Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Participants
2.3. Procedures
2.3.1. Anthropometrics
2.3.2. One-Repetition Maximum Assessment
2.3.3. Experimental Procedures
2.3.4. Data Processing
2.4. Statistical Analyses
3. Results
3.1. Reliability
3.2. Repeated-Measures ANOVA
3.3. Linear Mixed Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
1RM | One-repetition maximum |
ATP | Adenosine triphosphate |
BS | Back squat |
CSs | Cluster sets |
CV | Coefficient of variation |
GRF | Ground reaction force |
ICC | Intra-class correlation coefficient |
IRR | Inter-repetition rest |
JPROP | Propulsive impulse |
LMMs | Linear mixed models |
MF | Mean force |
PCr | Phosphocreatine |
tPROP | Propulsion time |
TSs | Traditional sets |
References
- Latella, C.; Teo, W.; Drinkwater, E.; Kendall, K.; Haff, G.G. The Acute Neuromuscular Responses to Cluster Set Resistance Training: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 1861–1877. [Google Scholar] [CrossRef] [PubMed]
- Haff, G.G.; Hobbs, R.T.; Haff, E.E.; Sands, W.A.; Pierce, K.C.; Stone, M.H. Cluster training: A novel method for introducing training programme variation. Strength Cond. J. 2008, 30, 67–76. [Google Scholar] [CrossRef]
- Tufano, J.J.; Brown, L.E.; Haff, G.G. Theoretical and Practical Aspects of Different Cluster Set Structures: A Systematic Review. J. Strength Cond. Res. 2017, 31, 848–867. [Google Scholar] [CrossRef]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Brown, L.E.; Seitz, L.B.; Williamson, B.D.; Haff, G.G. Maintenance of Velocity and Power with Cluster Sets During High-Volume Back Squats. Int. J. Sports Physiol. Perform. 2016, 11, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Wagle, J.; Taber, C.; Carroll, K.; Cuanan, A.J.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; DeWeese, B.H.; Sato, K.; Stuart, C.A.; et al. Repetition-to-Repetition Differences Using Cluster and Accentuated Eccentric Loading in the Back Squat. Sports 2018, 6, 59. [Google Scholar] [CrossRef]
- Wagle, J.P.; Cunanan, A.J.; Carroll, K.M.; Sams, M.L.; Wetmore, A.; Bingham, G.E.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stuart, C.A.; et al. Accentuated Eccentric Loading and Cluster Set Configurations in the Back Squat: A Kinetic and Kinematic Analysis. J. Strength Cond. Res. 2018, 35, 420–427. [Google Scholar] [CrossRef]
- Wetmore, A.B.; Wagle, J.P.; Sams, M.L.; Taber, C.B.; DeWeese, B.H.; Sato, K.; Stone, M.H. Cluster Set Loading in the Back Squat: Kinetic and Kinematic Implications. J. Strength Cond. Res. 2019, 33, 19–25. [Google Scholar] [CrossRef]
- Åstrand, P.O.; Rodahl, K.; Dahl, H.A.; Strømme, S. Textbook of Work Physiology: Physiological Bases of Exercise; Human Kinetics: Champaign, IL, USA, 2003. [Google Scholar]
- Gonzalez-Hernandez, J.M.; Garcia-Ramos, A.; Castano-Zambudio, A.; Capelo-Ramirez, F.; Marquez, G.; Boullosa, D.; Jimenez-Reyes, P. Mechanical, metabolic, and perceptual acute responses to different set confgurations in full squat. J. Strength Cond. Res. 2020, 34, 1581–1590. [Google Scholar] [CrossRef]
- Girman, J.C.; Jones, M.T.; Matthews, T.D.; Wood, R.J. Acute Effects of a Cluster-Set Protocol on Hormonal, Metabolic and Performance Measures in Resistance-Trained Males. Eur. J. Sports Sci. 2014, 14, 151–159. [Google Scholar] [CrossRef]
