Pozzolanic Assessment of Recycled Waste Glass for Use as a Supplementary Cementitious Material
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization of Cementitious Materials
2.2.1. Particle Size Distribution and Morphological
2.2.2. Determination of Chemical and Mineralogical Composition
2.3. Methods to Evaluate the Pozzolanic Activity
2.3.1. Chapelle Method
2.3.2. Pozzolanic Index with Lime
2.3.3. Strength Activity Index Tests
3. Results and Discussion
3.1. Particle Size Distribution and Morphological Analysis
3.2. Chemical and Mineralogical Composition
3.3. Pozzolanic Activity
3.3.1. Analysis of the Chapelle Method
3.3.2. Analysis of the Pozzolanic Index with Lime
3.3.3. Strength Activity Index
4. Conclusions
- The average particle size and distribution of both GWG and LWG are similar to those of Portland cement.
- The combined content of SiO2, Al2O3, and Fe2O3 in GWG and LWG exceeds 70%, meeting the minimum requirement established by ASTM C618-19 for classifying a material as pozzolanic.
- The XRD patterns of GWG and LWG exhibit an amorphous halo in the 2θ range of 10–30°, indicating the presence of amorphous material, which is essential for pozzolanic reactivity.
- The results obtained from the Chapelle test, lime reactivity, and Strength Activity Index (SAI) confirm that both GWG and LWG exhibit pozzolanic properties, outperforming FA. Moreover, the pozzolanic reaction kinetics of GWG and LWG are comparable to those of FA, with the most significant chemical reactions with Ca(OH)2 occurring at later curing ages.
- The experimental methods carried out in this study are standardized and widely recognized for assessing the pozzolanic performance of SCMs. Results from physical, mineralogical, morphological, chemical, and mechanical assessments not only validated the reliability of the data but also revealed differences in reactivity and performance between the two WGs. These findings underscore the significance of glass origin and composition in determining pozzolanic behavior, particularly the superior reactivity of LWG. This contributes valuable new insights for the sustainable valorization of glass waste in cement-based materials.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Challenges against CO2 Abatement Strategies in Cement Industry: A Review. J. Environ. Sci. 2021, 104, 84–101. [Google Scholar] [CrossRef]
- Hayek, M.; El Bitouri, Y.; Bouarab, K.; Yahia, A. Structural Build-Up of Cement Pastes: A Comprehensive Overview and Key Research Directions. Constr. Mater. 2025, 5, 31. [Google Scholar] [CrossRef]
- Antunes, M.; Santos, R.L.; Pereira, J.; Rocha, P.; Horta, R.B.; Colaço, R. Alternative Clinker Technologies for Reducing Carbon Emissions in Cement Industry: A Critical Review. Materials 2021, 15, 209. [Google Scholar] [CrossRef] [PubMed]
- Juenger, M.C.G.; Snellings, R.; Bernal, S.A. Supplementary Cementitious Materials: New Sources, Characterization, and Performance Insights. Cem. Concr. Res. 2019, 122, 257–273. [Google Scholar] [CrossRef]
- Hassannezhad, K.; Akyol, Y.; Dursun, M.C.; Ow-Yang, C.W.; Gulgun, M.A. Effect of Metakaolin and Lime on Strength Development of Blended Cement Paste. Constr. Mater. 2022, 2, 297–313. [Google Scholar] [CrossRef]
- Sarangi, S.; Suganya, O.M. A Comprehensive Review of the Physical and Mechanical Characteristics of Agricultural By-Products as Cementitious Alternatives in the Production of Sustainable Concrete. Mater. Today Sustain. 2024, 27, 100882. [Google Scholar] [CrossRef]
- Andersson, A.; Brander, L.; Lennartsson, A.; Roos, Å.; Engström, F. Ground Granulated Iron Silicate Slag as Supplementary Cementitious Material: Effect of Prolonged Grinding and Granulation Temperature. Clean. Mater. 2023, 10, 100209. [Google Scholar] [CrossRef]
