Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study †
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample of Subjects
2.2. Experimental Protocol
2.3. Testing Devices
2.4. Variables
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial measurement units for clinical movement analysis: Reliability and concurrent validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef]
- Zeng, Z.; Liu, Y.; Hu, X.; Tang, M.; Wang, L. Validity and reliability of inertial measurement units on lower extremity kinematics during running: A systematic review and meta-analysis. Sports Med. Open 2022, 8, 86. [Google Scholar] [CrossRef]
- Clemente, F.M.; Akyildiz, Z.; Pino-Ortega, J.; Rico-González, M. Validity and reliability of the inertial measurement unit for barbell velocity assessments: A systematic review. Sensors 2021, 21, 2511. [Google Scholar] [CrossRef]
- Reenalda, J. Current Developments and Future Directions in Using IMUs for Injury Prevention in Running. In Proceedings of the 2023 IEEE SENSORS, Vienna, Austria, 29 October—1 November 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–2. [Google Scholar] [CrossRef]
- Neal, B.S.; Bramah, C.; McCarthy-Ryan, M.F.; Moore, I.S.; Napier, C.; Paquette, M.R.; Gruber, A.H. Using wearable technology data to explain recreational running injury: A prospective longitudinal feasibility study. Phys. Ther. Sport 2024, 65, 130–136. [Google Scholar] [CrossRef]
- McDevitt, S.; Hernandez, H.; Hicks, J.; Lowell, R.; Bentahaikt, H.; Burch, R.; Ball, J.; Chander, H.; Freeman, C.; Taylor, C.; et al. Wearables for biomechanical performance optimization and risk assessment in industrial and sports applications. Bioengineering 2022, 9, 33. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, H.; Jie, T.; Zhou, Z.; Yuan, Y.; Jemni, M.; Quan, W.; Gao, Z.; Xiang, L.; Gusztav, F.; et al. Data-driven deep learning for predicting ligament fatigue failure risk mechanisms. Int. J. Mech. Sci. 2025, 301, 110519. [Google Scholar] [CrossRef]
- Vecbērza, L.; Šmite, Z.; Plakane, L.; Ābeļkalns, I. The impact of ankle plantar-flexor muscle strength on sprint acceleration in floorball players. Int. J. Sports Physiol. Perform. 2025, 20, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Falch, H.N.; Kristiansen, E.L.; Haugen, M.E.; van den Tillaar, R. Association of performance in strength and plyometric tests with change of direction performance in young female team-sport athletes. J. Funct. Morphol. Kinesiol. 2021, 6, 83. [Google Scholar] [CrossRef]
- Sigurdsson, H.B.; Maguire, M.C.; Balascio, P.; Silbernagel, K.G. Effects of kinesiophobia and pain on performance and willingness to perform jumping tests in Achilles tendinopathy: A cross-sectional study. Phys. Ther. Sport 2021, 50, 139–144. [Google Scholar] [CrossRef] [PubMed]
- Novacheck, T.F. The biomechanics of running. Gait Posture 1998, 7, 77–95. [Google Scholar] [CrossRef]
- Morin, J.B.; Samozino, P.; Millet, G.Y. Changes in running kinematics, kinetics, and spring-mass behavior over a 24-h run. Med. Sci. Sports Exerc. 2011, 43, 829–836. [Google Scholar] [CrossRef]
- Chollet, M.; Michelet, S.; Horvais, N.; Pavailler, S.; Giandolini, M. Individual physiological responses to changes in shoe bending stiffness: A cluster analysis study on 96 runners. Eur. J. Appl. Physiol. 2023, 123, 169–177. [Google Scholar] [CrossRef]
- McMahon, T.A. Spring-like properties of muscles and reflexes in running. In Multiple Muscle Systems: Biomechanics and Movement Organization; Springer: New York, NY, USA, 1990; pp. 578–590. [Google Scholar] [CrossRef]
