Plant–Metal Interactions in the Context of Climate Change
Abstract
:1. Introduction
2. Metal Hyperaccumulating Plant Ecosystems
3. Agricultural and Other Land–Plant Systems
4. Plants Associated with Marine and Aquatic Ecosystems
5. Concluding Comments
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernando, D.R.; Fernando, A.E.; Koerber, G.R.; Doody, T.M. Tree-soil interactions through water release to a floodplain ecosystem: A case study of Black Box (Eucalyptus largiflorens) on loamy sands. Wetlands 2021, 41, 17–35. [Google Scholar] [CrossRef]
- Lynch, J.P.; Clair, S.B.S. Mineral stress: The missing link in understanding how global climate change will affect plants in real world soils. Fields Crops Res. 2004, 90, 101–115. [Google Scholar] [CrossRef]
- Fernando, D.R.; Lynch, J.P. Manganese phytotoxicity: New light on an old problem. Ann. Bot. 2015, 116, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Fernando, D.R.; Moroni, S.J.; Scott, B.J.; Conyers, M.K.; Lynch, J.P.; Marshall, A.T. Temperature and light drive manganese accumulation and stress in crops across three major plant families. Environ. Exp. Bot. 2016, 132, 66–79. [Google Scholar] [CrossRef]
- Heenan, D.P.; Carter, O.G. Influence of temperature on the expression of manganese toxicity by two soybean varieties. Plant Soil 1977, 47, 219–227. [Google Scholar] [CrossRef]
- Rajkumar, M.; Narasimha, M.; Prasad, V.; Swaminathan, S.; Freitas, H. Climate change driven plant–metal–microbe interactions. Environ. Int. 2013, 53, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Clair, S.B.S.; Lynch, J.P. The opening of Pandora’s Box: Climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil 2010, 335, 101–115. [Google Scholar] [CrossRef]
- White, R.E. Principles and Practices of Soil Science—The Soil as a Natural Resource; Blackwell Science: Melbourne, Australia, 1997. [Google Scholar]
- Grobelak, A.; Kowalska, A. Heavy metal mobility in soil under futuristic climatic conditions. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 437–451. [Google Scholar]
- de los Santosa, C.B.; Arenasa, F.; Neupartha, T.; Santosa, M. Interaction of short-term copper pollution and ocean acidification in seagrass ecosystems: Toxicity, bioconcentration and dietary transfer. Mar. Pollut. Bull. 2019, 142, 155–163. [Google Scholar] [CrossRef]
- Luo, C.L.; Shen, Z.G.; Li, X.D. Root exudates increase metal accumulation in mixed cultures: Implications for naturally enhanced phytoextraction. Water Air Soil Pollut. 2008, 193, 147–152. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Wang, Y. Role of root exudates in metal acquisition and tolerance. Curr. Opin. Plant Biol. 2017, 39, 66–72. [Google Scholar] [CrossRef]
- Oburger, E.; Gruber, B.; Schindlegger, Y.; Schenkeveld, W.D.C.; Hann, S.; Kraemer, S.M.; Wenzel, W.W.; Puschenreite, M. Root exudation of phytosiderophores from soil-grown wheat. New Phytol. 2014, 203, 1161–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montiel-Rozas, M.M.; Madejon, E.; Madejon, P. Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environ. Pollut. 2016, 216, 273–281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fecht-Christoffers, M.M.; Braun, H.P.; Lemaitre-Guillier, C.; Van Dorsselaer, A.; Horst, W.J. Effect of manganese toxicity on the proteome of the leaf apoplast in cowpea. Plant Physiol. 2003, 133, 1935–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernando, D.R.; Mizuno, T.; Woodrow, I.E.; Baker, A.J.M.; Collins, R.N. Characterization of foliar manganese (Mn) in Mn (hyper)accumulators using X-ray absorption spectroscopy. New Phytol. 2010, 188, 1014–1027. [Google Scholar] [CrossRef] [PubMed]
