Flow Dynamics in Brain Aneurysms: A Review of Computational and Experimental Studies
Abstract
:1. Introduction
2. Types of Brain Aneurysms
2.1. Saccular Aneurysm (SA)
2.2. Fusiform Aneurysm (FA)
2.3. Mycotic Aneurysm (MA)
2.4. Pseudo Aneurysm (PA)
2.5. Blister Aneurysm (BA)
3. Diagnostic Methods for Brain Aneurysms
3.1. Screening of Brain Aneurysms
- A CT scan is a specialized X-ray that provides a rapid diagnosis of aneurysm rupture by producing 2-D images [59]. It helps identify any bleeding around the brain, as well as the location of brain aneurysms [2,59]. While CT scans are rapid and painless, they do not always identify brain hemorrhage, nor do they provide information about the size and pattern of the brain aneurysm [59];
- CTA is a more advanced screening process, which combines the regular CT scan with the injection of a contrast dye into the vein or artery. As the dye travels through the vein, an image is captured by the CT scan to observe the blood flow in the region, providing a valuable insight into brain hemorrhage and aneurysm rupture [2,60];
- MRI is another fast and non-invasive screening process to identify brain aneurysms [2]. The image quality and visualization of an aneurysm wall depends on the magnetic field strength. For instance, 3T MRI (3 Tesla MRI) provides a 57% lower image resolution and a 15% thicker appearance of the aneurysm wall compared to 7T MRI. High spatial resolution MRI images can identify various biological processes occurring in the aneurysm wall and can help develop post-processing protocols [61];
- MRA is also an advanced, non-invasive screening process, which does not involve radiation exposure [62]. In addition to the detection of aneurysms, it can also provide information about the size, shape, and hemodynamic flow characteristics of aneurysms [62]. Some MRA processes require the injection of a contrast dye; however, this dye is lower in quantity and less toxic compared to the CTA contrast dye [2,63];
- DSA is a gold standard digital angiography technique for detecting aneurysms as small as 0.5 mm [64] and is more effective at identifying false positive aneurysms compared to other non-invasive techniques [65]. However, it is an invasive procedure requiring sedation and may cause neurological complications [66];
- TCD is a non-invasive, inexpensive screening process that is used to detect vasospasms (VSPs) associated with aneurysm rupture or subarachnoid hemorrhage. The detection of VSPs is an indication of severe aneurysm rupture or bleeding between the brain and its covering. It can also help monitor hemodynamic changes in the intracerebral vasculature due to an aneurysm rupture [67];
- A spinal tap or lumbar puncture is an invasive method used to detect ruptured aneurysms, which may not be detected by a CT scan [68]. If a subarachnoid hemorrhage occurs, red blood cells will be present in the cerebrospinal fluid (CSF). Performing a spinal tap to test the CSF allows for the identification of such a subarachnoid hemorrhage associated with aneurysm rupture [68,69].
Screening Method | What It Identifies | Advantages | Disadvantages and Limitations |
---|---|---|---|
CT scan |
| ||
MRI | |||
CTA |
| ||
MRA | |||
TCD | |||
DSA |
|
| |
Spinal tap or LP |
|
3.2. Treatment Methods
3.2.1. Surgical Techniques
3.2.2. Embolization Technique
- The double catheter technique, suitable for treating wide-neck aneurysms, is a much easier process compared to stent- and ballon-assisted coiling. In regard to this procedure, two microcatheters of different shapes are inserted into different portions of the aneurysm to obtain a stable frame. This technique can also be used for aneurysms with a daughter sac, branch-incorporated aneurysms, and elongated aneurysms, wherein the coil insertion process for each condition is different [100]. Although the double catheter technique has a high recurrence rate, this technique is much safer and easier for the treatment of recurrent aneurysms compared to using a flow-diverting stent. Due to the irregular shape of the recanalized cavity inside preexisting coils, it is challenging to form a stable frame at the initial stage of coiling. Thus, it is recommended to use the double catheter technique, wherein a small-diameter coil, based on the maximum length of the recanalized aneurysm, is selected for the first coil, and the diameter of the second coil is kept nearly the same as the first coil. This approach helps create a safe and stable frame within the recanalized cavity [101];
- The balloon-assisted coiling process is also used for complex wide-necked aneurysms, where a balloon is inflated across the aneurysm neck to create enough space for the coil to be inserted [102,103]. The balloon is removed upon insertion of the coil into the aneurysm. Both single-lumen and double-lumen balloons may be deployed, with the double-lumen balloon enabling the option of placing a stent, along with a coil, into the aneurysm. Both the single- and double-lumen balloon procedures have similar rates of potential complications, with most studies reporting low mortality and morbidity risks, except for the study by Sluzewski et al. (14.1%) [104,105,106,107]. However, in general, this process carries a higher risk of ischemic and hemorrhagic complications compared to stent-assisted coiling for the acute management of ruptured aneurysms [108];
- Stent-assisted coiling is suitable for wider neck, fusiform, and dissecting aneurysms, as well as aneurysms with irregular or complex geometry. The stent is placed at the neck, which allows the coil to be fully inserted into the aneurysm without protruding into the main blood vessel. Additionally, the stent diverts blood flow towards the aneurysm and facilitates intra-aneurysm stasis and thrombosis [109]. Stent overlapping (multiple stents are placed in a way that results in their ends overlapping each other) can also be applied to prevent coil protrusion, stent malposition, and in-stent blood clotting [110]. Studies have shown that stent-assisted coiling exhibits higher occlusion rates compared to simple coiling without a stent [111] and is much safer and effective, particularly for unruptured aneurysms. While complications are more likely when used to treat ruptured aneurysms [112], stent-assisted coiling is still favorable compared to simple or microsurgical clipping [113];
- The placement of an intermediate catheter in the blood vessel for coil embolization is a recent advancement in aneurysm treatment. This catheter is designed to provide a buttress at tortuous blood vessels by combining a flexible distal tip with a supportive proximal shaft to aid in the insertion of the coil into the aneurysm, thereby improving maneuverability and stability. This enhanced design improved occlusion rates, as well as the coil packing density inside the aneurysm [114]. This modification is particularly suitable for unruptured aneurysms; for ruptured aneurysms, there are possible risks of intraprocedural rupture (IPR) during coil embolization [114,115].
