, G.; Borawska-Jarmułowicz, B.; Darkalt, A. Changes in the physiological and morphometric characteristics and biomass distribution of forage grasses growing under conditions of drought and silicon application. Plants 2012, 12, 16. [Google Scholar] [CrossRef]
- Bebre, I.; Marques, I.; Annighöfer, P. Biomass Allocation and Leaf Morphology of Saplings Grown under Various Conditions of Light Availability and Competition Types. Plants 2022, 11, 305. [Google Scholar] [CrossRef]
- Zenir, M.C.; López-Pozo, M.; Polutchko, S.K.; Stewart, J.J.; Adams, W.W., III; Escobar, A.; Demmig-Adams, B. Productivity and Nutrient Quality of Lemna minor as Affected by Microbiome, CO2 Level, and Nutrient Supply. Stresses 2023, 3, 69–85. [Google Scholar] [CrossRef]
- Nabity, P.D.; Zavala, J.A.; DeLucia, E.H. Indirect suppression of photosynthesis on individual leaves by arthropod herbivory. Ann. Bot. 2009, 103, 655–663. [Google Scholar] [CrossRef]
- Wiley, E.; Huepenbecker, S.; Casper, B.B.; Helliker, B.R. The effects of defoliation on carbon allocation: Can carbon limitation reduce growth in favour of storage? Tree Physiol. 2013, 33, 1216–1228. [Google Scholar] [CrossRef] [PubMed]
- Eyles, A.; Smith, D.; Pinkard, E.A.; Smith, I.; Corkrey, R.; Elms, S.; Beadle, C.; Mohammed, C. Photosynthetic responses of field-grown Pinus radiata trees to artificial and aphid-induced defoliation. Tree Physiol. 2011, 31, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Zhao, M.; Li, Q.; Liu, X.; Song, H.; Peng, X.; Wang, H.; Yang, N.; Fan, P.; Wan, R.; et al. Effects of defoliation modalities on plant growth, leaf traits, and carbohydrate allocation in Amorpha fruticosa L. and Robinia pseudoacacia L. seedlings. Ann. For. Sci. 2020, 77, 53. [Google Scholar] [CrossRef]
- Abrahamson, W.G. Reproductive strategies of dewberries. Ecology 1975, 56, 721–726. [Google Scholar] [CrossRef]
- Thompson, F.L.; Eckert, C.G. Trade-offs between sexual and clonal reproduction in an aquatic plant: Experimental manipulations vs. phenotypic correlations. J. Evol. Biol. 2004, 17, 581–592. [Google Scholar] [CrossRef]
- Coelho, F.F.; Lopes, F.S.; Sperber, C.F. Persistence strategy of Salvinia auriculata aublet in temporary ponds of southern Pantanal, Brazil. Aquat. Bot. 2005, 81, 343–352. [Google Scholar] [CrossRef]
- Coelho, F.F.; Capelo, C.; Neves, A.C.O.; Martins, R.P.; Figueira, J.E.C. Seasonal timing of pseudoviviparous reproduction of Leiothrix (Eriocaulaceae) rupestrian species in South-eastern Brazil. Ann. Bot. 2006, 98, 1189–1195. [Google Scholar] [CrossRef]
- Cao, G.-X.; Worley, A.C. Life history trade-offs and evidence for hierarchical resource allocation in two monocarpic perennials. Plant Biol. 2013, 15, 158–165. [Google Scholar] [CrossRef]
- de Kroon, H.; Huber, H.; Stuefer, J.F.; van Groenendael, J.M. A modular concept of phenotypic plasticity in plants. New Phytol. 2005, 166, 73–82. [Google Scholar] [CrossRef]
- Stuefer, J.F.; de Kroon, H.; During, H.J. Exploitation of environmental heterogeneity by spatial division of labour in a clonal plant. Funct. Ecol. 1996, 10, 328–334. [Google Scholar] [CrossRef]
- Demetrio, G.R.; Coelho, F.F. What are the consequences of clonal integration for floral traits and reproductive investment of a broadly distributed aquatic plant? Flora 2023, 303, 152292. [Google Scholar] [CrossRef]
- Santamaria, L. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 2002, 23, 137–154. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. USA 2015, 112, 8859–8866. [Google Scholar] [CrossRef] [PubMed]
- Grace, J.B. The adaptive significance of clonal reproduction in angiosperms: An aquatic perspective. Aquat. Bot. 1993, 44, 159–180. [Google Scholar] [CrossRef]
- Schwinning, S.; Weiner, J. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 1998, 113, 447–455. [Google Scholar] [CrossRef]
- Xie, X.F.; Song, Y.B.; Zhang, Y.L.; Pan, X.; Dong, M. Phylogenetic meta-analysis of the functional traits of clonal plants foraging in changing environments. PLoS ONE 2014, 9, e107114. [Google Scholar] [CrossRef] [PubMed]
- Umaña, M.N.; Cao, M.; Lin, L.; Swenson, N.G.; Zhang, C. Trade-offs in above-and below-ground biomass allocation influencing seedling growth in a tropical forest. J. Ecol. 2021, 109, 1184–1193. [Google Scholar] [CrossRef]
