Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity
Abstract
:1. Introduction
2. Effects of Salinity and Metal Stress
2.1. Impact of Salinity on Soil Properties
2.2. Impact of Metal Stress on Soil Properties
2.3. Impact of Salinity on Crop Productivity
2.4. Impact of Metal Stress on Crops
3. Types and General Role of Organic Amendments
3.1. Biochar
3.2. Compost
3.3. Vermicompost
3.4. Green Manure
3.5. Duckweed and Water Hyacinth
3.6. Poultry Manure
3.7. Farmyard Manure
3.8. Press Mud
3.9. Others
4. Biochemical and Physiological Adaptations to Stresses in Crops and Soil through Different Organic Amendments
4.1. Organic Amendments and Improved Soil Quality under Salinity
4.2. Organic Amendments Improve Crop Growth under Salinity
4.3. Organic Amendments Enhance Relative Water Content, Photosynthetic Pigments, and Reduce EL under Salinity
4.4. Organic Amendments Improve Antioxidant Activities
4.5. Organic Amendments Maintain Ionic Homeostasis under Salinity
4.6. Organic Amendments Increased the Yield under Salinity
4.7. Alleviating Metal Stress through OA
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, M.; Zhao, S.; Wang, L.; Chen, S.; Li, S.; Lei, X.; Sun, X.; Qin, L. Salt stress-induced changes in microbial community structures and metabolic processes result in increased soil cadmium availability. Sci. Total Environ. 2021, 782, 147125. [Google Scholar] [CrossRef]
- Nosek, M.; Kaczmarczyk, A.; Jędrzejczyk, R.J.; Supel, P.; Kaszycki, P.; Miszalski, Z. Expression of Genes Involved in Heavy Metal Trafficking in Plants Exposed to Salinity Stress and Elevated Cd Concentrations. Plants 2020, 9, 475. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, I.; Akhtar, M.J.; Zahir, Z.A.; Mitter, B. Organic amendments: Effects on cereals growth and cadmium remediation. Int. J. Sci. Technol. 2014, 12, 2919–2928. [Google Scholar] [CrossRef]
- Alvarez, A.; Saez, J.M.; Davila Costa, J.S.; Colin, V.L.; Fuentes, M.S.; Cuozzo, S.A.; Benimeli, C.S.; Polti, M.A.; Amoroso, M.J. Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere 2017, 166, 41–62. [Google Scholar] [CrossRef] [PubMed]
- Askari, M.S.; Alamdari, P.; Chahardoli, S.; Afshari, A. Quantification of heavy metal pollution for environmental assessment of soil condition. Environ. Monit Assess 2020, 192, 162. [Google Scholar] [CrossRef] [PubMed]
- Ali, I.; Yuan, P.; Ullah, S.; Iqbal, A.; Zhao, Q.; Liang, H.; Khan, A.; Zhang, H.; Wu, X.; Ei, S.; et al. Biochar amendment and nitrogen fertilizer contribute to the changes in soil properties and microbial communities in a paddy field. Front. Microbiol. 2022, 13, 834751. [Google Scholar] [CrossRef] [PubMed]
- Mulugeta, A.; Getahun, G. Effect of organic amendments on soil fertility and environmental quality. J. Plant Sci. 2020, 8, 112–119. [Google Scholar]
- Hoque, M.N.; Imran, S.; Hannan, A.; Paul, N.C.; Mahamud, M.A.; Chakrobortty, J.; Sarker, P.; Irin, I.J.; Brestic, M.; Rhaman, M.S. Organic Amendments for Mitigation of Salinity Stress in Plants: A Review. Life 2022, 12, 1632. [Google Scholar] [CrossRef]
- Saleem, A.; Ur Rahim, H.; Khan, U.; Irfan, M.; Akbar, W.A.; Akbar, Z.; Alatalo, J.M. Organic materials amendments can improve NPK availability and maize growth by reducing heavy metals stress in calcareous soil. Int. J. Environ. Sci. Technol. 2024, 21, 2533–2546. [Google Scholar] [CrossRef]
- Ali, K.; Arif, M.; Shah, F.; Shehzad, A.; Munsif, F.; Mian, I.A.; Mian, A.A. Improvement in maize (Zea mays L.) growth and quality through integrated use of biochar. Pak. J. Bot. 2017, 49, 85–94. [Google Scholar]
- Shirale, A.O.; Kharche, V.K.; Wakode, R.R.; Meena, B.P.; Das, H.; Gore, R.P. Influence of gypsum and organic amendments on soil properties and crop productivity in degraded black soils of central India. Commun. Soil Sci. Plant. Anal. 2018, 49, 2418–2428. [Google Scholar] [CrossRef]
- Agbede, T.M.; Oyewumi, A. Benefits of biochar, poultry manure and biochar–poultry manure for improvement of soil properties and sweet potato productivity in degraded tropical agricultural soils. Resour. Environ. Sustain. 2022, 27, 100051. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.; Franks, A.E. Attribution of crop yield responses to application of organic amendments: A critical review. Soil Till. Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Jaiswal, B.; Singh, S.; Agrawal, S.B. Improvements in Soil Physical, Chemical and Biological Properties at Natural Saline and Non-Saline Sites Under Different Management Practices. Environ. Manag. 2022, 69, 1005–1019. [Google Scholar] [CrossRef] [PubMed]
- Chahal, S.S.; Choudhary, O.P.; Mavi, M.S. Organic amendments decomposability influences microbial activity in saline soils. Arch. Agron. Soil Sci. 2017, 63, 1875–1888. [Google Scholar] [CrossRef]
- Leogrande, R.; Vitti, C. Use of organic amendments to reclaim saline and sodic soils: A review. Arid. Land Res. Manag. 2019, 33, 1–21. [Google Scholar] [CrossRef]
- Meers, E.; Ruttens, A.; Hopgood, M.; Lesage, E.; Tack, F.M. Potential of Brassic rapa, Cannabis sativa, Helianthus annuus and Zea mays for phytoextraction of heavy metals from calcareous dredged sediment derived soils. Chemosphere 2005, 61, 561–572. [Google Scholar] [CrossRef] [PubMed]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; She, D. Can rock fragment cover maintain soil and water for saline-sodic soil slopes under coastal reclamation? Catena 2017, 151, 213–224. [Google Scholar] [CrossRef]
- Bai, J.; Gao, H.; Xiao, R.; Wang, J.; Huang, C. A review of soil nitrogen mineralization as affected by water and salt in coastal wetlands: Issues and methods. Clean–Soil Air Water. 2012, 40, 1099–1105. [Google Scholar] [CrossRef]
- Sritongon, N.; Sarin, P.; Theerakulpisut, P.; Riddech, N. The effect of salinity on soil chemical characteristics, enzyme activity and bacterial community composition in rice rhizospheres in Northeastern Thailand. Sci. Rep. 2022, 12, 20360. [Google Scholar] [CrossRef]
- Hasnine, M.T.; Huda, M.E.; Khatun, R.; Saadat, A.H.M.; Ahasan, M.; Akter, S.; Uddin, M.F.; Monika, A.N.; Rahman, M.A.; Ohiduzzaman, M. Heavy Metal Contamination in Agricultural Soil at DEPZA, Bangladesh. Environ. Ecol. Res. 2017, 5, 510–516. [Google Scholar] [CrossRef]
- Obinnaa, I.B.; Ebere, E.C. Water pollution by heavy metal and organic pollutants: Brief review of sources, effects, and progress on remediation with aquatic plants. Anal. Meth. Environ. Chem. J. 2019, 2, 5–38. [Google Scholar] [CrossRef]
- Narayanan, M.; Ma, Y. Mitigation of heavy metal stress in the soil through optimized interaction between plants and microbes. J. Environ. Manag. 2023, 335, 118732. [Google Scholar] [CrossRef]