3.2.3. Flow Diversion Technique
3.2.4. Other Techniques
4. Hemodynamic Properties and Their Impact
4.1. Wall Shear Stress (WSS)
4.2. Normal and Tensile (Circumferential) Stresses
4.3. Oscillatory Shear Index (OSI)
4.4. Aneurysm Formation Indicator (AFI)
4.5. Oscillatory Velocity Index (OVI)
4.6. Residence Time (RT)
5. Fluid Flow Characteristics in the Aneurysm
5.1. Hemodynamics Around Aneurysms Before Treatment
5.1.1. Aneurysm Initiation and Growth
5.1.2. Aneurysm Rupture
5.2. Hemodynamics Around Aneurysms After Treatment
6. Conclusions
- While hemodynamic factors are crucial for aneurysm initiation, growth, and rupture, changes in the relevant biological properties accelerate the hemodynamic alterations both in the parent arteries and aneurysms. Additionally, the aneurysm’s geometry and location influence whether the hemodynamic factors become critical and whether they may lead to the rupture of the aneurysm. Thus, various screening and treatment processes are widely used to identify and treat both unruptured and ruptured aneurysms;
- An understanding of the fluid flow characteristics in the parent artery and adjacent aneurysms is important because this information helps to determine the state of the aneurysm in order to reduce the possible risk of complications and death. While computational methods are widely used compared to experimental approaches, because of their ease in capturing complex geometry, the ease of controlling the variables in hemodynamic investigations, the ability to execute multiple simulations across various parameters, and time efficiency, the accuracy of computational study is still questionable. Thus, validating computational simulations using experimental data is critical to help improve the model’s accuracy associated with its assumptions and governing equations;
- The majority of recent studies within the last 5 years (2020–2025) were computational simulations, with limited experimental studies, particularly using patient-specific models. This represents an important gap for future research, potentially contributing significantly to the advancement of knowledge in this field;
- Prior experimental and computational studies mostly focus on the aneurysm size, shape, and orientation, as well as the blood flow structure and stability in various arteries with aneurysms. These studies primarily highlight how hemodynamic changes due to changes in these properties ultimately lead to the formation, growth, and rupture of aneurysms. Further investigations are necessary to identify any correlation or interaction effects between these variables, which may change the interpretations of these findings;
- Preventing aneurysm recurrence after treatment is still challenging. The current research primarily focuses on hemodynamic changes before and after treatment, particularly on flow diversion and coil embolization techniques. Most of these studies rely on computational predictions, but the accuracy of the outcomes remains debated, due to the geometric complexity and model simplifications made for easier analysis, particularly in regard to stent or coil inclusions. Thus, combined experimental and computational approaches would provide a way for model validation to take place and enhance data reliability. Furthermore, extensive experimental investigations are necessary to evaluate the efficacy and reliability of embolization and flow diversion techniques in real-world conditions;
- It is crucial to explore new treatment techniques, instead of relying solely on coil embolization and flow diversion methods.
Author Contributions
Funding
Conflicts of Interest
References
- Marbacher, S.; Strange, F.; Frösén, J.; Fandino, J. Preclinical extracranial aneurysm models for the study and treatment of brain aneurysms: A systematic review. J. Cereb. Blood Flow Metab. 2020, 40, 922–938. [Google Scholar] [CrossRef]
- Novitzke, J. The basics of brain aneurysms: A guide for patients. J. Vasc. Interv. Neurol. 2008, 1, 89–90. [Google Scholar] [PubMed]
- Texakalidis, P.; Sweid, A.; Mouchtouris, N.; Peterson, E.C.; Sioka, C.; Rangel-Castilla, L.; Reavey-Cantwell, J.; Jabbour, P. Aneurysm Formation, Growth, and Rupture: The Biology and Physics of Cerebral Aneurysms. World Neurosurg. 2019, 130, 277–284. [Google Scholar] [CrossRef]
- Toth, G.; Cerejo, R. Intracranial aneurysms: Review of current science and management. Vasc. Med. 2018, 23, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Tóth, B.K.; Nasztanovics, F.; Bojtár, I. Laboratory tests for strength paramaters of brain aneurysms. Acta Bioeng. Biomech. 2007, 9, 3. [Google Scholar]
- Brown, R.D.; Broderick, J.P. Unruptured intracranial aneurysms: Epidemiology, natural history, management options, and familial screening. Lancet Neurol. 2014, 13, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Khoa, T.V.; Thuong, T.M.; Quang, P.X.; Thang, T.Q.; Linh, N.N.; Ngan, P.T.T.; Van, P.D.; Duong, P.N.; Duc, N.M. Spontaneous thrombosis of a large unruptured intracranial aneurysm causing ischemic stroke due to occlusion of the parent artery: A case report and literature review. Radiol. Case Rep. 2024, 19, 3405–3410. [Google Scholar] [CrossRef]