- Bharadwaj, K.; Burkan Isgor, O.; Jason Weiss, W. Pozzolanic Reactivity of Supplementary Cementitious Materials. Mater. J. 2023, 120, 63–76. [Google Scholar] [CrossRef]
- Xu, X.; Wang, F.; Gu, X.; Zhao, Y. Mechanism of Different Mechanically Activated Procedures on the Pozzolanic Reactivity of Binary Supplementary Cementitious Materials. Minerals 2022, 12, 1365. [Google Scholar] [CrossRef]
- Benhelal, E.; Shamsaei, E.; Rashid, M.I. Novel Modifications in a Conventional Clinker Making Process for Sustainable Cement Production. J. Clean Prod. 2019, 221, 389–397. [Google Scholar] [CrossRef]
- Amir Raza, M.; Karim, A.; Aman, M.M.; Ahmad Al-Khasawneh, M.; Faheem, M. Global Progress towards the Coal: Tracking Coal Reserves, Coal Prices, Electricity from Coal, Carbon Emissions and Coal Phase-Out. Gondwana Res. 2025, 139, 43–72. [Google Scholar] [CrossRef]
- McCarthy, M.J.; Robl, T.; Csetenyi, L.J. 14—Recovery, Processing, and Usage of Wet-Stored Fly Ash. In Coal Combustion Products (CCP’s); Robl, T., Oberlink, A., Jones, R.B.T., Eds.; Woodhead Publishing: Cambridge, UK, 2017; pp. 343–367. ISBN 978-0-08-100945-1. [Google Scholar]
- Chandra Paul, S.; Šavija, B.; Babafemi, A.J. A Comprehensive Review on Mechanical and Durability Properties of Cement-Based Materials Containing Waste Recycled Glass. J. Clean Prod. 2018, 198, 891–906. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhan, B.J.; Duan, Z.H.; Poon, C.S. Using Glass Powder to Improve the Durability of Architectural Mortar Prepared with Glass Aggregates. Mater. Des. 2017, 135, 102–111. [Google Scholar] [CrossRef]
- Solahuddin, B.A. A Comprehensive Review on Waste Paper Concrete. Results Eng. 2022, 16, 100740. [Google Scholar] [CrossRef]
- Nodehi, M.; Mohamad Taghvaee, V. Sustainable Concrete for Circular Economy: A Review on Use of Waste Glass. Glass Struct. Eng. 2022, 7, 3–22. [Google Scholar] [CrossRef]
- Arabi, N.; Meftah, H.; Amara, H.; Kebaïli, O.; Berredjem, L. Valorization of Recycled Materials in Development of Self-Compacting Concrete: Mixing Recycled Concrete Aggregates—Windshield Waste Glass Aggregates. Constr. Build. Mater. 2019, 209, 364–376. [Google Scholar] [CrossRef]
- Lu, J.X.; Zhan, B.J.; Duan, Z.H.; Poon, C.S. Improving the Performance of Architectural Mortar Containing 100% Recycled Glass Aggregates by Using SCMs. Constr. Build. Mater. 2017, 153, 975–985. [Google Scholar] [CrossRef]
- Qaidi, S.; Najm, H.M.; Abed, S.M.; Özkılıç, Y.O.; Al Dughaishi, H.; Alosta, M.; Sabri, M.M.S.; Alkhatib, F.; Milad, A. Concrete Containing Waste Glass as an Environmentally Friendly Aggregate: A Review on Fresh and Mechanical Characteristics. Materials 2022, 15, 6222. [Google Scholar] [CrossRef] [PubMed]
- Afshinnia, K.; Rangaraju, P.R. Influence of Fineness of Ground Recycled Glass on Mitigation of Alkali–Silica Reaction in Mortars. Constr. Build. Mater. 2015, 81, 257–267. [Google Scholar] [CrossRef]
- Zheng, K. Pozzolanic Reaction of Glass Powder and Its Role in Controlling Alkali–Silica Reaction. Cem. Concr. Compos. 2016, 67, 30–38. [Google Scholar] [CrossRef]
- Franco-Luján, V.A.; Ramírez-Arellanes, S.; Gomez-Sanchez, A.; Pérez-Ramos, A.E.; Cruz-García, E.S.; Cruz-Martínez, H. Properties of Fresh and Hardened Cement-Based Materials with Waste Glass as Supplementary Cementitious Material: A Review. J. Build. Eng. 2024, 95, 110137. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.C.; Mo, K.H.; Shi, C. A Critical Review of Waste Glass Powder—Multiple Roles of Utilization in Cement-Based Materials and Construction Products. J. Environ. Manag. 2019, 242, 440–449. [Google Scholar] [CrossRef]
