A Bayesian Framework for the Calibration of Cyclic Triaxial Tests
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. The Soil Constitutive Model
2.3. Bayesian Inference
- Select a specific value , where .
- Randomly assign a value y within the range of 0 to .
- Define a horizontal line at the position, outlining a “slice” that corresponds to an axis interval, where the value of exceeds .
- Select a new value within the identified slice and repeat the process.
3. Results
3.1. Model Calibration
3.2. Analysis of Results
4. Discussion
Verification of Variability Effects on the Dynamic Response of a Liquefiable Deposit
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MAP | Maximum a posteriori |
PDMY | Pressure-dependent model with multiple yield surfaces |
TCUI | Consolidated undrained isotropic cyclic triaxial tests |
WLA | Wildlife Liquefaction Array |
PT | Transformation phase |
References
- Seed, H.B. Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground during Earthquakes. J. Geotech. Eng. Div. 1979, 105, 201–255. [Google Scholar] [CrossRef]
- Palacios, I.V.; Chacón, J.; Espinosa, I.V.; Vidal, F.; Irigaray, C. Susceptibilidad a Licuefacción En La Vega De Granada (España). In 4CNIS: Libro de Resúmenes del Cuarto Congreso Nacional de Ingeniería Sísmica; Copicentro: Andalusia, Spain, 2012; p. 72. [Google Scholar]
- Zeitouny, J.; Lieske, W.; Lavasan, A.A.; Heinz, E.; Wichern, M.; Wichtmann, T. Impact of New Combined Treatment Method on the Mechanical Properties and Microstructure of MICP-Improved Sand. Geotechnics 2023, 3, 661–685. [Google Scholar] [CrossRef]
- Andrus, R.D.; Stokoe, K.H. Liquefaction Resistance Based on Shear Wave Velocity; ROSAP: Washington, DC, USA, 1997.
- Boulanger, R.W.; Idriss, I.M. CPT and SPT Liquefaction Triggering Procedures; Report No. UCD/CGM-14/01; Center for Geotechnical Modeling, Department of Civil & Environmental Engineering, University of California: Davis, CA, USA, 2014. [Google Scholar]
- Youd, B.T.L.; Idriss, I.M. Liquefaction resistance of soils: Summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. J. Geotech. Geoenviron. Eng. 2001, 127, 297–313. [Google Scholar] [CrossRef]
- Bennett, M.J.; McLaughlin, P.V.; Sarmiento, J.S.; Youd, T.L. Geotechnical Investigation of Liquefaction Sites, Imperial Valley, California; US Geological Survey: Reston, VA, USA, 1984. [CrossRef]
- Youd, L.; Holzer, T.L. Piezometer Performance at Wildlife Liquefaction Site, California. J. Geotech. Eng. 1994, 120, 975–995. [Google Scholar] [CrossRef]
- Quintero, J.; Gomes, R.C.; Rios, S.; Ferreira, C.; da Fonseca, A.V. Liquefaction assessment based on numerical simula-tions and simplified methods: A deep soil deposit case study in the Greater Lisbon. Soil Dyn. Earthq. Eng. 2023, 169, 107866. [Google Scholar] [CrossRef]
- Kutter, B.L.; Carey, T.J.; Hashimoto, T.; Zeghal, M.; Abdoun, T.; Kokkali, P.; Madabhushi, G.; Haigh, S.K.; D’ARezzo, F.B.; Madabhushi, S.; et al. LEAP-GWU-2015 experiment specifications, results, and comparisons. Soil Dyn. Earthq. Eng. 2018, 113, 616–628. [Google Scholar] [CrossRef]
- Manzari, M.T.; Zeghal, M.; Iai, S.; Tobita, T.; Madabhushi, S.P.; Zhou, Y.G. LEAP projects: Concept and challenges. In Proceedings of the 4th International Conference on Geotechnical Engineering for Disaster Mitigation and Rehabilitation, Kyoto, Japan, 16–18 September 2014; pp. 109–116. [Google Scholar]
- Zahmatkesh, A.; Choobbasti, A.J. Calibration of an Advanced Constitutive Model for Babolsar Sand Accom-panied by Liquefaction Analysis. J. Earthq. Eng. 2017, 21, 679–699. [Google Scholar] [CrossRef]