- Zhao, X.; Huang, J.; Lu, J.; Sun, Y. Study on the influence of soil microbial community on the long-term heavy metal pollution of different land use types and depth layers in mine. Ecotoxicol. Environ. Saf. 2019, 170, 218–226. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, S.; Yadav, K.K.; Shrivastava, M.; Gupta, N.; Nagar, S.; Bach, Q.; Kamyab, H. Hazardous heavy metals contamination of vegetables and food chain: Role of sustainable remediation approaches—A Review. Environ. Res. 2019, 179, 108792. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Lade, H. Plant-growth-promoting rhizobacteria to improve crop growth in saline soils: A Review. Agron. Sustain. Dev. 2014, 34, 737–752. [Google Scholar] [CrossRef]
- Keisham, M.; Mukherjee, S.; Bhatla, S.C. Mechanisms of sodium transport in plants-progresses and challenges. Int. J. Mol. Sci. 2018, 19, 647. [Google Scholar] [CrossRef]
- Hedrich, R.; Shabala, S. Stomata in a saline world. Curr. Opini. Plant Biol. 2018, 46, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Sade, N.; Del Mar Rubio-Wilhelmi, M.; Umnajkitikorn, K.; Blumwald, E. Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot. 2018, 69, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Al-Shareef, N.O.; Tester, M. Plant Salinity Tolerance. In eLS; John Wiley and Sons, Ltd.: Chichester, UK, 2019; pp. 1–6. [Google Scholar]
- Krishnamurthy, L.; Upadhyaya, H.D.; Gowda, C.L.L.X.; Kashiwagi, J.; Purushothaman, R.; Singh, S.; Vadez, V. Large variation for salinity tolerance in the core collection of foxtail millet (Setaria italica (L.) P. Beauv.) germplasm. Crop Pasture Sci. 2014, 65, 353–361. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Semida, W.M.; Rady, M.M.; Mohamed, G.F.; Hemida, K.A.; Alhammad, B.A.; Hassan, M.M.; Shami, A. Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants 2020, 9, 1783. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Mostofa, M.G.; Akter, M.M.; Sivastava, A.K.; Sayed, M.A.; Hasan, M.S.; Tran, L.S.P. Impact of salt induced toxicity on growth and yield-potential of local wheat cultivars: Oxidative stress and ion toxicity are among the major determinants of salt-tolerant capacity. Chemosphere 2017, 187, 385–389. [Google Scholar] [CrossRef]
- Ghori, N.H.; Ghori, T.; Hayat, M.; Imadi, S.R.; Gul, A.; Atey, V.; Osturk, M. Heavy metal stress and responses in plants. Int. J. Environ. Sci. Technol. 2019, 16, 1807–1828. [Google Scholar] [CrossRef]
- Aizaz, M.; Khan, I.; Lubna; Asaf, S.; Bilal, S.; Jan, R.; Khan, A.L.; Kim, K.-M.; AL-Harrasi, A. Enhanced Physiological and Biochemical Performance of Mung Bean and Maize under Saline and Heavy Metal Stress through Application of Endophytic Fungal Strain SL3 and Exogenous IAA. Cells 2023, 12, 1960. [Google Scholar] [CrossRef]
- Haider, F.U.; Liqun, C.; Coulter, J.A.; Cheema, S.A.; Wu, J.; Zhang, R.; Wenjun, M.; Farooq, M. Cadmium toxicity in plants: Impacts and remediation strategies. Ecotoxicol. Environ. Safe 2021, 211, 111887. [Google Scholar] [CrossRef]
- Major, J.; Rondon, M.; Molina, D.; Riha, S.J.; Lehmann, J. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant Soil. 2010, 333, 117–128. [Google Scholar] [CrossRef]
- Bouqbis, L.; Daoud, S.; Koyro, H.W.; Kammann, C.I.; Ainlhout, L.F.Z.; Harrouni, M.C. Biochar from argan shells: Production and characterization. Int. J. Recyc. Org. Waste Agric. 2016, 5, 361–365. [Google Scholar] [CrossRef]
- Rasa, K.; Heikkinen, J.; Hannula, M.; Arstila, K.; Kulju, S.; Hyväluoma, J. How and why does willow biochar increase a clay soil water retention capacity. Biomas. Bioener. 2018, 119, 346–353. [Google Scholar] [CrossRef]
- Isimikalu, T.O.; Olaniyan, J.O.; Affinnih, K.O.; Abdulmumin, O.; Adede, A.C.; Jibril, A.H.; Atteh, E.; Yusuf, S. Rice husk biochar and inorganic fertilizer amendment combination improved the yield of upland rice in typical soils of Southern Guinea Savannah of Nigeria. Int. J. Recycl. Org. Waste Agric. 2022, 12, 412–456. [Google Scholar]
- Majumder, S.; Neogi, S.; Dutta, T.; Powel, M.A.; Banik, P. Th impact of biochar on soil carbon sequestration: Meta- analytical approach to evaluating environmental and economic advantages. J. Environ. Manag. 2019, 250, 109466. [Google Scholar] [CrossRef]
- Mandal, S.; Pu, S.; Adhikari, S.; Ma, H.; Kim, D.H.; Bai, Y.; Hou, D. Progress and future prospects in biochar composites: Application and reflection in the soil environment. Crit. Rev. Environ. Sci. Technol. 2021, 51, 219–271. [Google Scholar] [CrossRef]
- Yadav, V.; Karak, T.; Singh, S.; Singh, A.K.; Khare, P. Benefits of biochar over other organic amendments: Responses for plant productivity (Pelargonium graveolens L.) and nitrogen and phosphorus losses. Ind. Crops Prod. 2019, 131, 96–105. [Google Scholar] [CrossRef]
- Dahlawi, S.; Naeem, A.; Rengel, Z.; Naidu, R. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. Sci. Total Environ. 2018, 625, 320–335. [Google Scholar]
- Kocsis, T.; Kotroczó, Z.; Kardos, L.; Biró, B. Optimization of increasing biochar doses with soil–plant–microbial functioning and nutrient uptake of maize. Environ. Technol. Innov. 2020, 20, 101191. [Google Scholar] [CrossRef]
- Alam, M.; Zawar, H.; Anwarzeb, K.; Muhammad, A.K.; Abdur, R.; Muhammad, A.; Muhammad, A.S.; Asim, M. The effects of organic amendments on heavy metals bioavailability in mine impacted soil and associated human health risk. Sci. Hort. 2020, 262, 109067. [Google Scholar] [CrossRef]
- Gul, S.; Naz, A.; Fareed, I.; Irshad, M. Reducing Heavy Metals Extraction from Contaminated Soils Using Organic and Inorganic Amendments—A Review. Pol. J. Environ. Stud. 2015, 24, 1423–1426. [Google Scholar]
- Hannan, F.; Islam, F.; Huang, Q.; Farooq, M.A.; Ayyaz, A.; Fang, R.; Ali, B.; Xie, X.; Zhou, W. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil. Chemosphere 2021, 282, 130897. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Elbagory, M. Reducing the Adverse Effects of Salt Stress by Utilizing Compost Tea and Effective Microorganisms to Enhance the Growth and Yield of Wheat (Triticum aestivum L.) Plants. Agronomy 2023, 13, 823. [Google Scholar] [CrossRef]
- Guo, X.-X.; Liu, H.-T.; Zhang, J. The role of biochar in organic waste composting and soil improvement: A review. Waste Manag. 2020, 102, 884–899. [Google Scholar] [CrossRef]
- Manirakiza, N.; Şeker, C. Effects of compost and biochar amendments on soil fertility and crop growth in a calcareous soil. J. Plant Nutr. 2020, 43, 3002–3019. [Google Scholar] [CrossRef]
- Khatun, M.; Shuvo, M.A.R.; Salam, M.T.B.; Rahman, S.M.H. Effect of organic amendments on soil salinity and the growth of maize (Zea mays L.). Plant Sci. Today 2019, 6, 106–111. [Google Scholar] [CrossRef]
- Oo, A.N.; Iwai, C.B.; Saenjan, P. Soil properties and maize growth in saline and nonsaline soils using cassava-industrial waste compost and vermicompost with and without earthworms. Land Degrad. Dev. 2015, 26, 300–310. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V.; Vinci, G.; Verrillo, M.; Aliberti, A.; Maggio, A.; Barone, A.; Piccolo, A. Fertilization with compost mitigates salt stress in tomato by affecting plant metabolomics and nutritional profiles. Chem. Biol. Technol. Agric. 2022, 9, 104. [Google Scholar] [CrossRef]
