Microbiome: A Tool for Plant Stress Management in Future Production Systems
Funding
Conflicts of Interest
References
- Porter, J.R.; Xie, L.; Challinor, A.; Cochrane, K.; Howden, S.; Iqbal, M.; Lobell, D.; Travasso, M. Food security and food production systems. Impacts, Adaptation, and Vulnerability. In Climate Change 2014: Impacts, Adaptation, and Vulnerability; Field, C.B., Ed.; Cambridge University: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Naumann, G.; Carmelo, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nature 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Fetsiukh, A.; Pall, T.; Behers, L.; Timmusk, S. A novel method for bioremediation of mine tailings. ISME J. 2022. patent application in pregress. [Google Scholar]
- Timmusk, S. Plant Stress Tolerance: Realising the Global Sustainable Development Goals. DevRes. 2021. Available online: https://1drv.ms/v/s!Amne4BAfSl8_knrwA2yT4zdiIjo_?e=4lfWnT (accessed on 14 June 2021).
- Timmusk, S.; Behers, L.; Muthony, J.; Muraya, A.; Aronsson, A. Perspectives and challenges for microbial application for crop improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmusk, S.; Paalme, V.; Pavlicek, T.; Bergquist, J.; Vangala, A.; Danilas, T.; Nevo, E. Bacterial distribution in the rhizosphere of wild barley under contrasting microclimates. PLoS ONE 2011, 6, e17968. [Google Scholar] [CrossRef] [PubMed]
- Timmusk, S.; Nevo, E. Plant root associated biofilms. In Bacteria in Agrobiology (Volume 3): Plant Nutrient Management; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 285–300. [Google Scholar]
- Timmusk, S.; Conrad, J.; Niinemets, Y.; Nevo, E.; Behers, L.; Bergqvist, J.; Noe, S. Managing Plant Stress in the Era of Climate Change: Realising the Global Sustainable Development Goals. Available online: http://www.global-engage.com/agricultural-biotechnology/managing-plant-stress-in-the-era-of-climate-change-realising-global-sustainable-development-goals/ (accessed on 14 June 2021).
- Gilbert, S.F.; Bosch, T.C.; Ledon-Rettig, C. Eco-Evo-Devo: Developmental symbiosis and developmental plasticity as evolutionary agents. Nat. Rev. Genet. 2015, 16, 611–622. [Google Scholar] [CrossRef] [PubMed]
- Walters, W.A.; Jin, Z.; Youngblut, N.; Wallace, J.G.; Sutter, J.; Zhang, W.; Gonzalez-Pena, A.; Peiffer, J.; Koren, O.; Shi, Q.; et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes. Proc. Natl. Acad. Sci. USA 2018, 115, 7368–7373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, G.; Raaijmakers, J.M. Saving seed microbiomes. ISME J. 2018, 12, 1167–1170. [Google Scholar] [CrossRef] [PubMed]
- Porter, S.S.; Sachs, J.L. Agriculture and the Disruption of Plant-Microbial Symbiosis. Trends Ecol. Evol. 2020, 35, 426–439. [Google Scholar] [CrossRef] [PubMed]
- Pepoyan, A.Z.; Chikindas, M.L. Plant-associated and soil microbiota composition as a novel criterion for the environmental risk assessment of genetically modified plants. GM Crops Food 2020, 11, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Romero, E.; Aguirre-Noyola, J.L.; Taco-Taype, N.; Martinez-Romero, J.; Zuniga-Davila, D. Plant microbiota modified by plant domestication. Syst. Appl. Microbiol. 2020, 43, 126106. [Google Scholar] [CrossRef] [PubMed]
- Gopal, M.; Gupta, A. Microbiome Selection could Spur Next-Generation Plant Breeding Strategies. Front. Microbiol. 2016, 7, 1971. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevo, E. “Evolution Canyon,” a potential microscale monitor of global warming across life. Proc. Natl. Acad. Sci. USA 2012, 109, 2960–2965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nevo, E.; Fu, Y.B.; Pavlicek, T.; Khalifa, S.; Tavasi, M.; Beiles, A. Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. USA 2012, 109, 3412–3415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmusk, S. Bakter teeb nisu pouakindlaks. Postimees 20-05-2014 ERR. Estonian News, 20 May 2014. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timmusk, S.; de-Bashan, L.E. Microbiome: A Tool for Plant Stress Management in Future Production Systems. Stresses 2022, 2, 210-212. https://doi.org/10.3390/stresses2020014
Timmusk S, de-Bashan LE. Microbiome: A Tool for Plant Stress Management in Future Production Systems. Stresses. 2022; 2(2):210-212. https://doi.org/10.3390/stresses2020014
Chicago/Turabian StyleTimmusk, Salme, and Luz E. de-Bashan. 2022. "Microbiome: A Tool for Plant Stress Management in Future Production Systems" Stresses 2, no. 2: 210-212. https://doi.org/10.3390/stresses2020014
APA StyleTimmusk, S., & de-Bashan, L. E. (2022). Microbiome: A Tool for Plant Stress Management in Future Production Systems. Stresses, 2(2), 210-212. https://doi.org/10.3390/stresses2020014