Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy
Abstract
:1. Introduction
2. Results
2.1. Scientific Articles Dealing with Leguminous Plants
2.2. Harvested Area and Yield of Pulses
2.3. Number of Registered Leguminous Varieties
2.4. Field Pea
2.5. Field Bean
2.6. Lupins
2.7. Chickpea and Lentil
2.8. Soybean
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- FAO. Definition and Classification of Commodities. (Draft) 4. Pulses and Derived Products. 1994. Available online: https://www.fao.org/es/faodef/fdef04e.htm (accessed on 8 December 2021).
- Kumar, S.; Pandey, G. Biofortification of pulses and legumes to enhance nutrition. Heliyon 2020, 6, e03682. [Google Scholar] [CrossRef] [PubMed]
- Sharasia, P.L.; Garg, M.R.; Bhanderi, B.M. Pulses and Their by-Products as Animal Feed; Calles, T., Makkar, H.P.S., Eds.; FAO: Rome, Italy, 2017. [Google Scholar]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of grain legumes and cereals improves the use of soil N resources and reduces the requirement for synthetic fertilizer N: A global-scale analysis. Agron. Sustain. Dev. 2020, 40, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Preissel, S.; Reckling, M.; Schläfke, N.; Zander, P. Magnitude and farm-economic value of grain legume pre-crop benefits in Europe: A review. Field Crops Res. 2015, 175, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Siddique, K.H.M.; Johansen, C.; Turner, N.C.; Jeuffroy, M.-H.; Hashem, A.; Sakar, D.; Gan, Y.; Alghamdi, S.S. Innovations in agronomy for food legumes. A review. Agron. for Sust.Dev. 2011, 32, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Fantappiè, M.; L’Abate, G.; Costantini, E.A.C. The influence of climate change on the soil organic carbon content in Italy from 1961 to 2008. Geomorphology 2011, 135, 343–352. [Google Scholar] [CrossRef]
- Briggs, S. Organic Cereal and Pulse Production: A Coplete Guide; Crowood Press: Wiltshire, UK, 2005. [Google Scholar]
- Lengwati, D.M.; Mathews, C.; Dakora, F.D. Rotation benefits from N2-fixing grain legumes to cereals: From increases in seed yield and quality to greater household cash-income by a following maize crop. Front. Sustain. Food Syst. 2020, 19, 94. [Google Scholar] [CrossRef]
- Desire, M.F.; Blessing, M.; Elijah, N.; Ronald, M.; Agather, K.; Tapiwa, Z.; George, N. Exploring food fortification potential of neglected legume and oil seed crops for improving food and nutrition security among smallholder farming communities: A systematic review. J. Agric. Food Res. 2021, 3, 100117. [Google Scholar] [CrossRef]
- Cusworth, G.; Garnett, T.; Lorimer, J. Legume dreams: The contested futures of sustainable plant-based food systems in Europe. Global Environ. Change 2021, 69, 102321. [Google Scholar] [CrossRef]
- Zhong, L.; Fang, Z.; Wahlqvist, M.L.; Wu, G.; Hodgson, J.M.; Johnson, S.K. Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Sci. Tech. 2018, 80, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Duc, G.; Aleksić, J.M.; Marget, P.; Mikić, A.; Paull, J.; Redden, R.J.; Sass, O.; Stoddard, F.L.; Vandenberg, A.; Vishnyakova, A.; et al. Grain Legumes; de Ron, A.M., Ed.; Springer: New York, NY, USA, 2016; pp. 141–178. [Google Scholar]
- Jezierny, D.; Mosenthin, R.; Bauer, E. The use of grain legumes as a protein source in pig nutrition: A review. Anim. Feed Sci. Tech. 2010, 157, 111–128. [Google Scholar] [CrossRef]
- Smith, L.A.; Houdijk, J.G.M.; Homer, D.; Kyriazakis, I. Effects of dietary inclusion of pea and faba bean as a replacement for soybean meal on grower and finisher pig performance and carcass quality. J. Anim. Sci. 2013, 91, 3733–3741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, P.; Tamminga, S.; Egan, A.R.; Christensen, D.A. Probing equivocal effects of heat processing of legume seeds on performance of ruminants—A Review. Asian-Aust. J. Anim. Sci. 2004, 17, 869–876. [Google Scholar] [CrossRef]