- Ahmed, K.; Sajib, A.I.; Naseem, A.R.; Qadir, G.; Nawaz, M.Q.; Khalid, M.; Warraich, I.A.; Arif, M. Use of hyacinth compost in salt-affected soils. Pak. J. Agric. Res. 2021, 33, 720–728. [Google Scholar] [CrossRef]
- Cui, H.; Ou, Y.; Wang, L.; Yan, B.; Li, Y.; Bao, M. Critical passivation mechanisms on heavy metals during aerobic composting with different grain-size zeolite. J. Hazard. Mater. 2021, 406, 124313. [Google Scholar] [CrossRef]
- Wang, W.; Man, Z.; Li, X.; Chen, R.; You, Z.; Pan, T.; Dai, X.; Xiao, H.; Liu, F. Response mechanism and rapid detection of phenotypic information in rice root under heavy metal stress. J. Hazard. Mater. 2023, 449, 131010. [Google Scholar] [CrossRef]
- Tammam, A.D.; Shehata, M.R.A.M.; Pessarakli, M.; El-Aggan, W.H. Vermicompost and its role in alleviation of salt stress in plants—I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. J. Plant. Nutr. 2023, 46, 1446–1457. [Google Scholar] [CrossRef]
- He, H.; Tam, N.F.Y.; Yao, A.; Qiu, R.; Li, W.C.; Ye, Z. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere 2017, 9, 69. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [PubMed]
- Hafez, E.M.; Omara, A.E.; Alhumaydhi, F.A.; El-Esawi, M.A. Minimizing hazard impacts of soil salinity and water stress on wheat plants by soil application of vermicompost and biochar. Physiol. Plant. 2020, 172, 587–602. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Vermicompost and humic fertilizer improve coastal saline soil by regulating soil aggregates and the bacterial community. Arch. Agron. Soil Sci. 2019, 65, 281–293. [Google Scholar] [CrossRef]
- Chavez, E.; He, Z.L.; Stoffella, P.J.; Mylavarapu, R.; Li, Y.; Baligar, V.C. Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. Environ. Sci. Pollut. Res. 2016, 23, 17571–17580. [Google Scholar] [CrossRef]
- Ciura, J.; Kruk, J. Phytohormones as targets for improving plant productivity and stress tolerance. J. Plant Physiol. 2018, 229, 32–40. [Google Scholar] [CrossRef]
- Irin, I.J.; Biswas, P.K. Residual Effect of Green Manure on Soil Properties in Green Manure-Transplant Aman-Mustard Cropping Pattern. Indian J. Agric. Res. 2023, 57, 67–72. [Google Scholar] [CrossRef]
- Irin, I.J.; Hoque, M.N.; Hannan, A.; Alam, M.M. Green manure for soil salinity reclamation—A comprehensive review. J. Agric. Food Envirn. 2022, 3, 5–14. [Google Scholar]
- Mubarak, A.R.; Nortclif, S. Calcium carbonate solubilization through H-proton release from some legumes grownin calcareous saline sodic soils. Land Degrad. Dev. 2010, 21, 24–31. [Google Scholar] [CrossRef]
- Yazdanpanah, N. CO2 emission and structural characteristics of two calcareous soils amended with municipalsolid waste and plant residue. Solid Earth. 2016, 7, 105–114. [Google Scholar] [CrossRef]
- Choudhary, O.P.; Ghuman, B.S.; Thuy, N.; Buresh, R.J. Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice–wheat cropping system in a calcareous soil. Field Crops Res. 2011, 121, 363–372. [Google Scholar] [CrossRef]
- Parwar, S.K.; Kumbhar, G.A.; Dighe, P.K. Comparative study of crop residue, green manuring and gypsum on chemical properties and yield of cotton in salt affected oils of purna valley. J. Pharmacogn. Phytochem. 2020, 9, 442–445. [Google Scholar]
- Irin, I.J.; Biswas, P.K.; Ullah, M.J.; Roy, T.S. Effect of in situ green manuring crops and chemical fertilizer on yield of T. Aman rice and mustard. Asian J. Crop Soil Sci. Plant Nutr. 2020, 2, 68–79. [Google Scholar] [CrossRef]
- Kim, K.R.; Owens, G.; Kwon, S.I. Influence of Indian mustard (Brassica juncea) on rhizosphere soil solution chemistry in long-term contaminated soils: A rhizobox study. J. Environ. Sci. 2010, 22, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Foucault, Y.; Lévêque, T.; Xiong, T.; Schreck, E.; Austruy, A.; Shahid, F.; Dumat, C. Green manure plants for remediation of soils polluted by metals and metalloids: Ecotoxicity and human bioavailability assessment. Chemosphere 2013, 93, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Bruning, B.; Van, L.R.; Broekman, R.; Vos, A.D.; González, A.P.; Rozema, Z. Growth and nitrogen fixation of legumes at increased salinity under field conditions: Implications for the use of green manures in saline environments. AoB Plants 2015, 7, 10. [Google Scholar] [CrossRef]
- Dhir, B. Use of aquatic plants in removing heavy metals from wastewater. Int. J. Environ. Eng. 2010, 2, 185–201. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Miras-Moreno, B.; Senizza, B.; Lucini, L.; Trevisan, M.; Morelli Venturi, D.; Costantino, F.; Proietti, P. Bio stimulant Effects of an Aqueous Extract of Duckweed (Lemna minor L.) on Physiological and Biochemical Traits in the Olive Tree. Agriculture 2021, 11, 1299. [Google Scholar] [CrossRef]
- Zhou, Y.; Stepanenko, A.; Kishchenko, O.; Xu, J.; Borisjuk, N. Duckweeds for Phytoremediation of Polluted Water. Plants 2023, 12, 589. [Google Scholar] [CrossRef]
- Leblebici, Z.; Aksoy, A.; Duman, F. Influence of salinity on the growth and heavy metal accumulation capacity of Spirodela polyrrhiza (Lemnaceae). Turk. J. Biol. 2011, 35, 215–220. [Google Scholar] [CrossRef]
- TU, S.; Subash, A. Desalination of sea water using water hyacinth activated carbon. Int. Res. J. Eng. Technol. 2022, 9, 309–313. [Google Scholar]
- Guzmán, E.T.R.; Gutiérrez, L.R.R.; Allende, M.J.M.; Acevedo, Z.I.G.; Gutiérrez, M.T.O. Physicochemical properties of non-living water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor) and their influence on the As (V) adsorption processes. Chem. Ecol. 2013, 29, 459–475. [Google Scholar] [CrossRef]
- Mockeviciene, I.; Repsiene, R.; Amaleviciute-Volunge, K.; Karcauskiene, D.; Slepetiene, A.; Lepane, V. Effect of long-term application of organic fertilizers on improving organic matter quality in acid soil. Arch. Agron. Soil Sci. 2022, 68, 1192–1204. [Google Scholar] [CrossRef]
- Singh, A.; Agrawal, M. Management of heavy metal contaminated soil by using organic and inorganic fertilizers: Effect on plant performance. IIOAB J. 2011, 2, 22–30. [Google Scholar]
- Rani, N.; Singh, D.; Sikka, R. Effect of applied chromium and amendments on dry matter yield and uptake in maize-Indian mustard rotation in soils irrigated with sewage and tubewell waters. Agric. Res. J. 2018, 55, 677. [Google Scholar] [CrossRef]
- Chattha, M.U.; Arif, W.; Khan, I.; Soufan, W.; Bilal Chattha, M.; Hassan, M.U.; Ullah, N.; Sabagh, A.E.; Qari, S.H. Mitigation of Cadmium Induced Oxidative Stress by Using Organic Amendments to Improve the Growth and Yield of Mash Beans [Vigna mungo (L.)]. Agronomy 2021, 11, 2152. [Google Scholar] [CrossRef]
- Kumar, S.; Meena, R.; Jinger, D.; Jatav, H.S.; Banjara, T. Use of press mud compost for improving crop productivity and soil health. Int. J. Chem. Stud. 2017, 5, 384–389. [Google Scholar]