- Rashid, K.; Hameed, R.; Ahmad, H.A.; Razzaq, A.; Ahmad, M.; Mahmood, A. Analytical Framework for Value Added Utilization of Glass Waste in Concrete: Mechanical and Environmental Performance. Waste Manag. 2018, 79, 312–323. [Google Scholar] [CrossRef] [PubMed]
- Soliman, N.A.; Tagnit-Hamou, A. Development of Ultra-High-Performance Concrete Using Glass Powder—Towards Ecofriendly Concrete. Constr. Build. Mater. 2016, 125, 600–612. [Google Scholar] [CrossRef]
- Letelier, V.; Henríquez-Jara, B.I.; Manosalva, M.; Parodi, C.; Ortega, J.M. Use of Waste Glass as A Replacement for Raw Materials in Mortars with a Lower Environmental Impact. Energies 2019, 12, 1974. [Google Scholar] [CrossRef]
- Patel, D.; Tiwari, R.P.; Shrivastava, R.; Yadav, R.K. Effective Utilization of Waste Glass Powder as the Substitution of Cement in Making Paste and Mortar. Constr. Build. Mater. 2019, 199, 406–415. [Google Scholar] [CrossRef]
- Qin, D.; Hu, Y.; Li, X. Waste Glass Utilization in Cement-Based Materials for Sustainable Construction: A Review. Crystals 2021, 11, 710. [Google Scholar] [CrossRef]
- Wang, Y.; Cao, Y.; Zhang, P.; Ma, Y. Effective Utilization of Waste Glass as Cementitious Powder and Construction Sand in Mortar. Materials 2020, 13, 707. [Google Scholar] [CrossRef]
- Çelik, A.İ.; Tunç, U.; Bahrami, A.; Karalar, M.; Othuman Mydin, M.A.; Alomayri, T.; Özkılıç, Y.O. Use of Waste Glass Powder toward More Sustainable Geopolymer Concrete. J. Mater. Res. Technol. 2023, 24, 8533–8546. [Google Scholar] [CrossRef]
- Tahwia, A.M.; Heniegal, A.M.; Abdellatief, M.; Tayeh, B.A.; Elrahman, M.A. Properties of Ultra-High Performance Geopolymer Concrete Incorporating Recycled Waste Glass. Case Stud. Constr. Mater. 2022, 17, e01393. [Google Scholar] [CrossRef]
- Zeybek, Ö.; Özkılıç, Y.O.; Karalar, M.; Çelik, A.İ.; Qaidi, S.; Ahmad, J.; Burduhos-Nergis, D.D.; Burduhos-Nergis, D.P. Influence of Replacing Cement with Waste Glass on Mechanical Properties of Concrete. Materials 2022, 15, 7513. [Google Scholar] [CrossRef]
- Bignozzi, M.C.; Saccani, A.; Barbieri, L.; Lancellotti, I. Glass Waste as Supplementary Cementing Materials: The Effects of Glass Chemical Composition. Cem. Concr. Compos. 2015, 55, 45–52. [Google Scholar] [CrossRef]
- Chen, C.H.; Huang, R.; Wu, J.K.; Yang, C.C. Waste E-Glass Particles Used in Cementitious Mixtures. Cem. Concr. Res. 2006, 36, 449–456. [Google Scholar] [CrossRef]
- Khmiri, A.; Chaabouni, M.; Samet, B. Chemical Behaviour of Ground Waste Glass When Used as Partial Cement Replacement in Mortars. Constr. Build. Mater. 2013, 44, 74–80. [Google Scholar] [CrossRef]
- NMX-C-414-ONNCCE-2017; Industria de la Construcción–Cementos Hidráulicos–Especificaciones y Métodos de Prueba. Organismo Nacional de Normalización y Certificación de la Construcción y Edificación, S.C.: Mexico City, Mexico, 2017; pp. 1–2. (In Spanish)
- Wei, L.K.; Abd Rahim, S.Z.; Al Bakri Abdullah, M.M.; Yin, A.T.M.; Ghazali, M.F.; Omar, M.F.; Nemeș, O.; Sandu, A.V.; Vizureanu, P.; Abdellah, A.E. hadj Producing Metal Powder from Machining Chips Using Ball Milling Process: A Review. Materials 2023, 16, 4635. [Google Scholar] [CrossRef] [PubMed]
- ASTM C188-17; Standard Test Method for Density of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM C144; Test Methods for Chemical Analysis of Hydraulic Cement. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D 7348; Standard Test Methods for Loss on Ignition (LOI) of Solid Combustion Residues. ASTM International: West Conshohocken, PA, USA, 2023.