- Zeghal, M.; Goswami, N.; Kutter, B.L.; Manzari, M.T.; Abdoun, T.; Arduino, P.; Armstrong, R.; Beaty, M.; Chen, Y.-M.; Ghofrani, A.; et al. Stress-strain response of the LEAP-2015 centrifuge tests and numerical predictions. Soil Dyn. Earthq. Eng. 2018, 113, 804–818. [Google Scholar] [CrossRef]
- Zhang, W.; Wu, C.; Zhong, H.; Li, Y.; Wang, L. Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci. Front. 2021, 12, 469–477. [Google Scholar] [CrossRef]
- Tang, C.; Phoon, K.-K.; Zhang, L.; Li, D.-Q. Model Uncertainty for Predicting the Bearing Capacity of Sand Overlying Clay. Int. J. Geomech. 2017, 17, 04017015. [Google Scholar] [CrossRef]
- He, G.-F.; Yin, Z.-Y.; Zhang, P. Uncertainty quantification in data-driven modelling with application to soil properties pre-diction. Acta Geotech. 2025, 20, 843–859. [Google Scholar] [CrossRef]
- Bozorgzadeh, N.; Bathurst, R.J. Bayesian model checking, comparison and selection with emphasis on outlier detection for geotechnical reliability-based design. Comput. Geotech. 2019, 116, 103181. [Google Scholar] [CrossRef]
- Elbadawy, M.A.; Zhou, Y.-G. Class-C Simulations of LEAP-ASIA-2019 via OpenSees Platform by Using a Pressure Dependent Multi-yield Surface Model. In Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading II; Springer International Publishing: Cham, Switzerland, 2024; pp. 409–435. [Google Scholar] [CrossRef]
- Neil, R. Slice Sampling (with discussion). Ann. Stat. 2003, 31, 705–767. Available online: https://projecteuclid.org/journals/annals-of-statistics/volume-31/issue-3/Slice-sampling/10.1214/aos/1056562461.full (accessed on 4 June 2025).
- Wichtmann, T.; Triantafyllidis, T. An experimental database for the development, calibration and verification of constitu-tive models for sand with focus to cyclic loading: Part II—tests with strain cycles and combined loading. Acta Geotech. 2016, 11, 763–774. [Google Scholar] [CrossRef]
- DIN 18126; Baugrund, Untersuchung von Bodenproben-Bestimmung der Dichte Nichtbindiger Böden bei Lockerster und Dichtester Lagerung. Beuth Verlag: Berlín, Germany, 1996.
- ASTM D5311M-13; Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil. ASTM International: West Conshohocken, PA, USA, 2013.
- Yang, Z.; Lu, J.; Elgamal, A. OpenSees Soil Models and Solid-Fluid Fully Coupled Elements: User’s Manual; University of California: San Diego, CA, USA, 2008; Version 1; Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:OpenSees+Soil+Models+and+Solid-+Fluid+Fully+Coupled+Elements+User+?+s+Manual#0 (accessed on 5 June 2025).
- McKenna, F.; Fenves, G.L.; Scott, M.H. Open System for Earthquake Engineering Simulation (OpenSees), Version 3.7.1; University of California: Berkeley, CA, USA, 2000. Available online: https://opensees.berkeley.edu/ (accessed on 13 July 2025).
- Ismael, B.; Lombardi, D. Evaluation of Liquefaction Potential for Two Sites Due to the 2016 Kumamoto Earthquake Sequence. In Proceedings of the Conference of the Arabian Journal of Geosciences, Sousse, Tunisia, 25–28 November 2019; Springer International Publishing: Cham, Germany, 2019; pp. 237–241. [Google Scholar] [CrossRef]
- Khosravifar, A.; Elgamal, A.; Lu, J.; Li, J. A 3D model for earthquake-induced liquefaction triggering and post-liquefaction response. Soil Dyn. Earthq. Eng. 2018, 110, 43–52. [Google Scholar] [CrossRef]
- Patra, S.K.; Haldar, S. Seismic Response of Monopile Supported Offshore Wind Turbine in Liquefied Soil. Structures 2021, 31, 248–265. [Google Scholar] [CrossRef]
- Qiu, Z.; Elgamal, A. Seismic performance of a sheet-pile retaining structure in liquefiable soils: Numerical simulations of LEAP-2022 centrifuge tests. Soil Dyn. Earthq. Eng. 2024, 176, 108330. [Google Scholar] [CrossRef]