- Nawaz, M.; Chattha, M.; Ahmad, R.; Munir, H.; Usman, M. Assessment of compost as nutrient supplement for spring planted sugarcane (Saccharum officinarum L.). J. Anim. Plant. Sci. 2017, 27, 283–293. [Google Scholar]
- Khan, I.; Muhammad, A.; Chattha, M.U.; Skalicky, M.; Bilal, C.M.; Ahsin, A.M. Mitigation of salinity induced oxidative damage, growth and yield reduction in fine rice by sugarcane press-mud application. Front. Plant Sci. 2022, 13, 865. [Google Scholar] [CrossRef]
- Mahmood, T. Phytoextraction of heavy metals-the process and scope for remediation of contaminated soils. Soil Environ. 2010, 29, 91–109. [Google Scholar]
- Eissa, M.A. Impact of compost on metals Phyto stabilization potential of two halophytes species. Int. J. Phytoremediation 2015, 17, 662–668. [Google Scholar] [CrossRef]
- Liu, M.; Tan, X.; Zheng, M.; Yu, D.; Lin, A.; Liu, J.; Wang, C.; Gao, Z.; Cui, J. Modified biochar/humic substance/fertiliser compound soil conditioner for highly efficient improvement of soil fertility and heavy metals remediation in acidic soils. J. Environ. Manag. 2023, 325, 116614. [Google Scholar] [CrossRef]
- Navarro, C.; Díaz, M.; Villa-García, M.A. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions. Environ. Sci. Technol. 2010, 44, 5383–5388. [Google Scholar] [CrossRef]
- Kapoor, R.T.; Hasanuzzaman, M. Unlocking the potential of co-application of steel slag and biochar in mitigation of arsenic-induced oxidative stress by modulating antioxidant and glyoxalase system in Abelmoschus esculentus L. Chemosphere 2024, 17, 141232. [Google Scholar] [CrossRef]
- Saki, P.; Mafigholami, R.; Takdastan, A. Removal of cadmium from industrial. wastewater by steel slag. Jundishapur J. Health Sci. 2013, 5, 23–34. [Google Scholar]
- López-Valdez, F.; Fernández-Luqueño, F.; Luna-Guido, M.L.; Marsch, R.; Olalde-Portugal, V.; Dendooven, L. Microorganisms in sewage sludge added to an extreme alkaline saline soil affect carbon and nitrogen dynamics. Appl. Soil Ecol. 2010, 45, 2225–2231. [Google Scholar] [CrossRef]
- Cicek, N.; Erdogan, M.; Yucedag, C.; Cetin, M. Improving the detrimental aspects of salinity in salinized soils of arid and semi-arid areas for effects of vermicompost leachate on salt stress in seedlings. Water Air Soil Pollut. 2022, 233, 197. [Google Scholar] [CrossRef]
- Khatun, L.; Ali, M.A.; Sumon, M.H.; Islam, M.B.; Khatun, F. Mitigation Rice Yield Scaled Methane Emission and Soil Salinity Stress with Feasible Soil Amendments. J. Agric. Chem. Environ. 2021, 9, 16–36. [Google Scholar] [CrossRef]
- Penkam, C.; Iwal, C.B.; Kume, T. Effects of Vermicompost and Rice Husk Ash on the Change of Soil Chemical Properties and the Growth of Rice in Salt Affected Area. Int. J. Environ. Rural Develop. 2019, 10, 129–132. [Google Scholar]
- Zurbano, L.Y. Response of lettuce (Lactuca sativa) on saline soil amended with vermicompost and pulverized eggshell. Indian J. Sci. Technol. 2018, 11, 1–8. [Google Scholar] [CrossRef]
- Djajadi, D.; Syaputra, R.; Hidayati, S.N.; Khairiyah, Y. Effect of vermicompost and nitrogen on N, K, Na uptakes and growth of sugarcane in saline soil. Agrivita. J. Agric. Sci. 2020, 42, 110–119. [Google Scholar] [CrossRef]
- Beykkhormizi, A.; Abrishamchi, P.; Ganjeali, A.; Parsa, M. Effect of vermicompost on some morphological, physiological and biochemical traits of bean (Phaseolus vulgaris L.) under salinity stress. J. Plant Nutr. 2016, 39, 883–893. [Google Scholar] [CrossRef]
- Pérez-Gómez, J.D.; Abud-Archila, M.; Villalobos-Maldonado, J.J.; Enciso-Saenz, S.; de Hernández, L.H.; Ruiz-Valdiviezo, V.M.; Gutiérrez-Miceli, F.A. Vermicompost and vermiwash minimized the influence of salinity stress on growth parameters in potato Plants. Compost Sci. Util. 2017, 25, 282–287. [Google Scholar] [CrossRef]
- Benazzouk, S.; Lutts, S.; Djazouli, Z.E. Alleviation of salinity stress by Vermicompost extract in Solanum lycopersicum L. by mobilizing salt tolerance mechanisms. AgroBiologia 2018, 8, 1136–1144. [Google Scholar]
- Meena, M.D.; Joshi, P.K.; Narjary, B.; Sheoran, P.; Jat, H.S.; Chinchmalatpure, A.R.; Yadav, R.K.; Sharma, D.K. Effects of municipal solid waste compost, rice-straw compost and mineral fertilizers on biological and chemical properties of a saline soil and yields in a mustard–pearl millet cropping system. Soil Res. 2016, 54, 958–969. [Google Scholar] [CrossRef]
- Litardo, R.C.M.; Bendezú, S.J.G.; Zenteno, M.D.C.; Pérez-Almeida, I.B.; Parismoreno, L.L.; García, E.D.L. Effect of mineral and organic amendments on rice growth and yield in saline soils. J. Saudi Soc. Agric. Sci. 2022, 21, 29–37. [Google Scholar]
- Beykkhormizi, A.; Hosseini, S.; Sarafraz, A.M.; Moshtaghioun, S.; Mousavi, K.; Seyed, M. Alleviation of Salinity Stress by Vermicompost Extract: A Comparative Study on Five Fennel Landraces. Commun. Soil Sci. Plant Anal. 2018, 49, 2123–2130. [Google Scholar] [CrossRef]
- Tartoura, K.A.; Youssef, S.A.; Tartoura, E.S.A. Compost alleviates the negative effects of salinity via up-regulation of antioxidants in L. plants. Plant Growth Regul. 2014, 74, 299–310. [Google Scholar] [CrossRef]
- Cha-um, S.; Kirdmanee, C. Remediation of salt-affected soil by the addition of organic matter: An investigation into improving glutinous rice productivity. Sci. Agirc. 2011, 68, 406–410. [Google Scholar] [CrossRef]
- Sarwar, G.; Malik, M.A.; Sabah, N.-S.; Tahir, M.A.; Aftab, M.; Manzoor, M.Z.; Zafar, A. Comparative efficiency of compost, farmyard manure and sesbania green manure to produce rice-wheat crops under salt stressed environmental conditions. J. Pure Appl. Agric. 2020, 5, 33–42. [Google Scholar]
- Ghafoor, A.; Murtaza, G.; Maann, A.A.; Qadir, M.; Ahmad, B. Treatments and economic aspects of growing rice and wheat crops during reclamation of tile drained saline-sodic soils using brackish waters. Irrig. Drain. 2011, 60, 418–426. [Google Scholar] [CrossRef]
- Bhutiani, R.; Rai, N.; Kumar, N.; Rausa, M.; Ahamad, F. Treatment of industrial waste water using Water hyacinth (Eichornia crassipus) and Duckweed (Lemna minor): A Comparative study. Environ. Conserv. J. 2019, 20, 15–25. [Google Scholar] [CrossRef]
- Farhangi-Abriz, S.; Torabian, S. Biochar improved nodulation and nitrogen metabolism of soybean under salt stress. Symbiosis 2018, 74, 215–223. [Google Scholar] [CrossRef]
- Ibrahim, M.E.H.; Ali, A.Y.A.; Elsiddig, A.M.I.; Zhou, G.; Nimir, N.E.A.; Agbna, G.H.; Zhu, G. Mitigation effect of biochar on sorghum seedling growth under salinity stress. Pak. J. Bot. 2021, 53, 387–392. [Google Scholar] [CrossRef]
- Foronda, D.A. Reclamation of a Saline-Sodic Soil with Organic Amendments and Leaching. Environ. Sci. Proc. 2020, 16, 56. [Google Scholar]
- Eglous, N.M.; Alhdad, G.M.; Al-Qant, H.I.; Alar, S.M. The effects of poultry manure on growth and yield of tomato(L.esculentum mill) cultivated salt marsh soil. Sci. J. Fac. Sci.-Sirte Univ. 2023, 3, 59–67. [Google Scholar]