- Luo, C.B.; Chen, Y.L.; Hsu, S.W.; Alvarez, H.; Rodesch, G.; Lasjaunias, P. Spontaneous healing and complete disappearance of a giant basilar tip aneurysm in a child. Interv. Neuroradiol. 2001, 7, 141–145. [Google Scholar] [CrossRef]
- Crusius, C.; De Aguiar, P.; Crusius, M. Mixed aneurysm: A new proposed nomenclature for a rare condition. Surg. Neurol. Int. 2017, 8, 29. [Google Scholar] [CrossRef]
- Ajiboye, N.; Chalouhi, N.; Starke, R.M.; Zanaty, M.; Bell, R. Unruptured Cerebral Aneurysms: Evaluation and Management. Sci. World J. 2015, 2015, 954954. [Google Scholar] [CrossRef]
- Roy, J.M.; El Naamani, K.; Momin, A.A.; Ghanem, M.; Lan, M.; Ahmed, M.T.; Winiker, S.; Teichner, E.M.; Musmar, B.; Tjoumakaris, S.I.; et al. Telescoping Flow Diverters for the Treatment of Brain Aneurysms: Indications and Outcome. World Neurosurg. 2024, 191, e473–e479. [Google Scholar] [CrossRef] [PubMed]
- Yadollahi-Farsani, H.; Scougal, E.; Herrmann, M.; Wei, W.; Frakes, D.; Chong, B. Numerical study of hemodynamics in brain aneurysms treated with flow diverter stents using porous medium theory. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 961–971. [Google Scholar] [CrossRef] [PubMed]
- Piano, M.; Lozupone, E.; Milonia, L.; Pero, G.; Cervo, A.; Macera, A.; Quilici, L.; Visconti, E.; Valvassori, L.; Cenzato, M.; et al. Flow diverter devices in the treatment of complex middle cerebral artery aneurysms when surgical and endovascular treatments are challenging. J. Stroke Cerebrovasc. Dis. 2022, 31, 106760. [Google Scholar] [CrossRef]
- Kushi, Y.; Imamura, H.; Itazu, T.; Ozaki, S.; Niwa, A.; Shimonaga, K.; Ikedo, T.; Hamano, E.; Yamada, K.; Ohta, T.; et al. One-Stage Combined Open and Endovascular Treatment Using a Hybrid Operating Room is Safe and Effective for Distal Middle Cerebral Artery Aneurysms. World Neurosurg. 2024, 187, e731–e739. [Google Scholar] [CrossRef]
- Natarajan, S.K.; Zeeshan, Q.; Ghodke, B.V.; Sekhar, L.N. Brain Bypass Surgery for Complex Middle Cerebral Artery Aneurysms: Evolving Techniques, Results, and Lessons Learned. World Neurosurg. 2019, 130, e272–e293. [Google Scholar] [CrossRef]
- Ishikawa, M.; Takahashi, S.; Hirai, S.; Sato, Y.; Shigeta, K.; Yoshimura, M.; Yamamura, T.; Taira, N.; Ishiwada, T.; Karakama, J.; et al. Efficacy of endovascular treatment for distal anterior cerebral artery aneurysms: A multicenter observational study. J. Stroke Cerebrovasc. Dis. 2024, 33, 107941. [Google Scholar] [CrossRef]
- Otani, T.; Ii, S.; Shigematsu, T.; Fujinaka, T.; Hirata, M.; Ozaki, T.; Wada, S. Computational study for the effects of coil configuration on blood flow characteristics in coil-embolized cerebral aneurysm. Med. Biol. Eng. Comput. 2017, 55, 697–710. [Google Scholar] [CrossRef]
- Lai, L.; Murtaza Mohsin, N.; Al-Farttoosi, H.; Raki, C.; Dhaliwal, T. Development of a predictive grading system for postoperative ischemia following middle cerebral artery aneurysm clipping. J. Clin. Neurosci. 2024, 130, 110914. [Google Scholar] [CrossRef] [PubMed]
- Chalouhi, N.; Hoh, B.L.; Hasan, D. Review of cerebral aneurysm formation, growth, and rupture. Stroke 2013, 44, 3613–3622. [Google Scholar] [CrossRef]
- Drexler, R.; Sauvigny, T.; Pantel, T.F.; Ricklefs, F.L.; Catapano, J.S.; Wanebo, J.E.; Lawton, M.T.; Sanchin, A.; Hecht, N.; Vajkoczy, P.; et al. Global Outcomes for Microsurgical Clipping of Unruptured Intracranial Aneurysms: A Benchmark Analysis of 2245 Cases. Neurosurgery 2024, 94, 369–378. [Google Scholar] [CrossRef]
- Raaymakers, T.W.M.; Rinkel, G.J.E.; Limburg, M.; Algra, A. Mortality and morbidity of surgery for unruptured intracranial aneurysms: A meta-analysis. Stroke 1998, 29, 1531–1538. [Google Scholar] [CrossRef] [PubMed]
- Nariai, Y.; Takigawa, T.; Kawamura, Y.; Suzuki, R.; Hyodo, A.; Suzuki, K. Treatment results and long-term outcomes of endovascular treatment of 96 unruptured anterior communicating artery aneurysms: A large single-center study. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2021, 26, 101285. [Google Scholar] [CrossRef]
- Lampropoulos, D.S.; Hadjinicolaou, M. Investigating Hemodynamics in Intracranial Aneurysms with Irregular Morphologies: A Multiphase CFD Approach. Mathematics 2025, 13, 505. [Google Scholar] [CrossRef]
- Thompson, B.G.; Brown, R.D.; Amin-Hanjani, S.; Broderick, J.P.; Cockroft, K.M.; Connolly, E.S.; Duckwiler, G.R.; Harris, C.C.; Howard, V.J.; Johnston, S.C.; et al. Guidelines for the Management of Patients With Unruptured Intracranial Aneurysms: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association. Stroke 2015, 46, 2368–2400. [Google Scholar] [CrossRef]
- Rubin, A.; Waszczuk, Ł.; Trybek, G.; Kapetanakis, S.; Bladowska, J. Application of susceptibility weighted imaging (SWI) in diagnostic imaging of brain pathologies—A practical approach. Clin. Neurol. Neurosurg. 2022, 221, 107368. [Google Scholar] [CrossRef]