- Masoero, F.; Pulimeno, A.M.; Rossi, F. Effect of extrusion, espansion and toasting on the nutritional value of peas, faba beans and lupins. Ital. J. Anim. Sci. 2005, 4, 177–189. [Google Scholar] [CrossRef]
- Vander Pol, M.; Hristov, A.N.; Zaman, S.; Delano, N.; Schneider, C. Effect of inclusion of peas in dairy cow diets on ruminal fermentation, digestibility, and nitrogen losses. Anim. Feed Sci. Tech. 2009, 150, 95–105. [Google Scholar] [CrossRef]
- Mihailovic, V.; Mikic, A.; Eric, P.; Vasiljevic, S.; Cupina, B.; Katic, S. Protein pea in animal feeding. Biotech. Anim. Husb. 2005, 21, 281–285. [Google Scholar] [CrossRef]
- Dadon Bar-El, S.; Abbo, S.; Reifen, R. Leveraging traditional crops for better nutrition and health—the case of chickpea. Trends Food Sci. Technol. 2017, 64, 39–47. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.A. Global synthesis of drought effects on food legume production. PLoS ONE 2015, 10, e0127401. [Google Scholar] [CrossRef] [Green Version]
- Wood, J.A.; Grusak, M.A. Nutritional value of chickpea. In Chickpea Breeding and Management; Yadav, S.S., Redden, R., Chen, W., Sharma, B., Eds.; CABI: Wallingford, UK, 2007; pp. 101–142. [Google Scholar]
- Marioli Nobile, C.; Carreras, J.; Grosso, R.; Inga, M.; Silva, M.; Aguilar, R.; Allende, M.; Badini, R.; Martinez, M. Proximate composition and seed lipid components of “kabuli” type chickpea (Cicer arietinum L.) from Argentina. Agric. Sci. 2013, 4, 729–737. [Google Scholar] [CrossRef] [Green Version]
- Levent Yurdaer, A.; Yemenicioğlu, A. Potential of Turkish Kabuli type chickpea and green and red lentil cultivars as source of soy and animal origin functional protein alternatives. LWT-Food Sci. Tech. 2013, 50, 686–694. [Google Scholar]
- Benjamin, J.G.; Nielsen, D.C. Water deficit effects on root distribution of soybean, field pea and chickpea. Field Crops Res. 2006, 97, 248–253. [Google Scholar] [CrossRef]
- Delgado, M.J.; Ligero, F.; Lluch, C. Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol. Biochem. 1994, 26, 371–376. [Google Scholar] [CrossRef]
- Gladstones, J.S.; Atkins, C.A.; Hamblin, J. Lupins as Crop Plants: Biology, Production and Utilization; CAB International: Wallingford, UK, 1998. [Google Scholar]
- Kim, J.C.; Pluske, J.R.; Mullan, B.P. Lupins as a protein source in pig diets. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2007, 2, 3. [Google Scholar] [CrossRef]
- Petterson, D.S. The use of lupins in feeding systems—Review. Asian-Aust. J. Anim. Sci. 2000, 13, 861–882. [Google Scholar] [CrossRef]
- Kohajdova, Z.; Karovičova, J.; Schmidt, S. Lpin composition and possible use in bakery—A review. Czech J. Food Sci. 2011, 29, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Villaluenga, C.; Zieliňski, H.; Frias, J.; Piskuła, M.K.; Kozłowska, H.; Vidal- Valverde, C. Antioxidant capacity and polyphenolic content of high-protein lupin products. Food Chem. 2009, 112, 84–88. [Google Scholar] [CrossRef]
- Nalle, C.L.; Ravindran, V.; Ravindran, G. Nutritional value of white lupins (Lupinus albus) for broilers: Apparent metabolisable energy, apparent ileal amino acid digestibility and production performance. Animal 2011, 6, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Braum, S.M.; Helmke, P.A. White lupin utilizes soil phosphorus that is unavailable to soybean. Plant Soil 1995, 176, 95–100. [Google Scholar] [CrossRef]
- Ford, R.; Redden, R.J.; Materne, M.; Taylor, P.W.J. Lentil. In Genome Mapping and Molecular Breeding in Plants; Chittarajan, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 3, pp. 91–108. [Google Scholar]
- FAO. FAO Statistical Databases (FAOSTAT). Rome, Italy. 2021. Available online: https://www.fao.org/faostat/en/#home (accessed on 10 December 2021).