- Hardee, J.P.; Triplett, N.T.; Utter, A.C.; Zwetsloot, K.A.; McBride, J.M. Effect of Interrepetition Rest on Power Output in the Power Clean. J. Strength Cond. Res. 2012, 26, 883–889. [Google Scholar] [CrossRef]
- Harries, R.C.; Edwards, R.H.; Hultman, E. The Time Course of Phosphorylcreatine Resynthesis During Recovery of the Quadriceps Muscle in Man. Eur. J. Physiol. 1976, 367, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Schilling, B.K.; Falvo, M.J.; Chiu, L.Z. Force-velocity, Impulse-momentum Relationships: Implications for Efficacy of Purposefully Slow Resistance Training. J. Sci. Med. Sport 2008, 7, 299–304. [Google Scholar]
- Moir, G.L.; Graham, B.W.; Davis, S.E.; Guers, J.J.; Witmer, C.A. Effect of Cluster Set Configurations on the Mechanical Variables During the Deadlift Exercise. J. Hum. Kinet. 2013, 39, 15–23. [Google Scholar] [CrossRef]
- Tufano, J.J.; Conlon, J.A.; Nimphius, S.; Brown, L.E.; Banyard, H.G.; Williamson, B.D.; Bishop, L.G.; Hopper, A.J.; Haff, G.G. Cluster Sets: Permitting Greater Mechanical Stress Without Decreasing Relative Velocity. Int. J. Sports Physiol. Perform. 2017, 12, 463–469. [Google Scholar] [CrossRef]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.C.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Velocity Drives Greater Power Observed During Back Squat Using Cluster Sets. J. Strength Cond. Res. 2016, 30, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Brandon, R.; Howatson, G.; Strachan, F.; Hunter, A.M. Neuromuscular response differences to power vs strength back squat exercise in elite athletes. Scandanivian J. Med. Sci. Sports 2015, 25, 630–639. [Google Scholar] [CrossRef] [PubMed]
- Cormie, P.; McGuigan, M.R.; Newton, R.U. Developing Maximal Neuromuscular Power Part 2—Training Considerations for Improving Maximal Power Production. Sports Med. 2011, 41, 125–146. [Google Scholar] [CrossRef]
- Haff, G.; Nimphius, S. Training Principles for Power. Strength Cond. J. 2012, 34, 2–12. [Google Scholar] [CrossRef]
- O’Bryan, S.J.; Billaut, F.; Taylor, J.L.; Rouffet, D.M. Knee Extensor Fatigue Developed During High-Intensity Exercise Limits Lower-Limb Power Production. J. Sports Sci. 2018, 36, 1030–1037. [Google Scholar] [CrossRef]
- Clark, D.R.; Lambert, M.I.; Hunter, A.M. Muscle activation in the loaded free barbell squat: A brief review. J. Strength Cond. Res. 2012, 26, 1169–1178. [Google Scholar] [CrossRef]
- Myer, G.D.; Kushner, A.M.; Brent, J.L.; Schoenfeld, B.J.; Hugentobler, J.; Lloyd, R.S.; Vermeil, A.I.; Chu, D.A.; Harbin, J.; McGill, S.M. The back squat: A proposed assessment of functional deficits and technical factors that limit performance. Strength Cond. J. 2014, 36, 4–27. [Google Scholar] [CrossRef]
- Cardinal, B.J.; Esters, J.; Cardinal, M.K. Evaluation of the Revised Physical Activity Readiness Questionnaire in older adults. Med. Sci. Sports Exerc. 1996, 28, 468–472. [Google Scholar] [CrossRef]
- Haff, G.G. Strength—Isometric and dynamic testing. In Performance Assessment in Strength and Conditioning, 1st ed.; Comfort, P., Jones, P.A., McMahon, J.J., Eds.; Routledge: Abingdon, Oxford, UK, 2019; p. 185. [Google Scholar]