- Xue, J.; Zheng, H.; Lai, R.; Zhou, Z.; Zhou, J.; Chen, L.; Wang, M. Comprehensive Management of Intracranial Aneurysms Using Artificial Intelligence: An Overview. World Neurosurg. 2025, 193, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Nafees Ahmed, S.; Prakasam, P. A systematic review on intracranial aneurysm and hemorrhage detection using machine learning and deep learning techniques. Prog. Biophys. Mol. Biol. 2023, 183, 1–16. [Google Scholar] [CrossRef]
- Sforza, D.M.; Putman, C.M.; Cebral, J.R. Computational fluid dynamics in brain aneurysms. Int. J. Numer. Method. Biomed. Eng. 2012, 28, 801–808. [Google Scholar] [CrossRef]
- Chandra Sahu, J.; Chakrabarti, S. A Review on Basic Understanding of Aneurysm and Possible Techniques in Assessing the Risk of Its Rupture. Int. J. Ser. Eng. Sci. Arch. Mech. Mach. Eng. 2017, 3, 1–21. [Google Scholar]
- Thompson, J.W.; Elwardany, O.; McCarthy, D.J.; Sheinberg, D.L.; Alvarez, C.M.; Nada, A.; Snelling, B.M.; Chen, S.H.; Sur, S.; Starke, R.M. In vivo cerebral aneurysm models. Neurosurg. Focus 2019, 47, E20. [Google Scholar] [CrossRef]
- Nabizadeh, F.; Valizadeh, P.; Balabandian, M. Stent-assistant versus non-stent-assistant coiling for ruptured and unruptured intracranial aneurysms: A meta-analysis and systematic review. World Neurosurg. X 2024, 21, 100243. [Google Scholar] [CrossRef] [PubMed]
- Bocanegra-Becerra, J.E.; Simoni, G.; Mendieta, C.D.; Acha Sánchez, J.L.; Palavani, L.B.; Wouters, K.; Punukollu, A.; Mangas, G.; Bertani, R.; Lopez-Gonzalez, M.A. Awake microsurgical management of brain aneurysms: A comprehensive systematic review and meta-analysis on rationale, safety and clinical outcomes. Neurochirurgie 2024, 70, 101600. [Google Scholar] [CrossRef] [PubMed]
- Habibi, M.A.; Naseri Alavi, S.A.; Mirjnani, M.S.; Aliasgary, A.; Delbari, P.; Ahmadvand, M.H.; Hatami, S.; Hasan, Z.; Dmytriw, A.A.; Kobets, A.J. Role of Statins in the Clinical and Radiologic Outcomes of Patients with Unruptured Intracranial Aneurysm Undergoing Microsurgery or Endovascular Treatment: A Systematic Review and Meta-Analysis. World Neurosurg. 2024, 194, 123497. [Google Scholar] [CrossRef]
- Kavi Fatania, D.T.P. Comprehensive review of the recent advances in devices for endovascular treatment of complex brain aneurysms. Br. J. Radiol. 2022, 95, 20210538. [Google Scholar] [CrossRef]
- Wang, Y.; Leng, X.; Zhou, X.; Li, W.; Siddiqui, A.H.; Xiang, J. Hemodynamics in a Middle Cerebral Artery Aneurysm Before Its Growth and Fatal Rupture: Case Study and Review of the Literature. World Neurosurg. 2018, 119, e395–e402. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, M.A.A.; Shuib, A.S.; Mohyi, M.H.H. A review of hemodynamic parameters in cerebral aneurysm. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2020, 22, 100716. [Google Scholar] [CrossRef]
- Shen, Y.; Molenberg, R.; Bokkers, R.P.H.; Wei, Y.; Uyttenboogaart, M.; van Dijk, J.M.C. The Role of Hemodynamics through the Circle of Willis in the Development of Intracranial Aneurysm: A Systematic Review of Numerical Models. J. Pers. Med. 2022, 12, 1008. [Google Scholar] [CrossRef] [PubMed]
- Maramkandam, E.B.; Kannan, A.; Valeti, C.; Manjunath, N.; Panneerselvam, N.K.; Alagan, A.K.; Panchal, P.M.; Kannath, S.K.; Darshan, H.R.; Nekkanti, R.K.; et al. Review of CFD Based Simulations to Study the Hemodynamics of Cerebral Aneurysms. J. Indian Inst. Sci. 2024, 104, 77–110. [Google Scholar] [CrossRef]
- Pritz, M.B. Cerebral aneurysm classification based on angioarchitecture. J. Stroke Cerebrovasc. Dis. 2011, 20, 162–167. [Google Scholar] [CrossRef]
- Gasparotti, R.; Liserre, R. Intracranial aneurysms. Eur. Radiol. 2005, 15, 441–447. [Google Scholar] [CrossRef]
- Liu, P.; Liu, L.; Zhang, C.; Lin, S.; Wang, T.; Xie, X.; Zhou, L.; Wang, C. Treatment of Blood Blister Aneurysms of the Internal Carotid Artery With Pipeline-Assisted Coil Embolization: A Single-Center Experience. Front. Neurol. 2022, 13, 882108. [Google Scholar] [CrossRef] [PubMed]
- Hacein-Bey, L.; Origitano, T.C.; Biller, J. Subarachnoid Hemorrhage in Young Adults; Elsevier Inc.: Amsterdam, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Frösen, J.; Tulamo, R.; Paetau, A.; Laaksamo, E.; Korja, M.; Laakso, A.; Niemelä, M.; Hernesniemi, J. Saccular intracranial aneurysm: Pathology and mechanisms. Acta Neuropathol. 2012, 123, 773–786. [Google Scholar] [CrossRef]
- Gemmete, J.J.; Toma, A.K.; Neurosurg, F.; Davagnanam, I.; Bch, M.B.; Robertson, F.; Brew, S. Pediatric Cerebral Aneurysms. Neuroimaging Clin. 2013, 23, 771–779. [Google Scholar] [CrossRef]
- David, C.; Bonovich, M.D. Stroke and Cerebral Aneurysms; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar] [CrossRef]
- Barletta, E.A.; Ricci, R.L.; Silva, R.D.G.; Gaspar, R.H.M.L.; Araújo, J.F.M.; Neves, M.W.F.; De Aquino, J.L.B.; Belsuzarri, T.A.B. Fusiform aneurysms: A review from its pathogenesis to treatment options. Surg. Neurol. Int. 2018, 9, 189. [Google Scholar] [CrossRef]