- Lin, S.P.; Sung, W.H.; Kuo, F.C.; Kuo, T.B.; Chen, J.J. Impact of center-of-mass acceleration on the performance of ultramarathon runners. J. Hum. Kinet. 2014, 44, 41. [Google Scholar] [CrossRef]
- Lee, C.R.; Farley, C.T. Determinants of the center of mass trajectory in human walking and running. J. Exp. Biol. 1998, 201, 2935–2944. [Google Scholar] [CrossRef] [PubMed]
- Möhler, F.; Stetter, B.; Müller, H.; Stein, T. Stride-to-stride variability of the center of mass in male trained runners after an exhaustive run: A three-dimensional movement variability analysis with a subject-specific anthropometric model. Front. Sports Act. Living 2021, 3, 665500. [Google Scholar] [CrossRef]
- Jaén-Carrillo, D.; Roche-Seruendo, L.E.; Felton, L.; Cartón-Llorente, A.; García-Pinillos, F. Stiffness in running: A narrative integrative review. Strength. Cond. J. 2021, 43, 104–115. [Google Scholar] [CrossRef]
- Latash, M.L.; Zatsiorsky, V.M. Joint stiffness: Myth or reality? Hum. Mov. Sci. 1993, 12, 653–692. [Google Scholar] [CrossRef]
- McMahon, T.A.; Cheng, G.C. The mechanics of running: How does stiffness couple with speed? J. Biomech. 1990, 23, 65–78. [Google Scholar] [CrossRef]
- Hennig, E.M.; Lafortune, M.A. Relationships between ground reaction force and tibial bone acceleration parameters. J. Appl. Biomech. 1991, 7, 303–309. [Google Scholar] [CrossRef]
- Bishop, M.; Fiolkowski, P.; Conrad, B.; Brunt, D.; Horodyski, M. Athletic footwear, leg stiffness, and running kinematics. J. Athl. Train. 2006, 41, 387. [Google Scholar]
- Moore, I.S.; Ashford, K.J.; Cross, C.; Hope, J.; Jones, H.S.; McCarthy-Ryan, M. Humans optimize ground contact time and leg stiffness to minimize the metabolic cost of running. Front. Sports Act. Living 2019, 1, 53. [Google Scholar] [CrossRef]
- McMahon, T.A.; Valiant, G.; Frederick, E.C. Groucho running. J. Appl. Physiol. 1987, 62, 2326–2337. [Google Scholar] [CrossRef]
- Van Hooren, B.; Jukic, I.; Cox, M.; Frenken, K.G.; Bautista, I.; Moore, I.S. The relationship between running biomechanics and running economy: A systematic review and meta-analysis of observational studies. Sports Med. 2024, 54, 1269–1316. [Google Scholar] [CrossRef]
- Skime, A.; Boone, T. Cardiovascular responses during Groucho running. J. Exerc. Physiol. Online 2011, 14, 88–92. [Google Scholar]
- Lussiana, T.; Gindre, C.; Hébert-Losier, K.; Sagawa, Y.; Gimenez, P.; Mourot, L. Similar running economy with different running patterns along the aerial-terrestrial continuum. Int. J. Sports Physiol. Perform. 2017, 12, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Walker, C.; Blair, R. An experimental review of the McMahon/Cheng model of running. Sports Eng. 2001, 4, 113–121. [Google Scholar] [CrossRef]
- Bertram, J.E.; D’antonio, P.; Pardo, J.; Lee, D.V. Pace length effects in human walking: “Groucho” gaits revisited. J. Mot. Behav. 2002, 34, 309–318. [Google Scholar] [CrossRef]
- Kung, S.M.; Fink, P.W.; Legg, S.J.; Ali, A.; Shultz, S.P. What factors determine the preferred gait transition speed in humans? A review of the triggering mechanisms. Hum. Mov. Sci. 2018, 57, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Bailey, J.P.; Silvernail, J.F.; Dufek, J.S.; Navalta, J.; Mercer, J.A. Effects of treadmill running velocity on lower extremity coordination variability in healthy runners. Hum. Mov. Sci. 2018, 61, 144–150. [Google Scholar] [CrossRef]
- Monteiro, A.S.; Galano, J.P.; Cardoso, F.; Buzzachera, C.F.; Vilas-Boas, J.P.; Fernandes, R.J. Kinematical and physiological responses of overground running gait pattern at different intensities. Sensors 2024, 24, 7526. [Google Scholar] [CrossRef]