- Singh, D.; Singh, C.K.; Taunk, J.; Tomar, R.S.; Chaturvedi, A.K.; Gaikwad, K.; Pal, M. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 2017, 18, 206. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, A.; Sita, K.; Bhandari, K.; Kumar, S.; Kumar, J.; Vara Prasad, P.V.; Siddique, K.H.M.; Nayyar, H. Influence of drought and heat stress, applied independently or in combination during seed development, on qualitative and quantitative aspects of seeds of lentil (Lens culinaris Medikus) genotypes, differing in drought sensitivity. Plant Cell Environ. 2019, 42, 198–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castell, A.G.; Cliplef, R.L. Methionine supplementation of barley diets containing lentils (Lens culinaris) or soybean meal: Live performance and carcass responses by gilts fed ad libitum. Can. J. Anim. Sci. 1990, 70, 329–332. [Google Scholar] [CrossRef]
- Hefnawy, T.H. Effect of processing methods on nutritional composition and antinutritional factors in lentil (Lens culinaris). Annals Agric. Sci. 2011, 56, 57–61. [Google Scholar] [CrossRef] [Green Version]
- Watson, C.A.; Reckling, M.; Preissel, S.; Bachinger, J.; Bergkvist, G.; Kuhlman, T. Grain legume production and use in european agricultural systems. Adv. Agron. 2017, 144, 235–303. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Market Developments and Policy Evaluation Aspects of the Plant Protein Sector in the EU; Final report; European Union: Maastricht, The Netherlands, 2018. [Google Scholar]
- Donau Soja Association 2017. Press Release Vienna, 21 July, 2017, EU Agriculture Ministers Agree to Meet UN Sustainable Development Goals with Soya. Donau Soja Association. Available online: https://www.donausoja.org/fileadmin/user_upload/Press/Press_Release/Press_release_2017/PA_Europe_Soya_Declaration_20.07.2017.pdf (accessed on 13 December 2021).
- European Commission 2018a. Report from The Commission to The Council and The European Parliament on the Development of Plant Proteins in the European Union. COM (2018) 757 Final. Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2018%3A757%3AFIN (accessed on 12 December 2021).
- EU Plant Variety Database. Available online: https://ec.europa.eu/food/plant/plant_propagation_material/plant_variety_catalogues_databases/search/public/index.cfm?event=SearchForm&ctl_type=A (accessed on 11 November 2021).
- ScienceDirect Database. Available online: http:\\www.sciencedirect.net (accessed on 11 November 2021).
- EUROSTAT 2021. European Statistical Database. Available online: https://ec.europa.eu/eurostat (accessed on 10 December 2021).
- National Variety List of Austria. Available online: https://www.baes.gv.at/zulassung/pflanzensorten/oesterreichische-sortenliste/#c7236 (accessed on 8 December 2021).
- National Variety List of Belgium. Available online: https://lv.vlaanderen.be/sites/default/files/attachments/cat_be_a_en_h_20210503_nl.pdf (accessed on 8 December 2021).
- National Variety List of Bulgaria. Available online: https://iasas.government.bg/upl/files/Oficialna%20Sortova%20Lista/OSL1_202118022021.pdf (accessed on 15 December 2021).
- National Variety List of Croatia. Available online: https://www.hapih.hr/wp-content/uploads/2021/10/SORTNA-LISTA-REPUBLIKE-HRVATSKE-25.10.2021.pdf (accessed on 8 December 2021).
- National Variety list of Denmark. Available online: https://www.tystofte.dk/sorter-status/officiel-sortsliste/ (accessed on 15 December 2021).
- National Variety List of Finnland. Available online: https://www.ruokavirasto.fi/yritykset/kasviala/Lajikkeet-ja-alkuperaiskasvit/kasvilajikeluettelo/ (accessed on 21 December 2021).
- National Variety List of France. Available online: https://www.geves.fr/catalogue/ (accessed on 8 December 2021).
- National Variety List of Germany. Available online: https://www.bundessortenamt.de/apps6/bsa_sorteninfo/public/de (accessed on 8 December 2021).
- National Variety List of Greece. Available online: http://www.minagric.gr/index.php/el/for-farmer-2/crop-production/polylikomenu/553-nomothesia-polyliko/cat-poik-polyliko/3047-enthnikoi-katalogoi-poikilion (accessed on 21 December 2021).
- National Variety List of Ireland. Available online: https://www.gov.ie/en/publication/5dae8-national-catalogue-of-agricultural-plant-varieties-2021-ireland/ (accessed on 21 December 2021).
- National Variety List of Italy. Available online: http://www.sementi.it/documenti/registri/ITA-agrarie/RegistroAgrarie_19_02_2021.pdf (accessed on 8 December 2021).
- National Variety List of Lithuania. Available online: http://www.vatzum.lt/uploads/documents/navs_leidinys__2020.pdf (accessed on 15 December 2021).
- National Variety List of Portugal. Available online: https://www.dgav.pt/wp-content/uploads/2021/02/CATALOGO-NACIONAL-DE-VARIEDADES_2020.pdf (accessed on 8 December 2021).
- National Variety List of Romania. Available online: https://istis.ro/image/data/download/catalog-oficial/CATALOG%202020.pdf (accessed on 15 December 2021).
- National Variety List of Slovakia. Available online: https://www.uksup.sk/oos-listina-registrovanych-odrod (accessed on 15 December 2021).
- National Variety List of Slovenia. Available online: https://www.gov.si/assets/organi-v-sestavi/UVHVVR/Rastlinski-semenski-material/Publikacija-Sortna-lista/SL_2021_splet.pdf (accessed on 21 December 2021).