- Gu, J.; Patel, S.; Kumaravel, M. Imaging of Musculoskeletal Infections Related to Recreational Drug Use. In Emergency Imaging of At-Risk Patients; Elsevier: Amsterdam, The Netherlands, 2023; pp. 166–185. [Google Scholar]
- Ravindra, A.; Naguthevar, S.; Kumar, D.; Rajagopal, R.; Khera, P.S.; Tak, V.; Ramankutty, N.T.; Meena, D.S.; Midha, N.; Bohra, G.K.; et al. Mycotic aneurysms: Uncommon pathogens and treatment conundrums. Access Microbiol. 2024, 6, 1–7. [Google Scholar] [CrossRef]
- Islam, S.; Harnarayan, P.; Naraynsingh, V. Mycotic Arterial Aneurysm. In Issues and Developments in Medicine and Medical Research; BP International Publisher: West Benga, Indian, 2022; Volume 10, pp. 95–112. [Google Scholar] [CrossRef]
- Rivera, P.A.; Dattilo, J.B. Pseudoaneurysm; StatPearls Publishing LLC: St. Petersburg, FL, USA, 2024. [Google Scholar] [PubMed]
- Nomura, M.; Mori, K.; Tamase, A.; Kamide, T.; Seki, S.; Iida, Y.; Nakano, T.; Kawabata, Y.; Kitabatake, T.; Nakajima, T.; et al. Pseudoaneurysm formation due to rupture of intracranial aneurysms: Case series and literature review. Neuroradiol. J. 2017, 30, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Meola, M.; Marciello, A.; Di Salle, G.; Petrucci, I. Ultrasound evaluation of access complications: Thrombosis, aneurysms, pseudoaneurysms and infections. J. Vasc. Access 2021, 22 (Suppl. 1), 71–83. [Google Scholar] [CrossRef] [PubMed]
- Meling, T.R. What are the treatment options for blister-like aneurysms? Neurosurg. Rev. 2017, 40, 587–593. [Google Scholar] [CrossRef]
- Kan, P.; Sweid, A.; Srivatsan, A.; Jabbour, P. Expanding Indications for Flow Diverters: Ruptured Aneurysms, Blister Aneurysms, and Dissecting Aneurysms. Neurosurgery 2020, 86, S96–S103. [Google Scholar] [CrossRef]
- Henkes, H.; Fischer, S.; Mariushi, W.; Weber, W.; Liebig, T.; Miloslavski, E.; Brew, S.; Kühne, D. Angiographic and clinical results in 316 coil-treated basilar artery bifurcation aneurysms. J. Neurosurg. 2005, 103, 990–999. [Google Scholar] [CrossRef]
- Rinkel, G.J.E.; Ruigrok, Y.M. Preventive screening for intracranial aneurysms. Int. J. Stroke 2022, 17, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Vega, C.; Kwoon, J.V.; Lavine, S.D. Intracranial aneurysms: Current evidence and clinical practice. Am. Fam. Physician 2002, 66, 601–608. [Google Scholar] [PubMed]
- Li, H.; Wang, W. Evaluation of the Effectiveness of Lumbar Punctures in Aneurysmal Subarachnoid Hemorrhage Patient with External Ventricular Drainage. World Neurosurg. 2021, 151, e1–e9. [Google Scholar] [CrossRef]
- Hsiang, J.N.K.; Liang, E.Y.; Lam, J.M.K.; Zhu, X.L.; Poon, W.S. The role of computed tomographic angiography in the diagnosis of intracranial aneurysms and emergent aneurysm clipping. Neurosurgery 1996, 38, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Baliyan, V.; Shaqdan, K.; Hedgire, S.; Ghoshhajra, B. Vascular computed tomography angiography technique and indications. Cardiovasc. Diagn. Ther. 2019, 9, 14–27. [Google Scholar] [CrossRef]
- Samaniego, E.A. Brain Aneurysm Biology: What Can We Learn From Imaging? Stroke Vasc. Interv. Neurol. 2022, 2, 1–9. [Google Scholar] [CrossRef]
- Kapsalaki, E.Z.; Rountas, C.D.; Fountas, K.N. The role of 3 Tesla MRA in the detection of intracranial aneurysms. Int. J. Vasc. Med. 2012, 2012, 792834. [Google Scholar] [CrossRef]
- Green, D.; Parker, D. CTA and MRA: Visualization without catheterization. Semin. Ultrasound CT MRI 2003, 24, 185–191. [Google Scholar] [CrossRef]
- Van Rooij, W.J.; Sprengers, M.E.; De Gast, A.N.; Peluso, J.P.P.; Sluzewski, M. 3D rotational angiography: The new gold standard in the detection of additional intracranial aneurysms. Am. J. Neuroradiol. 2008, 29, 976–979. [Google Scholar] [CrossRef]
- Rustemi, O.; Alaraj, A.; Shakur, S.F.; Orning, J.L.; Du, X.; Aletich, V.A.; Amin-Hanjani, S.; Charbel, F.T. Detection of unruptured intracranial aneurysms on noninvasive imaging. Is there still a role for digital subtraction angiography? Surg. Neurol. Int. 2015, 6, 170029. [Google Scholar] [CrossRef]
- Uricchio, M.; Gupta, S.; Jakowenko, N.; Levito, M.; Vu, N.; Doucette, J.; Liew, A.; Papatheodorou, S.; Khawaja, A.M.; Aglio, L.S.; et al. Computed Tomography Angiography Versus Digital Subtraction Angiography for Postclipping Aneurysm Obliteration Detection: A Meta-Analysis. Stroke 2019, 50, 381–388. [Google Scholar] [CrossRef]
- Kalanuria, A.; Nyquist, P.A.; Armonda, R.A.; Razumovsky, A. Use of Transcranial Doppler (TCD) Ultrasound in the Neurocritical Care Unit. Neurosurg. Clin. N. Am. 2013, 24, 441–456. [Google Scholar] [CrossRef]
- Inder, T.E.; Perlman, J.M.; Volpe, J.J. Intracranial Hemorrhage. Volpe’s Neurol. Newborn 2018, 30, 593–622.e7. [Google Scholar] [CrossRef]
- Jane, L.A.; Wray, A.A. Lumbar Puncture. In StatPearls [Internet]; StatPearls: Treasure Island, FL, USA, 2025; Available online: https://www.ncbi.nlm.nih.gov/books/NBK557553/ (accessed on 5 March 2025).