- Patoz, A.; Lussiana, T.; Breine, B.; Gindre, C.; Malatesta, D.; Hébert-Losier, K. Examination of running pattern consistency across speeds. Sports Biomech. 2025, 24, 200–214. [Google Scholar] [CrossRef]
- Farley, C.T.; Gonzalez, O. Leg stiffness and stride frequency in human running. J. Biomech. 1996, 29, 181–186. [Google Scholar] [CrossRef]
- Cavagna, G.A. Force platforms as ergometers. J. Appl. Physiol. 1975, 39, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.K.; Li, M.Y. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 2016, 15, 155–163. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: Oxfordshire, UK, 2013. [Google Scholar] [CrossRef]
- Gindre, C.; Lussiana, T.; Hebert-Losier, K.; Mourot, L. Aerial and terrestrial patterns: A novel approach to analyzing human running. Int. J. Sports Med. 2016, 37, 25–26. [Google Scholar] [CrossRef]
- Smith, C.P.; Fullerton, E.; Walton, L.; Funnell, E.; Pantazis, D.; Lugo, H. The validity and reliability of wearable devices for the measurement of vertical oscillation for running. PLoS ONE 2022, 17, e0277810. [Google Scholar] [CrossRef]
- Gouttebarge, V.; Wolfard, R.; Griek, N.; de Ruiter, C.J.; Boschman, J.S.; van Dieën, J.H. Reproducibility and validity of the myotest for measuring step frequency and ground contact time in recreational runners. J. Hum. Kinet. 2015, 45, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Webber, E.; Leduc, C.; Emmonds, S.; Eglon, M.; Hanley, B.; Iqbal, Z.; Sheoran, S.; Chaisson, C.; Weaving, D. From lab to field: Validity and reliability of inertial measurement unit-derived gait parameters during a standardised run. J. Sports Sci. 2024, 42, 1706–1715. [Google Scholar] [CrossRef] [PubMed]




| Variables | ICC | 95% CI | SEM | p |
|---|---|---|---|---|
| CT | 0.575 | −0.487–0.884 | 17.9 | 0.095 |
| FT | 0.690 | −0.114–0.916 | 17.5 | 0.040 * |
| SL | 0.897 | 0.626–0.972 | 2.5 | 0.001 * |
| SF | 0.845 | 0.433–0.958 | 0.07 | 0.004 * |
| COMangle | 0.884 | 0.566–0.969 | 0.3 | 0.001 * |
| Overt | 0.684 | −0.084–0.913 | 1.3 | 0.039 * |
| Kleg | 0.720 | 0.030–0.923 | 0.88 | 0.027 * |
| Variables | ICC | 95% CI | SEM | p |
|---|---|---|---|---|
| CT | 0.843 | 0.410–0.958 | 12.9 | 0.005 * |
| FT | 0.622 | −0.546–0.901 | 17.4 | 0.082 |
| SL | 0.883 | 0.555–0.969 | 1.8 | 0.002 * |
| SF | 0.800 | 0.216–0.947 | 0.04 | 0.012 * |
| COMangle | 0.822 | 0.340–0.952 | 0.4 | 0.007 * |
| Overt | 0.868 | 0.516–0.964 | 0.9 | 0.001 * |
| Kleg | 0.538 | −0.858–0.878 | 0.88 | 0.131 |
| Variables | t | p | Cohen’s D |
|---|---|---|---|
| CT | −0.802 | 0.441 | 0.26 |
| FT | +2.663 | 0.024 * | 1.00 |
| SL | +5.747 | 0.000 * | 0.90 |
| SF | −5.078 | 0.000 * | 0.94 |
| COMangle | +4.627 | 0.001 * | 1.00 |
| Overt | −1.464 | 0.174 | 0.30 |
| Kleg | +2.469 | 0.033 * | 0.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brašanac, Đ.; Kapeleti, M.; Zlatović, I.; Ubović, M.; Mrdaković, V. Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study. Biomechanics 2025, 5, 79. https://doi.org/10.3390/biomechanics5040079
Brašanac Đ, Kapeleti M, Zlatović I, Ubović M, Mrdaković V. Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study. Biomechanics. 2025; 5(4):79. https://doi.org/10.3390/biomechanics5040079
Chicago/Turabian StyleBrašanac, Đorđe, Marko Kapeleti, Igor Zlatović, Miloš Ubović, and Vladimir Mrdaković. 2025. "Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study" Biomechanics 5, no. 4: 79. https://doi.org/10.3390/biomechanics5040079
APA StyleBrašanac, Đ., Kapeleti, M., Zlatović, I., Ubović, M., & Mrdaković, V. (2025). Application of Synchronized Inertial Measurement Units and Contact Grids in Running Technique Analysis: Reliability and Sensitivity Study. Biomechanics, 5(4), 79. https://doi.org/10.3390/biomechanics5040079