- Cordeiro, G.C.; Toledo Filho, R.D.; Tavares, L.M.; Fairbairn, E.M.R. Pozzolanic Activity and Filler Effect of Sugar Cane Bagasse Ash in Portland Cement and Lime Mortars. Cem. Concr. Compos. 2008, 30, 410–418. [Google Scholar] [CrossRef]
- Ali, H.A.; Xuan, D.; Poon, C.S. Assessment of Long-Term Reactivity of Initially Lowly-Reactive Solid Wastes as Supplementary Cementitious Materials (SCMs). Constr. Build. Mater. 2020, 232, 117192. [Google Scholar] [CrossRef]
- ASTM C311/C311M-24; Standard Test Methods for Sampling and Testing Coal Ash or Natural Pozzolans for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM C109/C109M-22; Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-Mm] Cube Specimens). ASTM International: West Conshohocken, PA, USA, 2022.
- Jiang, X.; Xiao, R.; Bai, Y.; Huang, B.; Ma, Y. Influence of Waste Glass Powder as a Supplementary Cementitious Material (SCM) on Physical and Mechanical Properties of Cement Paste under High Temperatures. J. Clean Prod. 2022, 340, 130778. [Google Scholar] [CrossRef]
- Jochem, L.F.; Casagrande, C.A.; Onghero, L.; Venâncio, C.; Gleize, P.J.P. Effect of Partial Replacement of the Cement by Glass Waste on Cementitious Pastes. Constr. Build. Mater. 2021, 273, 121704. [Google Scholar] [CrossRef]
- Pereira-De-Oliveira, L.A.; Castro-Gomes, J.P.; Santos, P.M.S. The Potential Pozzolanic Activity of Glass and Red-Clay Ceramic Waste as Cement Mortars Components. Constr. Build. Mater. 2012, 31, 197–203. [Google Scholar] [CrossRef]
- ASTM C1260-22; Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2022.
- Bouchikhi, A.; Benzerzour, M.; Abriak, N.E.; Maherzi, W.; Mamindy-Pajany, Y. Study of the Impact of Waste Glasses Types on Pozzolanic Activity of Cementitious Matrix. Constr. Build. Mater. 2019, 197, 626–640. [Google Scholar] [CrossRef]
- Nassar, R.U.D.; Soroushian, P. Strength and Durability of Recycled Aggregate Concrete Containing Milled Glass as Partial Replacement for Cement. Constr. Build. Mater. 2012, 29, 368–377. [Google Scholar] [CrossRef]
- ASTM C 618-19; Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2019.
- Pacewska, B.; Wilińska, I. Usage of Supplementary Cementitious Materials: Advantages and Limitations. J. Therm. Anal. Calorim. 2020, 142, 371–393. [Google Scholar] [CrossRef]
- Berenguer, R.; Lima, N.; Pinto, L.; Monteiro, E.; Povoas, Y.; Oliveira, R.; Lima, N.B.D. Cement-Based Materials: Pozzolanic Activities of Mineral Additions Are Compromised by the Presence of Reactive Oxides. J. Build. Eng. 2021, 41, 102358. [Google Scholar] [CrossRef]
- Toutanji, H.; Delatte, N.; Aggoun, S.; Duval, R.; Danson, A. Effect of Supplementary Cementitious Materials on the Compressive Strength and Durability of Short-Term Cured Concrete. Cem. Concr. Res. 2004, 34, 311–319. [Google Scholar] [CrossRef]
- Zhuang, W.; Li, S.; Yu, Q. The Effect of Supplementary Cementitious Material Systems on Dynamic Compressive Properties of Ultra-High Performance Concrete Paste. Constr. Build. Mater. 2022, 321, 126361. [Google Scholar] [CrossRef]
- Walker, R.; Pavía, S. Physical Properties and Reactivity of Pozzolans, and Their Influence on the Properties of Lime-Pozzolan Pastes. Mater. Struct./Mater. Constr. 2011, 44, 1139–1150. [Google Scholar] [CrossRef]
- ASTM C1866/C1866M-20; Standard Specification for Ground-Glass Pozzolan for Use in Concrete. ASTM International: West Conshohocken, PA, USA, 2020.