- Vymazal, J.; Rulseh, A.M.; Keller, J.; Janouskova, L. Comparison of CT and MR imaging in ischemic stroke. Insights Imaging 2012, 3, 619–627. [Google Scholar] [CrossRef]
- van Beek, E.J.R.; Kuhl, C.; Anzai, Y.; Desmond, P.; Ehman, R.L.; Gong, Q.; Gold, G.; Gulani, V.; Hall-Craggs, M.; Leiner, T.; et al. Value of MRI in medicine: More than just another test? J. Magn. Reson. Imaging 2019, 49, e14–e25. [Google Scholar] [CrossRef] [PubMed]
- Katti, G.; Ara, S.A.; Shireen, A. Magnetic Resonance Imaging (MRI)—A Review. Int. J. Dent. Clin. 2011, 3, 65–70. [Google Scholar] [CrossRef]
- Turan, N.; Heider, R.A.; Roy, A.K.; Miller, B.A.; Mullins, M.E.; Barrow, D.L.; Grossberg, J.; Pradilla, G. Current Perspectives in Imaging Modalities for the Assessment of Unruptured Intracranial Aneurysms: A Comparative Analysis and Review. World Neurosurg. 2018, 113, 280–292. [Google Scholar] [CrossRef] [PubMed]
- Mkhize, N.N.; Mngomezulu, V.M.; Buthelezi, T.E. Accuracy of CT angiography for detecting ruptured intracranial aneurysms. S. Afr. J. Radiol. 2023, 27, 1–6. [Google Scholar] [CrossRef]
- Wardlaw, J.M.; White, P.M. The detection and management of unruptured intracranial aneurysms. Brain 2000, 123, 205–221. [Google Scholar] [CrossRef]
- Ali, M.F. Transcranial Doppler ultrasonography (uses, limitations, and potentials): A review article. Egypt. J. Neurosurg. 2021, 36, 20. [Google Scholar] [CrossRef]
- Bittar, J.; Hannawi, Y. Transcranial Doppler in Subarachnoid Hemorrhage. In Neurovascular Sonography; Springer: Cham, Switherland, 2022; pp. 81–98. [Google Scholar] [CrossRef]
- Sumner, D.S.; Porter, D.J.; Moore, D.J.; Winders, R.E. Digital subtraction angiography: Intravenous and intra-arterial techniques. J. Vasc. Surg. 1985, 2, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Migdal, V.L.; Wu, W.K.; Long, D.; McNaughton, C.D.; Ward, M.J.; Self, W.H. Risk-Benefit Analysis of Lumbar Puncture to Evaluate for Nontraumatic Subarachnoid Hemorrhage in Adult ED Patients Victoria. Am J Emerg Med. 2016, 33, 1597–1601. [Google Scholar] [CrossRef] [PubMed]
- Horstman, P.; Linn, F.H.H.; Voorbij, H.A.M.; Rinkel, G.J.E. Chance of aneurysm in patients suspected of SAH who have a “negative” CT scan but a “positive” lumbar puncture. J. Neurol. 2012, 259, 649–652. [Google Scholar] [CrossRef]
- Lai, L.T.; O’Neill, A.H. History, Evolution, and Continuing Innovations of Intracranial Aneurysm Surgery. World Neurosurg. 2017, 102, 673–681. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, H.; Summers, R.; Yang, M.; Cousins, B.G.; Tsui, J. Current Treatment Strategies for Intracranial Aneurysms: An Overview. Angiology 2018, 69, 17–30. [Google Scholar] [CrossRef]
- Chen, J.; Li, M.; Zhu, X.; Chen, Y.; Zhang, C.; Shi, W.; Chen, Q.; Wang, Y. Anterior Communicating Artery Aneurysms: Anatomical Considerations and Microsurgical Strategies. Front. Neurol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Van Dijk, J.M.C.; Groen, R.J.M.; Ter Laan, M.; Jeltema, J.R.; Mooij, J.J.A.; Metzemaekers, J.D.M. Surgical clipping as the preferred treatment for aneurysms of the middle cerebral artery. Acta Neurochir. 2011, 153, 2111–2115. [Google Scholar] [CrossRef] [PubMed]
- Metayer, T.; Leclerc, A.; Borha, A.; Derrey, S.; Langlois, O.; Barbier, C.; Aldea, S.; le Guerinel, C.; Piotin, M.; Vivien, D.; et al. Microsurgical Clipping of Middle Cerebral Artery Aneurysms: Complications and Risk Factors for Complications. World Neurosurg. 2022, 168, e87–e96. [Google Scholar] [CrossRef]
- Rutledge, C.; Baranoski, J.F.; Catapano, J.S.; Lawton, M.T.; Spetzler, R.F. Microsurgical Treatment of Cerebral Aneurysms. World Neurosurg. 2022, 159, 250–258. [Google Scholar] [CrossRef]
- Frisoli, F.A.; Srinivasan, V.M.; Catapano, J.S.; Rudy, R.F.; Nguyen, C.L.; Jonzzon, S.; Korson, C.; Karahalios, K.; Lawton, M.T. Vertebrobasilar dissecting aneurysms: Microsurgical management in 42 patients. J. Neurosurg. 2022, 137, 393–401. [Google Scholar] [CrossRef]
- Sriamornrattanakul, K.; Wongsuriyanan, S. Anterior Temporal Approach for Clipping Posterior-Projecting Supraclinoid Carotid Artery Aneurysms: A More Lateral Corridor to Better Visualize the Aneurysm Neck and Related Branches. World Neurosurg. 2021, 149, e549–e562. [Google Scholar] [CrossRef] [PubMed]
- Sriamornrattanakul, K.; Wongsuriyanan, S.; Akharathammachote, N. Anterior Temporal Approach for Clipping of Upper Basilar Artery Aneurysms: Surgical Techniques and Treatment Outcomes. World Neurosurg. 2019, 131, e530–e542. [Google Scholar] [CrossRef] [PubMed]
- Piper, K.; Saez-Alegre, M.; Perillo, T.; Peto, I.; Najera, E.; Williams, J.; Breton, J.; Felbaum, D.R.; Jean, W.C. Transorbital approach clipping of middle cerebral artery aneurysm: A virtual reality morphometric anatomic study. World Neurosurg. 2024, 191, e429–e437. [Google Scholar] [CrossRef] [PubMed]
- Mosteiro, A.; Manfrellotti, R.; Torné, R.; Gagliano, D.; Codes, M.; Perera, D.; Di Somma, A.; Prats-Galino, A.; Enseñat, J. The Transorbital Approach to the Internal Carotid and Middle Cerebral Arteries. A Dissection Study Toward Targeted Access Aneurysm Clipping. World Neurosurg. 2024, 194, 123486. [Google Scholar] [CrossRef]