- Hansen, K.T.; Cronin, J.B.; Newton, M.J. Three Methods of Calculating Force-Time Variables in the Rebound Jump Squat. J. Strength Cond. Res. 2011, 25, 867–871. [Google Scholar] [CrossRef]
- Kubo, T.; Hirayama, K.; Nakamura, N.; Higuchi, M. Influence of different loads on force-time characteristics during back squats. J. Sports Sci. Med. 2018, 17, 617–622. [Google Scholar]
- McMullen, C. An Advanced Introduction to Calculus Based Physics; Createspace Independent Publishing Platform: Scotts Valley, CA, USA, 2012. [Google Scholar]
- Thompson, S.W.; Lake, J.P.; Rogerson, D.; Ruddock, A.; Barnes, A. Kinetics and Kinematics of the Free-Weight Back Squat and Loaded Jump Squat. J. Strength Cond. Res. 2023, 37, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, G.; Nevill, A.M. Statistical Methods For Assessing Measurement Error (Reliability) in Variables Relevant to Sports Medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Blanca, M.J.; Arnau, J.; Garcia-Castro, F.G.; Alarcon, R.; Bono, R. Repeated Measures ANOVA and Adjusted F-tests when Sphericity is Violated: Which Procedure is Best? Front. Psychol. 2023, 14, 1192453. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for Behavioural Sciences; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Rhea, M.R. Determing the Magnitude of Treatment Effects in Strength Training Research Through the Use of the Effect Size. J. Strength Cond. Res. 2004, 18, 918–920. [Google Scholar] [CrossRef]
- Iglesias-Soler, E.; Carballeira, E.; Sanchez-Otero, T.; Mayo, X.; Fernandez-del-Olmo, M. Performance of Maximum Number of Repetitions with Cluster-Set Configuration. Int. J. Sports Physiol. Perform. 2014, 9, 637–642. [Google Scholar] [CrossRef]
- Jukic, I.; Helms, E.R.; McGuigan, M.R.; Garcia Ramos, A. Using Cluster and Rest Redistribution Set Structures as Alternatives to Resistance Training Prescription Method Based on Velocity Loss Thresholds. PeerJ 2022, 10, e13195. [Google Scholar] [CrossRef] [PubMed]
- Grgic, J.; Schoenfeld, B.J.; Orazem, J.; Sabol, F. Effect of Resistance Training Performed to Repetition Failure or Non-Failure on Muscular Strength and Hypertrophy: A Systematic Review and Meta-Analysis. J. Sport Health Sci. 2021, 11, 202–211. [Google Scholar] [CrossRef]
- Crewther, B.T.; Kilduff, L.P.; Cook, C.J.; Middleton, M.K.; Bunce, P.J.; Yang, G.Z. The Acute Potentiating Effects of Back Squats on Athlete Performance. J. Strength Cond. Res. 2011, 25, 3319–3325. [Google Scholar] [CrossRef]
- MacKenzie, S.J.; Lavers, R.J.; Wallace, B.B. A Biomechanical Comparison of the Vertical Jump, Power Clean and Jump Squat. J. Sports Sci. 2014, 32, 1576–1585. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Trajano, G.S.; Haff, G.G. The Back Squat and Power Clean: Elicitation of Different Degrees of Potentiation. Int. J. Sports Physiol. Perform. 2014, 9, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Burnley, M.; Vanhatalo, A.; Jones, A.M. Distinct Profiles of Neuromuscular Fatigue During Muscle Contractions Below and Above the Critical Torque in Humans. J. Appl. Physiol. 2012, 113, 215–223. [Google Scholar] [CrossRef]