- Dorken, M.E.; Barrett, S.C.H. Phenotypic plasticity of vegetative and reproductive traits in monoecious and dioecious populations of Sagittaria latifolia (Alismataceae): A clonal aquatic plant. J. Ecol. 2004, 92, 32–44. [Google Scholar] [CrossRef]
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, 08747. [Google Scholar] [CrossRef]
- Bakker, E.S.; Wood, K.A.; Pagès, J.F.; Veend, G.F.; Christianene, M.J.A.; Santamaría, L.; Nolet, B.A.; Hilt, S. Herbivory on freshwater and marine macrophytes: A review and perspective. Aquat. Bot. 2016, 135, 18–36. [Google Scholar] [CrossRef]
- Soti, P.G.; Volin, J.C. Does water hyacinth (Eichhornia crassipes) compensate for simulated defoliation? Implications for effective biocontrol. Biol. Control 2010, 54, 35–40. [Google Scholar] [CrossRef]
- Andrade, E.A.; Barbosa, M.E.A.; Demetrio, G.R. Density-dependent morphological plasticity and trade-offs among vegetative traits in Eichhornia crassipes (Pontederiaceae). Acta Amaz. 2013, 4, 455–460. [Google Scholar] [CrossRef]
- Coelho, F.F.; Deboni, L.; Lopes, F.S. Density-dependent morphological plasticity in Salvinia auriculata Aublet. Aquat. Bot. 2000, 66, 273–280. [Google Scholar] [CrossRef]
- Li, W.; Wen, S.J.; Hu, W.X.; Du, G.Z. Root-shoot competition interactions cause diversity loss after fertilization: A field experiment in an alpine meadow on the Tibetan Plateau. J. Plant Ecol. 2011, 4, 138–146. [Google Scholar] [CrossRef]
- Pereto, S.C.A.S.; Ribas, L.G.S.; Wojciechowski, J.; Ceschi, F.; Dittrich, J.; Bezerra, L.A.V.; Padial, A.A. Trade-off in leaf and root investment of an abundant aquatic macrophyte in a Neotropical floodplain. Fundam. Appl. Limnol. 2016, 188, 309–314. [Google Scholar] [CrossRef]
- Bouma, T.J.; de Vries, M.B.; Low, E.; Peralta, G.; Tánczos, I.C.; van de Koppel, J.; Herman, P.M.J. Trade-offs related to ecosystem engineering: A case study on stiffness of emerging macrophytes. Ecology 2005, 86, 2187–2199. [Google Scholar] [CrossRef]
- Stuefer, J.F.; Van Hulzen, J.B.; During, H.J. A genotypic trade-off between the number and size of clonal offspring in the stoloniferous plant Potentilla reptans. J. Evol. Biol. 2002, 15, 880–884. [Google Scholar] [CrossRef]
- Wetzel, R.G. Limnology: Lake and River Ecosystems, 3rd ed.; Academic Press: San Diego, CA, USA, 2011; 606p. [Google Scholar]
- Xie, Y.H.; An, S.Q.; Wu, B.F.; Wang, W.W. Density-dependent root morphology and root distribution in the submerged plant Vallisneria natans. Environ. Exp. Bot. 2006, 57, 195–200. [Google Scholar] [CrossRef]
- Shipley, B.; Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation. Funct. Ecol. 2002, 16, 326–331. [Google Scholar] [CrossRef]
- Alpert, P.; Simms, E.L. The relative advantages of plasticity and fixicity in different environments: When is it good for a plant to adjust? Evol. Ecol. 2002, 16, 285–297. [Google Scholar] [CrossRef]
- Wijesinghe, D.K.; Hutchings, M.J. The effects of environmental heterogeneity on the performance of Glechoma hederacea: The interactions between patch contrast and patch scale. J. Ecol. 1999, 87, 860–872. [Google Scholar] [CrossRef]
- Evans, J.P. The effect of local resource availability and clonal integration on ramet functional morphology in Hydrocotyle bonariensis. Oecologia 1992, 89, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.C.H. Sexual reproduction in Eichhornia crassipes (Water Hyacinth). 1. Fertility of clones from diverse regions. J. Appl. Ecol. 1980, 17, 101–112. [Google Scholar] [CrossRef]
- Pott, V.J.; Pott, A. Plantas Aquáticas do Pantanal, 1st ed.; Embrapa: Brasília, Brazil, 2000; 404p. [Google Scholar]
- Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. The World’s Worst Weeds: Distribution and Biology, 1st ed.; University Press of Hawaii: Honolulu, HI, USA, 1977; 609p. [Google Scholar]
- Barrett, S.C.H. Waterweed invasions. Sci. Am. 1989, 260, 90–97. [Google Scholar] [CrossRef]
- Watson, M.A. Developmental constraints: Effect on population growth and patterns of resource allocation in a clonal plant. Am. Nat. 1984, 123, 411–426. [Google Scholar] [CrossRef]
- INMET—Instituto Nacional de Meteorologia. Normais Climatológicas de Lavras; INMET—Instituto Nacional de Meteorologia: Brasília, Brazil, 2024.