- Chen, R.; Guo, R.; Wen, D.; You, C.; Ma, L. Entire Orifice Blocking-Assisted Microsurgical Treatment: Clipping of Intracranial Giant Wide-Neck Paraclinoid Aneurysms. World Neurosurg. 2018, 114, e861–e868. [Google Scholar] [CrossRef]
- Toyooka, T.; Wada, K.; Otani, N.; Tomiyama, A.; Takeuchi, S.; Tomura, S.; Nishida, S.; Ueno, H.; Nakao, Y.; Yamamoto, T.; et al. Potential Risks and Limited Indications of the Supraorbital Keyhole Approach for Clipping Internal Carotid Artery Aneurysms. World Neurosurg. X 2019, 2, 100025. [Google Scholar] [CrossRef]
- Seo, D.; Jo, H.; Jeong, H.G.; Kim, Y.D.; Lee, S.U.; Ban, S.P.; Kim, T.; Kwon, O.K.; Oh, C.W.; Bang, J.S. Simultaneous Craniotomies for Multiple Intracranial Aneurysm Clippings—One-Stage Surgery with Multiple Craniotomies. World Neurosurg. 2022, 158, e689–e696. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Zhang, S.; Huang, Y.; Wu, J.; Hu, X.; Lu, J.; Zhang, Q.; Zhou, L.; Huang, Y. Cotton-Assisted Surgical Clipping of Very Small Aneurysms: A Two-Center Study. World Neurosurg. 2019, 127, e242–e250. [Google Scholar] [CrossRef]
- Takeda, R.; Kurita, H. “Mass Reduction” Clipping Technique for Large and Complex Intracranial Middle Cerebral Artery Aneurysm. World Neurosurg. 2019, 125, 150–155. [Google Scholar] [CrossRef]
- Medical Advisory Secretariat. Coil embolization for intracranial aneurysms: An evidence-based analysis. Ont. Health Technol. Assess. Ser. 2006, 6, 1–114. [Google Scholar]
- Byoun, H.S.; Lim, J.W.; Han, M.H.; Jeong, E.O.; Koh, H.S.; Kwon, H.J. Coil embolization of the middle cerebral artery bifurcation aneurysms: Feasibility and durability. J. Clin. Neurosci. 2024, 126, 294–306. [Google Scholar] [CrossRef] [PubMed]
- Ihn, Y.K.; Shin, S.H.; Baik, S.K.; Choi, I.S. Complications of endovascular treatment for intracranial aneurysms: Management and prevention. Interv. Neuroradiol. 2018, 24, 237–245. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, Z.; Liu, J.; Qin, F.; Hu, L.; Li, Z. Safety and effectiveness of double microcatheter technique in the treatment of ruptured aneurysms of anterior cerebral circulation. Front. Neurol. 2022, 13, 1015304. [Google Scholar] [CrossRef] [PubMed]
- Hirano, Y.; Koizumi, S.; Shojima, M.; Ishikawa, O.; Kiyofuji, S.; Umekawa, M.; Saito, N. Double-catheter technique for the embolization of recurrent cerebral aneurysms: A single-center experience. Surg. Neurol. Int. 2023, 14, 273. [Google Scholar] [CrossRef]
- Wallace, A.N.; Samaniego, E.; Kayan, Y.; Derdeyn, C.P.; Delgado Almandoz, J.E.; Dandapat, S.; Fease, J.L.; Thomas, M.; Milner, A.M.; Scholz, J.M.; et al. Balloon-assisted coiling of cerebral aneurysms with the dual-lumen Scepter XC balloon catheter: Experience at two high-volume centers. Interv. Neuroradiol. 2019, 25, 414–418. [Google Scholar] [CrossRef]
- Santillan, A.; Gobin, Y.P.; Mazura, J.C.; Meausoone, V.; Leng, L.Z.; Greenberg, E.; Riina, H.A.; Patsalides, A. Balloon-assisted coil embolization of intracranial aneurysms is not associated with increased periprocedural complications. J. Neurointerv. Surg. 2013, 5, iii56–iii61. [Google Scholar] [CrossRef]
- Vignesh, S.; Prasad, S.N.; Singh, V.; Phadke, R.V.; Balaguruswamy, M.M.; Udiya, A.; Shetty, G.S.; Dhull, V. Balloon-Assisted Coiling of Intracranial Aneurysms: Technical Details and Evaluation of Local Complications. Neurol. India 2022, 70, 643–651. [Google Scholar] [CrossRef]
- Sluzewski, M.; van Rooij, W.J.; Beute, G.N.; Nijssen, P.C. Balloon-assisted coil embolization of intracranial aneurysms: Incidence, complications, and angiography results. J. Neurosurg. 2006, 105, 396–399. [Google Scholar] [CrossRef]
- Ramakrishnan, V.; Quadri, S.; Sodhi, A.; Cortez, V.; Taqi, M. E-064 Safety and Efficacy of Balloon-Assisted Coiling of Intracranial Aneurysms: A Single-Center Study. J. Neurointerv. Surg. 2014, 6, A68–A69. [Google Scholar] [CrossRef]
- Pop, R.; Harsan, O.; Martin, I.; Mihoc, D.; Richter, J.S.; Manisor, M.; Simu, M.; Chibbaro, S.; Cebula, H.; Proust, F.; et al. Balloon-assisted coiling of intracranial aneurysms using the Eclipse 2L double lumen balloon. Interv. Neuroradiol. 2020, 26, 291–299. [Google Scholar] [CrossRef]
- Vivanco-Suarez, J.; Wallace, A.N.; Dandapat, S.; Lopez, G.V.; Mendez-Ruiz, A.; Kayan, Y.; Copelan, A.Z.; Dajles, A.; Zevallos, C.B.; Quispe-Orozco, D.; et al. Stent-Assisted Coiling Versus Balloon-Assisted Coiling for the Treatment of Ruptured Wide-Necked Aneurysms: A 2-Center Experience. Stroke Vasc. Interv. Neurol. 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Irie, K.; Negoro, M.; Hayakawa, M.; Eayashi, J.; Kanno, T. Stent assisted coil embolization: The treatment of wide-necked, dissecting, and fusiform aneurysms. Interv. Neuroradiol. 2003, 9, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Choo, Y.S.; Kim, E.J.; Sung, S.M.; Hwangbo, L.; Lee, T.H.; Ko, J.K. Additional rescue stenting with Neuroform Atlas stents during stent-assisted coiling of saccular aneurysms. Clin. Neurol. Neurosurg. 2023, 230, 107777. [Google Scholar] [CrossRef]