- Hultman, E.; Greenhaff, P.L. Skeletal Muscle Energy Metabolism and Fatigue During Intense Exercise in Man. Sci. Prog. 1991, 75, 361–370. [Google Scholar]
- Franchini, E.; Takito, M.; Dal’Molin Kiss, M. Performance and Energy Systems Contributions During Upper-Body Sprint Interval Exercise. J. Exerc. Rehabil. 2016, 12, 535–541. [Google Scholar] [CrossRef]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal Muscle Fatigue: Cellular Mechanisms. Physiol. Rev. 2007, 88, 287–332. [Google Scholar] [CrossRef]
- Gorostiaga, E.; Navarro-Amezqueta, I.; Calbet, J.; Hellsten, Y.; Cusso, R.; Guerrero, M.; Granados, C.; Gonzalez-Izal, M.; Ibanez, J.; Izqueirdo, M. Correction: Energy Metabolism During Repeated Sets of Leg Press Exercise Leading to Failure or Not. PLoS ONE 2012, 8, e40621. [Google Scholar] [CrossRef]
- Oliver, J.M.; Kreutzer, A.; Jenke, S.C.; Phillips, M.D.; Mitchell, J.B.; Jones, M.T. Acute Responses to Cluster Sets in Trained and Untrained Men. Eur. J. Appl. Physiol. 2015, 115, 2383–2393. [Google Scholar] [CrossRef]
- Maffiuletti, N.; Aagaard, P.; Nlazevich, A.; Folland, J.; Tillin, N.; Duchateau, J. Rate of Force Development: Physiological and Methodological Considerations. Eur. J. Appl. Physiol. 2016, 116, 1091–1116. [Google Scholar] [CrossRef] [PubMed]
- Aslam, S.; De Dieu Habyarimana, J.; Yong Bin, S. Neuromuscular Adaptations to Resistance Training in Elite versus Recreational Athletes. Front. Physiol. 2025, 16, 1591849. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The Importance of Muscular Strength in Athletic Performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
Condition | Sets | Repetitions | %1RM | IRR (s) | ISR (s) |
---|---|---|---|---|---|
TRAD | 3 | 5 | 80 | 0 | 180 |
CS10 | 3 | 5 | 80 | 10 | 180 |
CS20 | 3 | 5 | 80 | 20 | 180 |
CS30 | 3 | 5 | 80 | 30 | 180 |
Variable | Condition | Set 1 | Set 2 | Set 3 | Overall |
---|---|---|---|---|---|
Propulsive Impulse (N∙s) | TRAD | 3.61 (1.59, 5.63) | 2.99 (1.97, 4.00) | 3.78 (1.94, 5.62) | 3.46 (1.80, 5.12 |
CS10 | 3.04 (1.84, 4.24) | 4.07 (2.70, 5.43) | 2.41 (1.44, 3.38) | 3.17 (1.96, 4.38) | |
CS20 | 4.30 (1.40, 7.20) | 2.20 (1.41, 2.99) | 3.99 (2.39, 5.60) | 3.50 (1.52, 5.47) | |
CS30 | 2.53 (1.52, 3.53) | 3.02 (1.88, 4.17) | 5.63 (3.01, 8.25) | 3.73 (1.91, 5.55) | |
Mean Force (N) | TRAD | 3.95 (2.50, 5.39) | 4.70 (3.16, 6.25) | 5.53 (4.02, 7.04) | 4.73 (3.22, 6.23) |
CS10 | 5.59 (3.20, 7.98) | 5.45 (3.64, 7.26) | 4.61 (2.48, 6.74) | 5.22 (3.12, 7.31) | |
CS20 | 3.93 (2.81, 5.04) | 5.81 (3.86, 7.77) | 6.55 (4.31, 8.80) | 5.43 (3.56, 7.30) | |
CS30 | 3.87 (2.73, 5.00) | 4.29 (2.54, 6.04) | 5.97 (3.37, 8.57) | 4.71 (2.78, 6.64) | |
Propulsion Time (s) | TRAD | 5.68 (3.20, 8.16) | 5.02 (3.10, 6.94) | 4.21 (2.86, 5.57) | 4.97 (3.01, 6.93) |
CS10 | 3.98 (2.27, 5.69) | 4.91 (3.30, 6.51) | 4.16 (2.47, 5.85) | 4.35 (2.70, 6.00) | |
CS20 | 4.99 (1.43, 8.54) | 3.34 (1.69, 4.99) | 5.62 (2.54, 8.71) | 4.65 (1.79, 7.51) | |
CS30 | 3.49 (2.35, 4.63) | 3.86 (2.49, 5.23) | 3.06 (2.05, 4.08) | 3.47 (2.30, 4.64) |
Variable | Condition | Set 1 | Set 2 | Set 3 |
---|---|---|---|---|
Propulsive Impulse (N∙s) | TRAD | 232.86 ± 36.27 | 225.97 ± 41.55 | 224.78 ± 46.09 |