- Zhang, J.; Bai, Z.; Huang, J.; Hussain, S.; Zhao, F.; Zhu, C.; Zhu, L.; Cao, X.; Jin, Q. Biochar alleviated the salt stress of induced saline paddy soil and improved the biochemical characteristics of rice seedlings differing in salt tolerance. Soil Till. Res. 2019, 195, 104372. [Google Scholar] [CrossRef]
- Hafez, E.M.; Alsohim, A.S.; Farig, M.; Omara, A.E.-D.; Rashwan, E.; Kamara, M.M. Synergistic Effect of Biochar and Plant Growth Promoting Rhizobacteria on Alleviation of Water Deficit in Rice Plants under Salt-Affected Soil. Agronomy 2019, 9, 847. [Google Scholar] [CrossRef]
- Soliman, M.H.; Alnusairi, G.S.; Khan, A.A.; Alnusaire, T.S.; Fakhr, M.A.; Abdulmajeed, A.M.; Aldesuquy, H.S.; Yahya, M.; Najeeb, U. Biochar and Selenium Nanoparticles Induce Water Transporter Genes for Sustaining Carbon Assimilation and Grain Production in Salt-Stressed Wheat. J. Plant Growth Regul. 2022, 42, 1522–1543. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Alharbi, K.; Alaklabi, K. Alleviation of salinity induced growth and photosynthetic decline in wheat due to biochar and jasmonic acid application involves up-regulation of ascorbate-glutathione pathway, glyoxylase system and secondary metabolite accumulation. Rhizosphere 2022, 24, 100603. [Google Scholar] [CrossRef]
- Aibdin, Z.; Nafees, M.; Rizwan, M.; Ahmad, S.; Ali, S.; Obaid, W.A.; Alsubeie, M.S.; Darwish, D.B.E.; Abeed, A.H.A. Combined effect of Zinc lysine and biochar on growth and physiology o wheat (Triticum aestivum L.) to alleviate salinity stress. Front. Plant Sci. 2023, 13, 1017282. [Google Scholar] [CrossRef]
- Ndiate, N.I.; Saeed, Q.; Haider, F.U.; Liqun, C.; Nkoh, J.N.; Mustafa, A. Co-Application of Biochar and Arbuscular mycorrhizal Fungi Improves Salinity Tolerance, Growth and Lipid Metabolism of Maize (Zea mays L.) in an Alkaline Soil. Plants 2021, 10, 2490. [Google Scholar] [CrossRef]
- Yue, Y.; Lin, Q.; Li, G.; Zhao, X.; Chen, H. Biochar Amends Saline Soil and Enhances Maize Growth: Three-Year Field Experiment Findings. Agronomy 2023, 13, 1111. [Google Scholar] [CrossRef]
- Nikpour-Rashidabad, N.; Tavasolee, A.; Torabian, S.; Farhangi-Abriz, S. The effect of biochar on the physiological, morphological and anatomical characteristics of mung bean roots after exposure to salt stress. Arch. Biol. Sci. 2019, 71, 321–327. [Google Scholar] [CrossRef]
- Yang, A.; Akhtar, S.S.; Li, L.; Fu, Q.; Li, Q.; Naeem, M.A.; He, X.; Zhang, Z.; Jacobsen, S.E. Biochar mitigates combined effects of drought and salinity stress in quinoa. J. Agron. 2020, 10, 912. [Google Scholar] [CrossRef]
- Naveed, M.; Ramzan, N.; Mustafa, A.; Samad, A.; Niamat, B.; Yaseen, M.; Ahmad, Z.; Hasanuzzaman, M.; Sun, N.; Shi, W. Alleviation of Salinity Induced Oxidative Stress in Chenopodium quinoa by Fe Biofortification and Biochar—Endophyte Interaction. Agronomy 2020, 10, 168. [Google Scholar] [CrossRef]
- Abbas, G.; Abrar, M.M.; Naeem, M.A.; Siddiqui, M.H.; Ali, H.M.; Li, Y.; Ahmed, K.; Sun, N.; Xu, M. Biochar increases salt tolerance and grain yield of quinoa on saline-sodic soil: Multivariate comparison of physiological and oxidative stress attributes. J. Soils Sediments. 2022, 22, 1446–1459. [Google Scholar] [CrossRef]
- Akhtar, S.S.; Andersen, M.N.; Liu, F. Biochar mitigates salinity stress in potato. J. Agron. Crop Sci. 2015, 201, 368–378. [Google Scholar] [CrossRef]
- Wu, Z.; Fan, Y.; Qiu, Y.; Hao, X.; Li, S.; Kang, S. Response of yield and quality of greenhouse tomatoes to water and salt stresses and biochar addition in Northwest China. Agric. Water Manag. 2022, 270, 107736. [Google Scholar] [CrossRef]
- She, D.; Sun, X.; Gamareldawla, A.H.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef]
- Ekinci, M.; Turan, M.; Yildirim, E. Biochar mitigates salt stress by regulating nutrient uptake and antioxidant activity, alleviating the oxidative stress and abscisic acid content in cabbage seedling. Turk. J. Agric. For. 2022, 46, 28–37. [Google Scholar]
- Hasanuzzaman, M.; Raihan, M.R.H.; Khojah, E.; Samra, B.N.; Fujita, M.; Nahar, K. Biochar and Chitosan Regulate Antioxidant Defense and Methylglyoxal Detoxification Systems and Enhance Salt Tolerance in Jute (Corchorus olitorius L.). Antioxidants 2021, 10, 2017. [Google Scholar] [CrossRef]
- Dhar, S.; Kibria, M.G.; Rahman, M.M.; Hoque, M.A. Mitigation of the adverse effects of soil salinity in rice using exogenous proline and organic manure. Asian J. Med. Biol. Res. 2016, 1, 478. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Sabir, M.; Ahmad, H.R.; Shahbaz, M.; Smith, J. Reclaimed Salt-Affected Soils Can Effectively Contribute to Carbon Sequestration and Food Grain Production: Evidence from Pakistan. Appl. Sci. 2023, 13, 1436. [Google Scholar] [CrossRef]
- Sheoran, P.; Kumar, A.; Singh, A.; Kumar, A.; Parjapat, K.; Sharma, R. Press mud alleviates soil sodicity stress in a rice–wheat rotation: Effects on soil properties, physiological adaptation and yield-related traits. Land Degrad. Dev. 2021, 32, 2735–2748. [Google Scholar] [CrossRef]
- Imran, M.; Ashraf, M.; Awan, A.R. Growth, yield and arsenic accumulation by wheat grown in a press mud amended salt-affected soil irrigated with arsenic contaminated water. Ecotox. Environ. Saf. 2021, 22, 112692. [Google Scholar] [CrossRef]
- Chattha, M.U.; Hassan, M.U.; Barbanti, L.; Chatta, M.B.; Khan, I.; Usman, M.; Ali, A.; Nawaz, M. Composted Sugarcane By-product Press Mud Cake Supports Wheat Growth and Improves Soil Properties. Int. J. Plant Prod. 2019, 13, 241–249. [Google Scholar] [CrossRef]
- AlTaey, D.K.A. Alleviation of Salinity Effects by Poultry Manure and Gibberellin Application on growth and Peroxidase activity in pepper. Int. J. Environ. Agric. Biotech. 2017, 2, 1851–1862. [Google Scholar] [CrossRef]
- Oustani, M.; Halilat, M.T.; Chenchouni, H. Effect of poultry manure on the yield and nutriments uptake of potato under saline conditions of arid regions. Emir. J. Food Agric. 2015, 27, 106–120. [Google Scholar] [CrossRef]
- Kiran, Y.K.; Barkat, A.; Cui, X.Q.; Feng, Y.; Pan, F.; Tang, L.; Yang, X. Cow manure and cow manure derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil. J. Integr. Agric. 2017, 16, 725–734. [Google Scholar] [CrossRef]
- Wichern, F.; Islam, M.R.; Hemkemeyer, M.; Watson, C.; Joergensen, R.G. Organic Amendments Alleviate Salinity Effects on Soil Microorganisms and Mineralization Processes in Aerobic and Anaerobic Paddy Rice Soils. Front. Sustain. Food Syst. 2020, 4, 30. [Google Scholar] [CrossRef]
- Hassan, M.U.; Aamer, M.; Nawaz, M.; Rehman, A.; Aslam, T.; Afzal, U. Agronomic Bio-Fortification of Wheat to Combat Zinc Deficiency in Developing Countries. Pak. J. Agric. 2021, 34, 201. [Google Scholar] [CrossRef]