- Krämer, U.; Cotter-Howells, J.D.; Charnock, J.M.; Baker, A.J.M.; Smith, J.A.C. Free histidine as a metal chelator in plants that accumulate nickel. Nature 1996, 379, 635–638. [Google Scholar] [CrossRef]
- Socha, A.L.; Guerinot, M.L. M-neuvering manganese: The role of transporter gene family members in manganese uptake and mobilization in plants. Front. Plant Sci. 2014, 5, 106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komal, T.; Mustafa, M.; Ali, Z.; Kazi, A.G. Heavy metal uptake and transport in plants. In Heavy Metal Contamination of Soils; Springer: Berlin/Heidelberg, Germany, 2015; pp. 181–194. [Google Scholar]
- Clemens, S. Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 2006, 68, 1707–1719. [Google Scholar] [CrossRef]
- White, M.C.; Decker, A.M.; Chaney, R.L. Metal complexation in xylem fluid. Plant Physiol. 1981, 67, 292–300. [Google Scholar] [CrossRef] [Green Version]
- Saraswat, S.; Rai, J.P.N. Complexation and detoxification of Zn and Cd in metal accumulating plants. Rev. Environ. Sci. Bio/Technol. 2011, 10, 327–339. [Google Scholar] [CrossRef]
- Graham, R.D.; Hannam, R.J.; Uren, N.C. Manganese in soils and plants. In Proceedings of the Presented at the International Symposium on Manganese in Soils and Plants, Glen Osmond, Australia, 22–26 August 1988. [Google Scholar]
- Baker, A.J.M. Accumulators and excluders—Strategies in the response of plants to heavy metals. J. Plant Nutr. 1981, 3, 643–654. [Google Scholar] [CrossRef]
- Pollard, A.J.; Powell, K.D.; Harper, F.A.; Smith, J.A. The genetic basis of metal hyperaccumulation in plants. Crit. Rev. Plant Sci. 2002, 21, 539–566. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Whiting, S.N. In search of the Holy Grail—A further step in understanding metal hyperaccumulation? New Phytol. 2002, 155, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.R. Plants That Hyperaccumulate Heavy Metals; CAB International: Oxford, UK; New York, NY, USA, 1998. [Google Scholar]
- Clair, S.B.S.; Lynch, J.P. Photosynthetic and antioxidative enzyme responses of sugar maple and red maple seedlings to excess manganese in contrasting light environments. Funct. Plant Biol. 2004, 31, 1005–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomlinson, G.H. Acidic deposition, nutrient leaching and forest growth. Biogeochemistry 2003, 65, 51–81. [Google Scholar] [CrossRef]
- St Clair, S.S.; Sharp, W.E.; Lynch, J. Key interactions between nutrient limitation and climatic factors in temperate forests: A synthesis of sugar maple literature. Can. J. For. Res. 2008, 38, 404–414. [Google Scholar] [CrossRef]
- Moreno-Jimenez, E.; Cesar, P.; Hugo, S.; Manzano, R.; Flagmeier, M.; Fernando, T.M. Aridity and reduced soil micronutrient availability in global drylands. Nat. Sustain. 2019, 2, 371–377. [Google Scholar] [CrossRef]
- Fabricus, K.E.; Langdon, C.; Uthicke, S.; Humphrey, C.; Noonan, S.; De’ath, G.; Okazaki, R.; Muellehner, N.; Glas, M.S.; Lough, J.M. Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat. Clim. Change 2011, 1, 165–169. [Google Scholar] [CrossRef]
- Fritoff, A.; Kautsky, L.; Greger, M. Influence of temperature and salinity on heavy metal uptake by submersed plants. Environ. Pollut. 2004, 133, 265–274. [Google Scholar] [CrossRef]
- Cesalpino, A. De Plantis Libri1583, 16(Florentiae), 369.