CS10 | 238.91 ± 44.50 | 239.63 ± 46.17 | 239.03 ± 46.17 | |
CS20 | 241.53 ± 46.56 | 239.07 ± 50.84 | 237.11 ± 49.35 | |
CS30 | 232.93 ± 43.43 | 235.66 ± 44.41 | 235.37 ± 43.81 | |
Mean Force (N) | TRAD | 216.99 ± 27.67 | 205.68 ± 31.71 | 194.43 ± 31.46 |
CS10 | 224.33 ± 37.74 | 219.10 ± 39.71 | 216.75 ± 43.41 | |
CS20 | 236.59 ± 36.13 | 228.06 ± 39.33 | 218.84 ± 43.36 | |
CS30 | 231.30 ± 41.95 | 228.20 ± 42.55 | 221.14 ± 44.51 | |
Propulsion Time (s) | TRAD | 1.08 ± 0.14 | 1.12 ± 0.18 | 1.17 ± 0.21 |
CS10 | 1.08 ± 0.13 | 0.11 ± 0.15 | 1.12 ± 0.17 | |
CS20 | 1.02 ± 0.13 | 1.05 ± 0.15 | 1.10 ± 0.19 | |
CS30 | 1.02 ± 0.14 | 1.05 ± 0.17 | 1.08 ± 0.19 |
Standard Error | |||||
---|---|---|---|---|---|
Variable | Condition | R2 | c | mrep | mset |
Propulsive Impulse (N∙s) | TRAD | 0.85 | 9.65 | 0.71 | 1.23 |
CS10 | 0.91 | 11.08 | 0.61 | 1.06 | |
CS20 | 0.93 | 10.83 | 0.53 | 0.93 | |
CS30 | 0.89 | 10.09 | 0.62 | 1.08 | |
Mean Force (N) | TRAD | 0.80 | 7.25 | 0.70 | 1.22 |
CS10 | 0.84 | 9.51 | 0.75 | 1.29 | |
CS20 | 0.76 | 9.14 | 0.86 | 1.50 | |
CS30 | 0.88 | 9.98 | 0.66 | 1.14 | |
Propulsion time (s) | TRAD | 0.79 | 0.04 | 0.00 | 0.01 (0.030–0.058) |
CS10 | 0.76 | 0.04 | 0.00 | 0.01 | |
CS20 | 0.75 | 0.04 | 0.00 | 0.01 | |
CS30 | 0.86 | 0.04 | 0.00 | 0.01 |
Variable | Condition | c | mrep | mset |
---|---|---|---|---|
Propulsive Impulse (N∙s) | TRAD | 240.63 (221.73, 259.53) | −1.56 (−2.95, −0.17) | −4.04 (−6.45, −1.63) |
CS10 | 244.85 (223.14, 266.56) | −0.40 (−1.60, 0.81) | −2.21 (−4.30, 0.13) | |
CS20 | 243.01 (221.79, 264.23) | −1.31 (−2.36, −0.26) | −0.06 (−1.76, 1.87) | |
CS30 | 235.43 (215.65, 255.21) | −1.07 (−2.29, 0.15) | −1.22 (−0.89, 3.33) | |
Mean Force (N) | TRAD | 262.65 (248.45, 276.86) | −11.46 (−12.84, −10.08) | −11.28 (−13.67, −8.89) |
CS10 | 251.50 (233.15, 270.44) | −8.05 (−9.52, −6.59) | −3.80 (−6.32, −1.25) | |
CS20 | 258.04 (240.12, 275.96) | −4.15 (−5.85, −2.46) | −8.88 (−11.81, −5.94) | |
CS30 | 247.56 (228.00, 267.11) | −3.51 (−4.79, −2.22) | −5.08 (−7.31, −2.85) | |
Propulsion Time (s) | TRAD | 0.87 (0.79, 0.96) | 0.06 (0.05, 0.06) | 0.04 (0.03, 0.06) |
CS10 | 0.95 (0.88, 1.03) | 0.03 (0.03, 0.04) | 0.02 (0.01, 0.04) | |
CS20 | 0.94 (0.87, 1.01) | 0.02 (0.01, 0.02) | 0.04 (0.03–0.05) | |
CS30 | 0.95 (0.88, 1.03) | 0.01 (0.01, 0.02) | 0.03 (0.02, 0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Houlton, L.J.; Moody, J.A.; Bampouras, T.M.; Esformes, J.I. Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse. Biomechanics 2025, 5, 69. https://doi.org/10.3390/biomechanics5030069
Houlton LJ, Moody JA, Bampouras TM, Esformes JI. Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse. Biomechanics. 2025; 5(3):69. https://doi.org/10.3390/biomechanics5030069
Chicago/Turabian StyleHoulton, Liam J., Jeremy A. Moody, Theodoros M. Bampouras, and Joseph I. Esformes. 2025. "Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse" Biomechanics 5, no. 3: 69. https://doi.org/10.3390/biomechanics5030069
APA StyleHoulton, L. J., Moody, J. A., Bampouras, T. M., & Esformes, J. I. (2025). Effect of Intra-Set Rest Periods on Back Squat Propulsive Impulse. Biomechanics, 5(3), 69. https://doi.org/10.3390/biomechanics5030069