- Saeed, R.; Mirza, S.; Ahmed, R. Electrolyte leakage and relative water content as affected by organic mulch in okra plant (Abelmoschus esculentus) grown under salinity. Fuuast. J. Biol. 2014, 4, 221–227. [Google Scholar]
- Khaliq, A.; Zia, U.l.; Haq, M.; Ali, F.; Aslam, F.; Matloob, A.; Navab, A.; Hussain, S. Salinity tolerance in wheat cultivars is related to enhanced activities of enzymatic antioxidants and reduced lipid peroxidation. CLEAN–Soil Air Water. 2015, 43, 1248–1258. [Google Scholar] [CrossRef]
- Alamer, K.H.; Perveen, S.; Khaliq, A.; Zia, U.l.; Haq, M.; Ibrahim, M.U.; Ijaz, B. Mitigation of Salinity Stress in Maize Seedlings by the Application of Vermicompost and Sorghum Water Extracts. Plants 2022, 11, 2548. [Google Scholar] [CrossRef] [PubMed]
- Talaat, N.B.; Shawky, B.T. Synergistic effects of salicylic acid and melatonin on modulating ion homeostasis in salt-stressed wheat (Triticum aestivum L.) plants by enhancing root H+-pump activity. Plants 2022, 11, 416. [Google Scholar] [CrossRef]
- Luo, G.; Li, L.; Friman, V.; Guo, J.; Guo, S.; Shen, Q.; Ling, N. Organic amendments increase crop yields by improving microbe-mediated soil functioning of agroecosystems: A meta-analysis. Soil Biol. Biochem. 2018, 124, 105–115. [Google Scholar] [CrossRef]
- Cheheb, H.; Takaya, M.; Hajlaoi, H.; Abdelhamid, S.; GoChuiaa, M.; Sfina, H.; Chihaoui, B.; Boujnah, D.; Mechari, B. Complementary irrigation with saline water and soil organic amendments modified soil salinity, leaf Na+, productivity and oil phenols of olive trees (cv. Chemlali) grown under semiarid conditions. Agric. Water Manag. 2020, 237, 106183. [Google Scholar] [CrossRef]
- Ho, S.H.; Zhu, S.; Chang, J.S. Recent advances in nanoscale-metal assisted biochar derived from waste biomass used for heavy metals removal. Bioresou. Technol. 2017, 246, 123–134. [Google Scholar] [CrossRef]
- Bashir, S.; Hussain, Q.; Akmal, M.; Riaz, M.; Hu, H.; Ijaz, S.S.; Iqbal, M.; Abro, S.; Mehmood, S.; Ahmad, M. Sugarcane bagasse-derived biochar reduces the cadmium and chromium bioavailability to mash bean and enhances the microbial activity in contaminated soil. J. Soils Sediments 2018, 18, 874–886. [Google Scholar] [CrossRef]
- Hamid, Y.; Tang, L.; Yaseen, M.; Hussain, B.; Zehra, A.; Aziz, M.Z.; He, Z.L.; Yang, X. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere 2019, 214, 259–268. [Google Scholar] [CrossRef]
- Rahi, A.A.; Hussain, S.; Hussain, S.; Baig, K.S.; Tahir, M.S.; Hussain, G.S.; Zarei, T.; Danish, S.; Akhtar, M.N.; Fahad, S.; et al. Alleviation of Cd stress in maize by compost mixed biochar. J. King Saud Univ. Sci. 2022, 34, 102014. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 2013, 130, 457–462. [Google Scholar] [CrossRef]
- Abedi, T.; Mojiri, A. Cadmium Uptake by Wheat (Triticum aestivum L.): An Overview. Plants 2020, 9, 500. [Google Scholar] [CrossRef]
- Chen, H.; Huang, Q.; Leu, N.A.; Cai, P. Poultry Manure Compost Alleviates the Phytotoxicity of Soil Cadmium: Influence on Growth of Pakchoi (Brassica chinensis L.). Pedosphere 2010, 20, 63–70. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, Y.; Ming, C.; Wang, J.; Zhang, Y. Amended compost alleviated the stress of heavy metals to pakchoi plants and affected the distribution of heavy metals in soil-plant system. J. Environ. Manag. 2023, 336, 117674. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Lamb, D.; Paneerselvam, P.; Choppala, G.; Bolan, N.; Chung, J.W. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. J. Hazard. Mater. 2011, 185, 549–574. [Google Scholar] [CrossRef] [PubMed]
- Nejad, Z.D.; Jung, M.C. The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant. Int. J. Energy Environ. Eng. 2017, 8, 317–329. [Google Scholar] [CrossRef]
- Sasmaz, A.; Mete, I.; Sasmaz, D.M. Removal of Cr, Ni and Co in the water of chromium mining areas by using Lemna gibba L. and Lemna minor L. Water Environ. J. 2016, 30, 235–242. [Google Scholar] [CrossRef]
- Namgay, T.; Singh, B.; Singh, B.P. Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Aust. J. Soil Res. 2010, 48, 638–647. [Google Scholar] [CrossRef]
- Meier, S.; Curaqueo, G.; Khan, N.; Bolan, N.; Cea, M.; Eugenia, G.M.; Cornejo, P.; Ok, Y.S.; Borie, F. Chicken-manure-derived biochar reduced bioavailability of copper in a contaminated soil. J. Soils Sediments 2017, 17, 741–750. [Google Scholar] [CrossRef]
- Zheng, R.L.; Chen, Z.; Cai, C.; Tie, B.Q.; Liu, X.L.; Reid, B.J.; Huang, Q.; Lei, M.; Sun, G.X.; Baltrėnaitė, E. Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—A field experiment in Hunan, China. Environ. Sci. Pollut. Res. 2015, 22, 11097–11108. [Google Scholar] [CrossRef]
- Eid, E.M.; Shaltout, K.H.; Alamri, S.A.M.; Alrumman, S.A.; Hussain, M.A.; Sewelam, N.; Ragab, G.A. Monitored Sewage Sludge Application Improves Soil Quality, Enhances Plant Growth, and Provides Evidence for Metal Remediation by Sorghum bicolor L. J. Soil Sci. Plant Nutr. 2021, 21, 2325–2338. [Google Scholar] [CrossRef]
- Bolan, N.S.; Choppala, G.; Kunhikrishnan, A.; Park, J.H.; Naidu, R. Microbial transformation of trace elements in soils in relation to bioavailability and remediation. Rev. Environ. Contam. Toxicol. 2013, 225, 1–56. [Google Scholar] [PubMed]
- Anaokar, G.; Sutar, T.; Mali, A.; Waghchoure, K.; Jadhav, R.; Walunj, S. Low-Cost Municipal Wastewater Treatment Using Water Hyacinth. J. Water Resour. Pollut. Stud. 2018, 3, 2. [Google Scholar]
- Golia, E.E.; Bethanis, J.; Ntinopoulos, N.; Kaffe, G.G.; Komnou, A.A.; Vasilou, C. Investigating the potential of heavy metal accumulation from hemp. The use of industrial hemp (Cannabis Sativa L.) for phytoremediation of heavily and moderated polluted soils. Sustain. Chem. Pharm. 2023, 31, 100961. [Google Scholar] [CrossRef]
Plant Species | Salinity Level | Types and Doses | Effect of Amendments | Reference | |
---|---|---|---|---|---|
On Soil | On Crop | ||||
Rice (Oryza sativa) | Salinity, 2.9 dS m−1 | VC with rice husk ash (1000 kg Rai−1) | Increased exchangeable K+, Ca2+, and Mg2+ in soil, decreased EC. | Increased plant growth and grain yield. | [99] |
Lettuce (Lactuca sativa) | Salinity, 8.32 dS m−1 | VC 50% and eggshell 12.5% | Reduced soil salinity | Increased germination, growth of seedlings, and yield. | [100] |
Rice–wheat | Salinity, 5.02 dS m−1 | Hyacinth compost, 10 and 15 t ha−1 with gypsum, 50% | Increased water-holding capacity, soil aggregation, and soil CEC. | Rice and wheat yield increased. | [57] |
Sugarcane (S. officinarum L.) | Salinity, 4.12 dS m−1 | VC, 10, 20 t ha−1 and N fertilizer, 50, 75, and 100 kg ha−1 | Reduced soil EC and Na+/K+ ratio and reduced salinity mitigation. | Increased sugarcane growth and production. | [101] |
Bean (Phaseolus vulgaris L.) | NaCl (20, 40, 60, and 80 mM) | VC and sand mixture (0:100; 10:90; 25:75; 50:50, and 75:25) | Not observed | Increased photosynthetic rate, concentration of K+ and Ca2+ in leaves, and growth of bean improved. | [102] |