- Coleman, R.G.; Jove, C. Geological origin of Serpentinites. In The Vegetation of Ultramafic (Serpentine) Soils; Baker, A.J.M., Proctor, J., Reeves, R.D., Eds.; Intercept: Andover, UK, 1992; pp. 1–17. [Google Scholar]
- Lange, B.; van der Ent, A.; Baker, A.J.M.; Echevarria, G.; Mahy, G.; Malaisse, F.; Meerts, P.; Pourret, O.; Verbruggen, N.; Faucon, M.P. Copper and cobalt accumulation in plants: A critical assessment of the current state of knowledge. New Phytol. 2017, 213, 537–551. [Google Scholar] [CrossRef]
- van der Ent, A.; Jaffre, T.; Huillier, L.; Gibson, N.; Reeves, R. The flora of ultramafic soils in the Australia–Pacific Region: State of knowledge and research priorities. Plant Soil 2015, 63, 173–190. [Google Scholar] [CrossRef]
- Reeves, R.D.; Baker, A.J.M. Metal-accumulating plants. In Phytoremediation of Toxic Metals: Using Plants to Clean Up the Environment; Raskin, I., Ensley, B.D., Eds.; John Wiley and Sons: New York, NY, USA, 2000; pp. 193–221. [Google Scholar]
- Proctor, J.; Nagy, L. Ultramafic rocks and their vegetation: An overview. In The Vegetation of Ultramafic (Serpentine) Soils; Baker, A.J.M., Proctor, J., Reeves, R.D., Eds.; Intercept: Andover, UK, 1992; pp. 469–493. [Google Scholar]
- Baker, A.J.M.; Proctor, J.; Reeves, R.D. (Eds.) The Vegetation of Ultramafic (Serpentine) Soils; Intercept: Andover, UK, 1992. [Google Scholar]
- Whiting, S.N.; Reeves, R.D.; Richards, D.; Johnson, M.S.; Cooke, J.A.; Malisse, F.; Paton, A.; Smith, J.A.C.; Angle, J.S.; Chaney, R.L.; et al. Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor. Ecol. 2004, 12, 106–116. [Google Scholar] [CrossRef] [Green Version]
- Fernando, D.R.; Marshall, A.; Baker, A.J.M.; Mizuno, T. Microbeam methodologies as powerful tools in manganese hyperaccumulation research: Present status and future directions. Front. Plant Sci. 2013, 4, 319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sytar, O.; Ghosh, S.; Malinska, H.; Zivcak, M.; Brestic, M. Physiological and molecular mechanisms of metal accumulation in hyperaccumulator plants. Physiol. Plant. 2021, 173, 148–166. [Google Scholar] [CrossRef] [PubMed]
- McNeil, M. Lateritic Soils. Sci. Am. 1964, 211, 96–106. [Google Scholar] [CrossRef]
- CSIRO. Soils: An Australian Viewpoint; Academic Press: London, UK, 1983.
- Burger, P.A. The Greenvale nickel laterite orebody. In Proceedings of the International Laterite Symposium, New Orleans, LA, USA, July 1979. [Google Scholar]
- Golightly, J.P. Nickeliferous laterities: A general description. In Proceedings of the International Laterite Symposium, New Orleans, LA, USA, 1979. [Google Scholar]
- IPCC. Summary for Policymakers; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Corlett, R.T.; Tomlinson, K.W. Climate change and edaphic specialists: Irresistible force meets immovable object? Environ. Pollut. 2019, 255, 113169. [Google Scholar] [CrossRef]
- Luo, J.; Yang, G.; Igalavithana, A.D.; He, W.; Gaoc, B.; Tsang, D.C.W.; Sik Ok, Y. Effects of elevated CO2 on the phytoremediation efficiency of Noccaea caerulescens. Environ. Pollut. 2020, 35, 367–376. [Google Scholar] [CrossRef]
- Damschen, E.I.; Harrison, S.; Ackerly, D.D.; Fernandez-Going, B.M.; Anacker, B.L. Endemic plant communities on special soils: Early victims or hardy survivors of climate change? J. Ecol. 2012, 100, 1122–1130. [Google Scholar] [CrossRef]
- Wójcika, M.; Vangronsveld, J.; Tukiendorfa, A. Cadmium tolerance in Thlaspi caerulescens: I. Growth parameters, metal accumulation and phytochelatin synthesis in response to cadmium. Environ. Exp. Bot. 2005, 53, 151–161. [Google Scholar] [CrossRef]