- National Variety List of Spain. Available online: https://www.mapa.gob.es/app/regVar/BusRegVar.aspx?id=es (accessed on 8 December 2021).
- National Variety List of Sweden. Available online: https://jordbruksverket.se/download/18.7dc1613e1785d10fcd9ba5b3/1616750588294/V%C3%A4xtsort meddelande-2021-3-sortlistan.pdf (accessed on 15 December 2021).
- European Seed Certification Agencies Association (ESCAA) Online Database. Available online: http://www.escaa.org/index/action/page/id/9/title/certified-seed-quantities. https://www.escaa.org/index/action/page/id/8/title/field-production-area-for-seeds. (accessed on 8 January 2022).
- Láng, G. (Ed.) A Növénytermesztés Kézikönyve I; Mezőgazdasági Kiadó: Budapest, Hungary, 1966. [Google Scholar]
- Reif, T.M.; Zikeli, S.; Rieps, A.-M.; Lang, C.P.; Hartung, J.; Gruber, S. Reviving a neglected crop: A case study on lentil (Lens culinaris Medikus subsp. culinaris) Cultivation in Germany. Sustainability 2021, 13, 133. [Google Scholar] [CrossRef]
- Cassman, K.G.; Grassini, P.A. Global perspective on sustainable intensification research. Nat. Sustain. 2020, 3, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Graesser, J.; Ramankutty, N.; Coomes, O.T. Increasing expansion of large-scale crop production onto deforested land in sub-Andean South America. Environ. Res. Lett. 2018, 13, 084021. [Google Scholar] [CrossRef] [Green Version]
- Foley, J.A.; Asner, G.P.; Heil Costa, M.; Coe, M.T.; DeFries, R.; Gibbs, H.K.; Howard, E.A.; Olson, S.; Patz, J.; Ramankutty, N.; et al. Amazonia revealed: Forest degradation and loss of ecosystem goods and services in the Amazon Basin Front. Ecol. Environ. 2007, 5, 25–32. [Google Scholar] [CrossRef]
- Barona, E.; Ramankutty, N.; Hyman, G.; Coomes, O.T. The role of pasture and soybean in deforestation of the Brazilian Amazon. Environ. Res. Lett. 2010, 5, 024002. [Google Scholar] [CrossRef]
- Ulian, T.; Diazgranados, M.; Pironon, S.; Padulosi, S.; Liu, U.; Davies, L.; Howes, M.-J.R.; Borrell, J.S.; Ondo, I.; Pérez-Escobar, O.A.; et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 2020, 2, 421–445. [Google Scholar] [CrossRef]
- Jacobsen, S.-E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Feeding the world: Genetically modified crops versus agricultural biodiversity. Agron. Sust. Dev. 2013, 33, 651–662. [Google Scholar] [CrossRef] [Green Version]
- FAO. The Second Report on the State of the World’s Plant Genetic Resources for Food and Agriculture; FAO: Rome, Italy, 2010; ISBN 978-92-5-106534-1. [Google Scholar]
- Hammer, K. A paradigm shift in the discipline of plant genetic resources. Gen. Res. Crop Evol. 2003, 50, 3–10. [Google Scholar] [CrossRef]
- Arif, A.; Parveen, N.; Waheed, M.Q.; Atif, R.M.; Waqar, I.; Shah, T.M. A comparative study for assessing the drought-tolerance of chickpea under varying natural growth environments. Front. Plant Sci. 2021, 11, 2228. [Google Scholar] [CrossRef]
- Getahun, T.; Tesfaye, K.; Fikre, A.; Haileslassie, T.; Chitikineni, A.; Thudi, M.; Varshney, R.K. Molecular genetic diversity and population structure in Ethiopian chickpea germplasm accessions. Diversity (TSI) 2021, 13, 247. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Divéky-Ertsey, A.; Gál, I.; Madaras, K.; Pusztai, P.; Csambalik, L. Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy. Stresses 2022, 2, 90-112. https://doi.org/10.3390/stresses2010008
Divéky-Ertsey A, Gál I, Madaras K, Pusztai P, Csambalik L. Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy. Stresses. 2022; 2(1):90-112. https://doi.org/10.3390/stresses2010008
Chicago/Turabian StyleDivéky-Ertsey, Anna, Izóra Gál, Krisztina Madaras, Péter Pusztai, and László Csambalik. 2022. "Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy" Stresses 2, no. 1: 90-112. https://doi.org/10.3390/stresses2010008
APA StyleDivéky-Ertsey, A., Gál, I., Madaras, K., Pusztai, P., & Csambalik, L. (2022). Contribution of Pulses to Agrobiodiversity in the View of EU Protein Strategy. Stresses, 2(1), 90-112. https://doi.org/10.3390/stresses2010008