Potato (Solanum tuberosum L.) | NaCl (15, 20, and 25 mM) | VC, 300, 580, and 860 g plant−1 | Not observed | Increased plant height and stem diameter; potato production. | [103] |
Tomato (S. lycopersicum L.) | NaCl (150 mM) | VC extract, 6 mL L−1 | Increased nutrient availability and reduced soil salinity. | Increased accumulation of proline, total sugars leaf water content, reduced osmotic stress. | [104] |
Mustard–pearl millet cropping system | Salinity, 7.2 ds m−1 | Rice straw compost 3 to 5 t ha−1 | Reduced soil salinity and increased microbial activity | Increased plant growth, grain, and straw yield. | [105] |
Rice (O. sativa) | EC (7.5 dS m−1) | Compost (15 t ha−1) | Improved soil nutrient availability and ameliorated salinity. | Increased essential micronutrients in rice grain, increased crop yield. | [106] |
Tomato (S. lycopersicon) | NaCl (40 and 80 mM) | Compost (25 t ha−1) | Increased macro- and micronutrients and reduced salinity | Increased accumulation of osmoprotectants, such as soluble sugars and amino acids. Increased crop yield. | [56] |
Fennel (Foeniculum vulgare) | NaCl (40, 80, and 120 mM) | VC extract (10%) | Increased Ca2+ content, alleviated salinity stress of plants. | Increased root Ca2+ content, reduced Na content, enhanced germination and growth of fennel. | [107] |
Maize (Zea mays) | Salinity (10.6 dS m−1) | VC (72 g pot−1) + cow dung (33 g pot−1) | Soil physical and chemical properties improved | Increased germination percentage, plant height, root length, and crop yield. | [54] |
Tomato (S. lycopersicon) | 50 (100 mM of NaCl) | Compost (55 g kg−1) | - | Increased enzymatic activities, reduced oxidative stress, promoted plant growth and productivity. | [108] |
GM Crops as OA | Crop | Salinity | Effect of Amendments | Reference | |
---|---|---|---|---|---|
On Soil | On Crops | ||||
Green manure + FYM (1:1 w/w) at 12.5 kg m−2 | Oryza sativa | 1–2% salt | Soil fertility improved and alleviated the problem of salinity. | Increased total chl, photosynthesis abilities, crop growth, and grain yield. | [109] |
Sesbania + Compost+ FYM, 5% volume | O. sativa and T. aestivum | Total soluble salts = 25.3 mg L−1 | Increased soil fertility. | Increased rice–wheat production in saline-affected area. | [110] |
(Sesbania + Gypsum), 12.5 to 20 Mg ha−1 | Rice–Wheat (T. aestivum) | Salinity (2.7–4.5 dS m−1) | Alleviated soil salinity | Increased crop growth and grain (rice and wheat) yield. | [111] |
Water hyacinth (E. crassipes) and Duckweed (Lemna minor) | Industrial wastewater | 45 mM NaCl | Decrease in pH, EC, oxidation redox potential (ORP), and salinity. | - | [112] |
Plant Species | Salinity Level | Type and Dose of Amendment | Effect of Amendments | Reference | |
---|---|---|---|---|---|
On Soil | On Crops | ||||
Rice (Oryza sativa) | 50 mM and 75 mM of NaCl | BC + Trico compost + Phospogypsum | Increased soil N, P, K+/Na+, Ca2+/Mg2+, enhanced SO42−, NO3−, Mn4+, Fe content in rice rhizosphere, and reduced CH4 emission. | Increased plant height, shoot biomass, and crop yield. | [98] |
Salinity, 1 and 3 dS m−1 | Rice straw BC (0.3%) | Reduced Na+ and Cl− contents of soil and improved physiochemical properties of soil. | Granum lamellae in mesophyll cells’ structure is improved, improved rice productivity. | [117] | |
Salinity (2, 4, 6, and 8 dS m−1) | BC (2 kg m−2) | Increased soil moisture content and physicochemical properties | Increased chl content, relative water content, stomatal conductance, reduced proline content, increased plant growth and productivity. | [118] | |
Wheat (Triticum aestivum L.) | NaCl, 3000 ppm | Soybean straw BC (5%) (w/v) + selenium (0.15%) | Not observed | Increased biomass assimilation, mineral uptake, chl synthesis, photosynthesis rate. Reduced EL, improved salinity tolerance. | [119] |
Saline water irrigation (10 dS m−1) | Wheat straw BC (10 and 20 t ha−1) | Reduced soil bulk density, increased permeability and nutrient status of soil | Improved growth, photosynthesis and reduced aging of leaves. | [120] | |
150 mM NaCl | BC (5%) and jasmonic acid (5 μM) | Reduced accumulation of Na+ | Reduced oxidative stress and boosted antioxidant activity. | [121] | |
EC = 7.17 dS m−1 | BC (2% w/w) + Lysin (1.0 and 2.0 mM) | Reduced soil salinity and increased nutrient availability. | Increased chl a, chl b, total chl, and carotenoid, photosynthesis, reduced MDA, H2O2, and EC, increased growth, biomass, and grain yield. | [122] | |
Maize (Zea mays) | 100 mM NaCl | Wheat straw BC + Arbuscular mycorrhizal fungi | Soil nutrient status improved, and mitigated salinity. | Improved photosynthetic performance, reduced oxidative damage, enhancement maize production. | [123] |
EC = 0.01955 dS cm−1 | Mixture of cotton straw, peanut shell, and sawdust (90:5:5, w/w/w) 30, 50 and 75 t ha−1 | Increased soil bulk density, soil pore space, macroaggregates, CEC, total carbon, N, P, K and decreased exchangeable Na+ and decreased salinity. | Reduced oxidative stress. improved palmitoleic acid, oleic acid, and linolenic acid contents, increased crop yield. | [124] | |
Soyabean (Glycine max) | Salinity (5 and 10 dSm−1) | BC (50 and 100 g kg−1 soil) | Enhanced nutrient availability and lower Na+ content. | Improved leaf chl (a, b, c) content | [113] |
Mungbean (Vigna radiata L.) | Salinity, 5 and 10 dS m−1 | BC (50 and 100 g kg−1) | SOM status improved and salinity stress mitigated. | Improved xylem structure, decreased ABA and ACC, increased root/shoot ratio, total root area, and plant growth. | [125] |
Sorghum (Sorghum bicolor L.) | Salinity, 0.8, 4.1, and 7.7 dS m−1 | BC, 2.5, 5, and 10% (w/w) | Decreased soil degradation and reduced salinity. | Increased plant height, DM RWC, crop yield, and mineral availability, decreased osmotic stress. | [114] |
Quinoa (Chenopodium quinoa L.) | Saline water irrigation (400 mM) | BC, 5% (w/w) | Increased soil water content, nutrient availability and reduced Na+ | Increased plant height, shoot biomass, and grain yield, increased leaf photosynthetic rate and stomatal conductance, maintained ionic balance. | [126] |
Salinity (20 dS m−1) | BC (1%) w/w and Endophytic bacteria | Reduced soil salinity and increased nutrient availability | Reduced antioxidant activities, increased plant growth, grain yield and grain nutrient content. | [127] | |
Salinity, 11.5 dS m−1 | Cotton shell BC 1 and 2% (w/w) | Reduced soil salinity. | Reduced Na+ induced phytotoxicity and increased yield. Increased plant growth, water contents, stomatal conductance, and chl contents. | [128] | |
Potato (S. tuberosum) | 25 and 50 mM of NaCl | BC, 5% (w/w) | Reduced soil salinity. | Increased photosynthetic rate, stomatal conductance, relative water content, increased shoot biomass, root length, and tuber yield. | [129] |
Tomato (Solanum lycopersicum) | Salinity level 0.3% and 0.6% of soil dry weight salts | BC, 1% of soil dry weight | Not observed | Increased total soluble solids and vitamin C in tomato. | [130] |