- Mesnoua, M.; Mateos-Naranjo, E.; Barcia-Piedras, J.M.; Pérez-Romero, J.A.; Lotmani, B.; Redondo-Gómez, S. Physiological and biochemical mechanisms preventing Cd-toxicity in the hyperaccumulator Atriplex halimus L. Plant Physiol. Biochem. 2016, 106, 30–38. [Google Scholar] [CrossRef]
- Magri, E.; Kieras-Gugelmin, E.; Grabarski, F.A.P.; Barbosa, J.Z.; Auler, A.C.; Wendlinge, I.; Priorf, S.A.; Valdugag, A.T.; Mottad, A.C.V. Manganese hyperaccumulation capacity of Ilex paraguariensis A. St. Hil. and occurrence of interveinal chlorosis induced by transient toxicity. Ecotoxicol. Environ. Saf. 2020, 203, 111010. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Academic Press: London, UK, 2002. [Google Scholar]
- El-Jaoual, T.; Cox, D.A. Manganese toxicity in plants. J. Plant Nutr. 1998, 21, 353–386. [Google Scholar] [CrossRef]
- Elamin, O.M.; Wilcox, G.E. Manganese toxicity development in muskmelons as influenced by nitrogen form. J. Am. Hortic. Soc. 1986, 111, 323–327. [Google Scholar]
- Moraghan, J.T. Manganese nutrition of flax as affected by FeEDDHA and soil air drying. Soil Sci. Soc. Am. 1985, 49, 668–671. [Google Scholar] [CrossRef]
- Sparrow, L.A.; Uren, N.C. Manganese oxidation and reduction in soils: Effects of temperature, water potential, pH and their interactions. Soil Res. 2014, 52, 483–494. [Google Scholar] [CrossRef]
- Horst, W.J.; Marschner, H. Symptome von mangan-uberschuB bei bohnen (Phaseolus vulgaris). Z. Pflanz. Bodenkd 1978, 141, 129–142. [Google Scholar] [CrossRef]
- González, A.; Steffen, K.L.; Lynch, J.P. Light and excess manganese. Plant Physiol. 1998, 118, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Jackson, L.J. Paradigms of metal accumulation in rooted aquatic vascular plants. Sci. Total Environ. 1998, 219, 223–231. [Google Scholar] [CrossRef]
- Soltan, M.E.; Rashed, M.N. Laboratory study on the survival of water hyacinth under several conditions of heavy metal concentrations. Adv. Environ. Res. 2003, 7, 321–334. [Google Scholar] [CrossRef]
- Van Steveninck, R.F.M.; Van Steveninck, M.E.; Fernando, D.R. Heavy-metal (Zn, Cd) tolerance in selected clones of Duck Weed (Lemna minor). Plant Soil 1992, 146, 271–280. [Google Scholar] [CrossRef]
- Vesk, P.A.; Nockolds, C.E.; Allaway, W.G. Metal localization in water hyacinth roots from an urban wetland. Plant Cell Environ. 1999, 22, 149–158. [Google Scholar] [CrossRef]
- Fernando, D.R.; Lynch, J.P.; Reichman, S.; Clark, G.; Miller, R.; Doody, T. Inundation of a floodplain lake woodlands system: Nutritional profiling and benefit to mature Eucalyptus largiflorens (Black Box) trees. Wetl. Ecol. Manag. 2018, 26, 961–975. [Google Scholar] [CrossRef]
- Kingsford, R.T. Ecological impacts of dams, water diversions and river management on floodplain wetlands in Australia. Austral Ecol. 2000, 25, 109–127. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernando, D.R. Plant–Metal Interactions in the Context of Climate Change. Stresses 2022, 2, 79-89. https://doi.org/10.3390/stresses2010007
Fernando DR. Plant–Metal Interactions in the Context of Climate Change. Stresses. 2022; 2(1):79-89. https://doi.org/10.3390/stresses2010007
Chicago/Turabian StyleFernando, Denise R. 2022. "Plant–Metal Interactions in the Context of Climate Change" Stresses 2, no. 1: 79-89. https://doi.org/10.3390/stresses2010007
APA StyleFernando, D. R. (2022). Plant–Metal Interactions in the Context of Climate Change. Stresses, 2(1), 79-89. https://doi.org/10.3390/stresses2010007