- Sahoo, S.; Parhi, P.K.; Chandra Panda, B. Durability Properties of Concrete with Silica Fume and Rice Husk Ash. Clean Eng. Technol. 2021, 2, 100067. [Google Scholar] [CrossRef]
- Shi, C.; Wu, Y.; Riefler, C.; Wang, H. Characteristics and Pozzolanic Reactivity of Glass Powders. Cem. Concr. Res. 2005, 35, 987–993. [Google Scholar] [CrossRef]
- Shao, Y.; Lefort, T.; Moras, S.; Rodriguez, D. Studies on Concrete Containing Ground Waste Glass. Cem. Concr. Res. 2000, 30, 91–100. [Google Scholar] [CrossRef]
Material | Average Particle Size (μm) |
---|---|
PC | 15.84 |
GWG | 21.64 |
LWG | 23.16 |
FA | 36.29 |
Oxides | PC | GWG | LWG | FA |
---|---|---|---|---|
SiO2 | 14.04 | 76.13 | 90.06 | 77.43 |
Al2O3 | 3.01 | 2.24 | 4.24 | 13.15 |
Fe2O3 | 2.16 | 1.17 | 1.33 | 2.58 |
CaO | 68.10 | 13.17 | 1.38 | 0.92 |
MgO | 1.03 | 0.12 | 0.00 | 0.30 |
Na2O | 0.00 | 0.81 | 0.00 | 1.56 |
K2O | 1.23 | 0.80 | 1.07 | 0.76 |
TiO2 | 0.13 | 0.24 | 0.05 | 0.61 |
P2O5 | 0.37 | 0.81 | 0.68 | 0.00 |
MnO | 0.04 | 0.09 | 0.00 | 0.01 |
SO3 | 2.69 | 0.43 | 0.00 | 0.16 |
Cr2O3 | 0.00 | 0.31 | 0.00 | 0.00 |
V2O5 | 0.03 | 0.00 | 0.00 | 0.00 |
SrO | 0.07 | 0.00 | 0.02 | 0.00 |
Ag2O | 0.11 | 0.10 | 0.09 | 0.00 |
BaO | 0.15 | 0.09 | 0.77 | 0.00 |
ZrO2 | 0.00 | 0.04 | 0.06 | 0.00 |
ZnO | 0.00 | 0.00 | 0.08 | 0.00 |
LOI | 6.13 | 3.27 | 2.89 | 2.38 |
SiO2 + Al2O3 + Fe2O3 | --- | 79.54 | 95.63 | 93.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Arellanes, S.; Montejo-Alvaro, F.; Cruz-Martínez, H.; Rojas-Chávez, H.; Mendoza-Rangel, J.M.; Franco-Luján, V.A. Pozzolanic Assessment of Recycled Waste Glass for Use as a Supplementary Cementitious Material. Constr. Mater. 2025, 5, 59. https://doi.org/10.3390/constrmater5030059
Ramírez-Arellanes S, Montejo-Alvaro F, Cruz-Martínez H, Rojas-Chávez H, Mendoza-Rangel JM, Franco-Luján VA. Pozzolanic Assessment of Recycled Waste Glass for Use as a Supplementary Cementitious Material. Construction Materials. 2025; 5(3):59. https://doi.org/10.3390/constrmater5030059
Chicago/Turabian StyleRamírez-Arellanes, Samuel, Fernando Montejo-Alvaro, Heriberto Cruz-Martínez, Hugo Rojas-Chávez, Jose Manuel Mendoza-Rangel, and Víctor Alberto Franco-Luján. 2025. "Pozzolanic Assessment of Recycled Waste Glass for Use as a Supplementary Cementitious Material" Construction Materials 5, no. 3: 59. https://doi.org/10.3390/constrmater5030059
APA StyleRamírez-Arellanes, S., Montejo-Alvaro, F., Cruz-Martínez, H., Rojas-Chávez, H., Mendoza-Rangel, J. M., & Franco-Luján, V. A. (2025). Pozzolanic Assessment of Recycled Waste Glass for Use as a Supplementary Cementitious Material. Construction Materials, 5(3), 59. https://doi.org/10.3390/constrmater5030059