Salinity (1, 3 dS m−1) | BC (2, 4, 8%) | Released mineral ion K+, Ca2+, and Mg2+ in soil solution, increased organic matter. | Increased vegetative growth and production. | [131] | |
Cabbage (Brassica oleracea var. Capitata) | 150 mM NaCl | BC doses (weighed at the rate of 2.5%, and 5% by soil weight) | Reduced salinity stress. | Reduced oxidative stress, ABA content, Na+ content and increased growth of cabbage seedling. | [132] |
Jute (Corchorus capsularis) | 50, 100, and 150 mM NaCl | BC (2.0 g kg−1 soil) + Chitosan (100 mg L−1) | - | Improved enzymatic and non-enzymatic antioxidant systems, enhanced glyoxalase enzyme activities, increased Na+/K+ ratio, reduced oxidative stress, plant growth improved. | [133] |
Plant Species | Stress Level | OA Doses and Application Method | Effect of Amendments | Reference | |
---|---|---|---|---|---|
On Soil | On Crops | ||||
Rice (Oryza sativa) | Salinity, 6.4 dS m−1 | FYM (5 to10 t ha−1) + PM (4 to 8 t ha−1 + proline | Reduced soil salinity. | Increased nutrient uptake, plant height, panicle length, grain yield, and straw yield of rice, decreased K+/Na+ in both grain and straw. | [134] |
Wheat-Maize | Salinity, 5.4 dS m−1 | PM + FYM + GM (12 t ha−1) | Increased CEC, total N, soil carbon, reduced soil EC, pH, and SAR, improved soil structure. | Increased crop growth, biomass, and grain yield. | [135] |
Rice–wheat | Salinity, 3.6 dS m−1 | Sugarcane press mud (10 t ha−1) | Reductions in soil pH, ESP, reduced soil salinity. | Enhanced leaf water potential, membrane, reduced membrane injury stability, Na+/K+ accumulation, increased photosynthetic efficiency, plant growth, and yield. | [136] |
Wheat (Triticum aestivum) | Salinity, 11.72 dS m−1 | Sugarcane press mud 10–15 g kg−1 | Increased SOM, improved microbial activity, enhanced nutrient availability, reduced soil salinity. | Increased nutrient availability in rhizosphere, fertile tiller, plant biomass production, and plant growth, grain yield. | [137] |
Wheat (T. aestivum) | Salinity (6, 12 dS m−1) | Sugarcane press mud (3, 6, and 9%) | Improved soil properties, increased Ca2+ and K+ in soil, leaching of Na+, improved salt induced toxic effect. | Increased chl content (a, b, and total chl), soluble sugar, proteins, free amino acids, leaf water content, proline, K+, and activity of antioxidant enzymes; APX), CAT, and POD, rice growth and yield reduced EL, H2O2, MDA. | [138] |
Pepper (Capsicum annuum) | Salinity (6 dS m−1) | PM (10% and 30%) with exogenous gibberellins (0, 250 mg L−1) | Decreased EC and osmotic stress in soil solution, increased nutrient availability. | Increased photo synthetic rates, stomatal conductance, total chl, total biomass, leaf N, P, and K, reduced proline and Na content, increased fruit set. | [139] |
Potato (S. tuberosum) | Salinity, 0.9 to 5.9 dS m−1 | PM (20, 30, 40, 50, 60 mt ha−1) | Decreased nutrient losses and soil salinity. | Increased K, N in leaves and roots, growth, yield, and nutritional status of tuber. | [140] |
CherryTomato (Lycopersicon esculentum) | Salinity, 0.44 mS cm−1 | Poultry manure (0. 25, 31, 38, and 44%) | Improved soil properties, soil available nutrients and reduced salinity. | Increased plant height, root length, fresh and dry weight, number of flowers and shoot K concentration. | [116] |
Saline soil | Salinity, 4 dS m−1 | Cow dung (2%) | Improved soil aggregation, Ca2+, reduced ESP and EC, soil pH, Na+ | Not observed | [115] |
Crops | Heavy Metal | Organic Amendment Used | Effect on Soil and Crops | Reference |
---|---|---|---|---|
Rice (Oryza sativa) | Cd (5 mg kg−1) | Steel slag (3 gm kg−1) | Increased soil pH, Si, Ca concentration I roots, decreased Cd content, improved crop growth and grain yield. | [61] |
Black gram (Vigna mungo) | Cd contaminated soil (10 and 20 mg kg−1) | Cow manure (5%), sugarcane press mud (5%), and (cow dung + PM) | Improved photosynthetic pigments, leaf water status, reduced hydrogen peroxide production, EL, MDA accumulation, and increased accumulation of soluble protein and free amino acids | [86] |
Cd (0.2 mg kg−1) and Cr (2.75 mg kg−1) | BC, 1.5% (w/w) | Reduced soil Cr, Cd concentration, increased available carbon, microbial activity, plant growth. | [151] | |
Maize (Zea may) | Cd (2.5, 5) mg kg−1 | Compost with BC (0.50, 0.75, and 1.00%) | Improvement in soil organic matter, plant height, root length, number of leaves, leaf fresh and dry weight, plant fresh and dry weight, chlorophyll a, b, and total, and carotenoids. | [53] |
Rice (O. sativa) and Wheat (T. aestivum) | Pb (54.39 mg kg−1) Cd (0.83 mg kg−1) | BC and green stabilizing agent Poultry manure (34% and 25%) | Reduced Pb concentration accumulation in wheat and rice roots, shoots, and leaves. Increased biomass and yield. | [152] |
Cacao (Theobroma cacao L.) beans | Cd (5 mg kg−1) | Compost + zeolite (0.5, or 2%) | Increased soil pH and reduced soil Cd concentration. | [65] |
Brassica chinensis | Cd (1 mg kg−1) | Cow dung + cow dung derived Biochar (3.0 and 6.0% w/w) | Decreased cd availability, increased trace elements and biomass production | [141] |
Mustard (B. juncea) | Cd, Cu, and Pb (5, 160, and 1000 mg kg−1) | Wood BC (1%) | Reduced toxicity of metals and increased nutrient availability. | [158] |
Ni (50 mg kg−1 and 100 mg kg−1) | BC with muscle cell (1 g 250 mL−1 volumetric glass) | Reduced Ni bioavailability, increased plant biomass, chl content. | [49] | |
Cd (1 mg kg−1), Pb (74.4 mg ha−1) | Rice husk BC (0.5, 1, and 2% w/w) | Reduced phytoability of metals. | [159] | |
Wheat and Maize T. aestivum Z. mays | Cd (5, 20, 50 mg kg−1 soil) | Compost and Biogas slurry, 15 t ha−1 | Total dry biomass increased; Cd concentration reduced. | [3] |
Pakchoi (Brassica chinensis L.) | Cd (50 mg kg−1 soil) | Poultry manure compost (120 g kg−1) | Increased soil pH, reduced Cd concentration in soil, favored antioxidant capacity dissolved OM. | [156] |
Duckweed Extract | Cr (1.2 μg L−1) Ni (0.9 μg L−1), and Co (0.5 μg L−1) concentrations | Lemna gibba and L. minor | Cr, Co, and Ni concentration reduced. | [160] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irin, I.J.; Hasanuzzaman, M. Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. Stresses 2024, 4, 185-209. https://doi.org/10.3390/stresses4010011
Irin IJ, Hasanuzzaman M. Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. Stresses. 2024; 4(1):185-209. https://doi.org/10.3390/stresses4010011
Chicago/Turabian StyleIrin, Israt Jahan, and Mirza Hasanuzzaman. 2024. "Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity" Stresses 4, no. 1: 185-209. https://doi.org/10.3390/stresses4010011
APA StyleIrin, I. J., & Hasanuzzaman, M. (2024). Organic Amendments: Enhancing Plant Tolerance to Salinity and Metal Stress for Improved Agricultural Productivity. Stresses, 4(1), 185-209. https://doi.org/10.3390/stresses4010011