- Masing, G. Eigenspannungen und Verfestigung beim Messing. In Proceedings of the International Congress for Applied Mechanics, Zurich, Switzerland, 12–17 September 1926; pp. 332–335. [Google Scholar]
- Mróz, Z.; Norris, V.A.; Zienkiewicz, O.C. Application of an anisotropic hardening model in the analysis of elasto–plastic deformation of soils. Géotechnique 1979, 29, 1–34. [Google Scholar] [CrossRef]
- Kondner, R.L. Hyperbolic Stress-Strain Response: Cohesive Soils. J. Soil Mech. Found. Div. 1963, 89, 115–144. [Google Scholar]
- Puzrin, A.M. Constitutive Modelling in Geomechanics: Introduction; Springer: Berlin, Germany, 2012; pp. 1–312. [Google Scholar] [CrossRef]
- Prevost, J.H. A simple plasticity theory for frictional cohesionless soils. Int. J. Soil Dyn. Earthq. Eng. 1985, 4, 9–17. [Google Scholar] [CrossRef]
- Elgamal, A.; Yang, Z.; Parra, E.; Ragheb, A. Modeling of cyclic mobility in saturated cohesionless soils. Int. J. Plast. 2003, 19, 883–905. [Google Scholar] [CrossRef]
- Das, B.M.; Sivakugan, N. Principles of Foundation Engineering; Cengage Learning: Boston, MA, USA, 2018. [Google Scholar]
- Wichtmann, T.; Triantafyllidis, T. Influence of a cyclic and dynamic loading history on dynamic properties of dry sand, part I: Cyclic and dynamic torsional prestraining. Soil Dyn. Earthq. Eng. 2004, 24, 127–147. [Google Scholar] [CrossRef]
- Kulhawy, F.H.; Mayne, P. Manual on Estimating Soil Properties for Foundation Design; Cornell University Ithaca: New York, NY, USA, 1990. [Google Scholar]
- Elgamal, A.; Yang, Z.; Parra, E. Computational modeling of cyclic mobility and post-liquefaction site response. Soil Dyn. Earthq. Eng. 2002, 22, 259–271. [Google Scholar] [CrossRef]
Parameter | φc ° | Gref kPa | v - | c1 - | d - | - |
---|---|---|---|---|---|---|
Prior for TCUI10, TCUI13 and TCUI16 | N (31.2, 5) | N (108, 355, 1500) | N (0.3, 0.04) | N (0.05, 0.03) | N (0.5, 0.01) | N (0.15, 0.03) |
Parameter | φc ° | Gref kPa | v - | c1 - | d - | - |
---|---|---|---|---|---|---|
MAP TCUI10 | 28.3 | 83,833.2 | 0.376 | 0.055 | 0.502 | 0.131 |
MAP TCUI13 | 28.2 | 72,192.9 | 0.151 | 0.169 | 0.491 | 0.094 |
MAP TCUI16 | 28.7 | 81,039.3 | 0.452 | 0.021 | 0.277 | 0.124 |
Layer | φc ° | Gref KPa | v - | c1 - | d - | d1 - | k m/s |
---|---|---|---|---|---|---|---|
Layer 1 | 32 | 90,000 | 0.3 | 0.0 | 0.5 | 0.0 | 1 × 10−8 |
Layer 2 * | 28.2 | 85,511 | 0.386 | 0.049 | 0.5 | 0.0 | 1 × 10−5 |
Layer 3 | 32 | 90,000 | 0.3 | 0.0 | 0.5 | 0.0 | 1 × 10−8 |
Layer 4 | 32 | 90,000 | 0.3 | 0.0 | 0.5 | 0.0 | 1 × 10−8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castillo-Suárez, L.; Redondo-Mosquera, J.; Mercado, V.; Fernández-Gómez, J.; Abellán-García, J. A Bayesian Framework for the Calibration of Cyclic Triaxial Tests. Geotechnics 2025, 5, 63. https://doi.org/10.3390/geotechnics5030063
Castillo-Suárez L, Redondo-Mosquera J, Mercado V, Fernández-Gómez J, Abellán-García J. A Bayesian Framework for the Calibration of Cyclic Triaxial Tests. Geotechnics. 2025; 5(3):63. https://doi.org/10.3390/geotechnics5030063
Chicago/Turabian StyleCastillo-Suárez, Luis, Jesús Redondo-Mosquera, Vicente Mercado, Jaime Fernández-Gómez, and Joaquín Abellán-García. 2025. "A Bayesian Framework for the Calibration of Cyclic Triaxial Tests" Geotechnics 5, no. 3: 63. https://doi.org/10.3390/geotechnics5030063
APA StyleCastillo-Suárez, L., Redondo-Mosquera, J., Mercado, V., Fernández-Gómez, J., & Abellán-García, J. (2025). A Bayesian Framework for the Calibration of Cyclic Triaxial Tests. Geotechnics, 5(3), 63. https://doi.org/10.3390/geotechnics5030063