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023. [Google Scholar]
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis, 1st ed.; Springer: New York, NY, USA, 2016. [Google Scholar]
Y Variable | X Variable | Term | Estimate | t Value | p Value |
---|---|---|---|---|---|
Root biomass proportion | Stem biomass proportion | Intercept | 0.6018 | 2.472 | 0.0191 * |
Stem biomass proportion | −4.7915 | −1.778 | 0.0853 * | ||
Treatment (defoliated) | −0.4651 | −2.727 | 0.0104 * | ||
Treatment (isolated and defoliated) | 0.2632 | 1.649 | 0.1092 | ||
Treatment (isolated) | 0.1160 | 0.779 | 0.4421 | ||
Leaf blade biomass proportion | Intercept | 1.2477 | 3.95 | <0.001 * | |
Leaf blade biomass proportion | −9.1477 | −3.438 | <0.01 * | ||
Treatment (defoliated) | −1.8855 | −4.29 | <0.001 * | ||
Treatment (defoliated and isolated) | −0.5727 | −1.298 | 0.2065 | ||
Treatment (isolated) | −0.3709 | −0.803 | 0.4285 | ||
Leaf blade × Treatment (defoliated) | 11.3403 | 2.997 | <0.01 * | ||
Leaf blade × Treatment (defoliated and isolated) | 4.0868 | 0.725 | 0.474 | ||
Leaf blade × Treatment (isolated) | 3.5611 | 0.849 | 0.403 | ||
Petioles biomass proportion | Intercept | 1.7691 | 7.303 | <0.001 * | |
Petioles biomass proportion | −7.0591 | −6.638 | <0.001 * | ||
Treatment (defoliated) | −0.8453 | −2.459 | <0.05 * | ||
Treatment (defoliated and isolated) | −0.2198 | −0.637 | 0.592 | ||
Treatment (isolated) | −0.2706 | −0.478 | 0.63 | ||
Petioles × Treatment (defoliated) | 2.8953 | 2.221 | <0.05 * | ||
Petioles × Treatment (defoliated and isolated) | 2.31 | 1.612 | 0.1182 | ||
Petioles × Treatment (isolated) | 2.1389 | 0.9 | 0.3759 | ||
Leaf blade biomass proportion | Petioles biomass proportion | Intercept | −3.3102 | −7.009 | <0.001 * |
Petioles biomass proportion | 5.5478 | 2.766 | <0.01 * | ||
Treatment (defoliated) | 2.2826 | 3.485 | <0.01 * | ||
Treatment (defoliated and isolated) | 0.4207 | 0.563 | 0.57817 | ||
Treatment (isolated) | 0.2458 | 0.225 | 0.823 | ||
Petioles × Treatment (defoliated) | −1.9822 | −3.647 | <0.01 * | ||
Petioles × Treatment (defoliated and isolated) | −9.0158 | −1.658 | 0.108 | ||
Petioles × Treatment (isolated) | −5.039 | −0.436 | 0.666 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demetrio, G.R.; Serafim, D.; Coelho, F.d.F. Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets? Stresses 2024, 4, 734-743. https://doi.org/10.3390/stresses4040047
Demetrio GR, Serafim D, Coelho FdF. Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets? Stresses. 2024; 4(4):734-743. https://doi.org/10.3390/stresses4040047
Chicago/Turabian StyleDemetrio, Guilherme Ramos, Dalton Serafim, and Flávia de Freitas Coelho. 2024. "Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets?" Stresses 4, no. 4: 734-743. https://doi.org/10.3390/stresses4040047
APA StyleDemetrio, G. R., Serafim, D., & Coelho, F. d. F. (2024). Is Clonal Integration a Buffer for the Stress of Resource Acquisition Depletion in Eichhornia crassipes (Pontederiaceae) Ramets? Stresses, 4(4), 734-743. https://doi.org/10.3390/stresses4040047