- Jahshan, S.; Abla, A.A.; Natarajan, S.K.; Drummond, P.S.; Kan, P.; Karmon, Y.; Snyder, K.V.; Hopkins, L.N.; Siddiqui, A.H.; Levy, E.I. Results of stent-assisted vs non-stent-assisted endovascular therapies in 489 cerebral aneurysms: Single-center experience. Neurosurgery 2013, 72, 232–239. [Google Scholar] [CrossRef]
- Chalouhi, N.; Jabbour, P.; Singhal, S.; Drueding, R.; Starke, R.M.; Dalyai, R.T.; Tjoumakaris, S.; Gonzalez, L.F.; Dumont, A.S.; Rosenwasser, R.; et al. Stent-assisted coiling of intracranial aneurysms: Predictors of complications, recanalization, and outcome in 508 cases. Stroke 2013, 44, 1348–1353. [Google Scholar] [CrossRef] [PubMed]
- Lui, H.C.H.; Ng, Y.T.; Yu, S.C.H.; Zhuang, J.T.F.; Wong, G.K.C. Mid-term outcomes in stent-assisted coil embolization for ruptured cerebral aneurysms in the acute period: A single institution retrospective review. Brain Hemorrhages 2024, 5, 267–273. [Google Scholar] [CrossRef]
- Fuga, M.; Ishibashi, T.; Aoki, K.; Tachi, R.; Irie, K.; Kato, N.; Kan, I.; Hataoka, S.; Nagayama, G.; Sano, T.; et al. Intermediate catheter use is associated with complete occlusion and dense packing in coil embolization of unruptured cerebral aneurysms: A propensity score matched study. J. Neurointerv. Surg. 2024, 17, 174–180. [Google Scholar] [CrossRef]
- Fuga, M.; Ishibashi, T.; Aoki, K.; Kato, N.; Kan, I.; Hataoka, S.; Nagayama, G.; Sano, T.; Tanaka, T.; Murayama, Y. Intermediate catheter use is associated with intraprocedural rupture during coil embolization of ruptured intracranial aneurysms: A retrospective propensity score-matched study. Front. Neurol. 2024, 15, 1401378. [Google Scholar] [CrossRef]
- Walcott, B.P.; Koch, M.J.; Stapleton, C.J.; Patel, A.B. Blood Flow Diversion as a Primary Treatment Method for Ruptured Brain Aneurysms—Concerns, Controversy, and Future Directions. Neurocrit. Care 2017, 26, 465–473. [Google Scholar] [CrossRef]
- Briganti, F.; Leone, G.; Marseglia, M.; Mariniello, G.; Caranci, F.; Brunetti, A.; Maiuri, F. Endovascular treatment of cerebral aneurysms using flow-diverter devices: A systematic review. Neuroradiol. J. 2015, 28, 365–375. [Google Scholar] [CrossRef]
- Chalouhi, N.; Tjoumakaris, S.; Starke, R.M.; Gonzalez, L.F.; Randazzo, C.; Hasan, D.; McMahon, J.F.; Singhal, S.; Moukarzel, L.A.; Dumont, A.S.; et al. Comparison of flow diversion and coiling in large unruptured intracranial saccular aneurysms. Stroke 2013, 44, 2150–2154. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Takao, H.; Fujimura, S.; Dahmani, C.; Ishibashi, T.; Mamori, H.; Fukushima, N.; Yamamoto, M.; Murayama, Y. Selection of helical braided flow diverter stents based on hemodynamic performance and mechanical properties. J. Neurointerv. Surg. 2017, 9, 999–1005. [Google Scholar] [CrossRef] [PubMed]
- Binh, N.T.; Luu, V.D.; Thong, P.M.; Cuong, N.N.; Anh, N.Q.; Tuan, T.A.; Linh, L.T.; Thien, N.T.; Uddin, M.J.; Dinh, T.C.; et al. Flow diverter stent for treatment of cerebral aneurysms: A report of 130 patients with 134 aneurysms. Heliyon 2020, 6, e03356. [Google Scholar] [CrossRef] [PubMed]
- Essibayi, M.A.; Jabal, M.S.; Musmar, B.; Adeeb, N.; Salim, H.; Aslan, A.; Cancelliere, N.M.; McLellan, R.M.; Algin, O.; Ghozy, S.; et al. Off-Label use of Woven EndoBridge device for intracranial brain aneurysm treatment: Modeling of occlusion outcome. J. Stroke Cerebrovasc. Dis. 2024, 33, 107897. [Google Scholar] [CrossRef]
- María Ontañón Garcés, J.; Saralegui Prieto, I.; Zaldumbide-Duenas, L.; Fernandez-Ruanova, B.; Cabrera Zubizarreta, A.; Vicente Olabarria, I. Foreign body granuloma as a complication of endovascular treatment of brain aneurysm. Interdiscip. Neurosurg. Adv. Tech. Case Manag. 2021, 24, 101068. [Google Scholar] [CrossRef]
- Singla, R.; Gupta, S.; Chanda, A. A Computational Fluid Dynamics-Based Model for Assessing Rupture Risk in Cerebral Arteries with Varying Aneurysm Sizes. Math. Comput. Appl. 2023, 28, 90. [Google Scholar] [CrossRef]
- Sforza, D.M.; Putman, C.M.; Cebral, J.R. Hemodynamics of cerebral aneurysms. Annu. Rev. Fluid Mech. 2009, 41, 91–107. [Google Scholar] [CrossRef]
- Diagbouga, M.R.; Morel, S.; Bijlenga, P.; Kwak, B.R. Role of hemodynamics in initiation/growth of intracranial aneurysms. Eur. J. Clin. Invest. 2018, 48, e12992. [Google Scholar] [CrossRef]
- Shine, S.R.; Shantanu, S.; Harshavardhan, E.; Sudhir, B.J. Fluid–Structure Interaction Model for Assessing Aneurysm Initiation at the Circle of Willis. J. Eng. Sci. Med. Diagn. Ther. 2022, 5, 1–13. [Google Scholar] [CrossRef]
- Mohan, D.; Munteanu, V.; Coman, T.; Ciurea, A.V. Genetic factors involves in intracranial aneurysms--actualities. J. Med. Life 2015, 8, 336–341. [Google Scholar]
- Tang, Y.; Wei, H.; Zhang, Z.; Fu, M.; Feng, J.; Li, Z.; Liu, X.; Wu, Y.; Zhang, J.; You, W.; et al. Transition of intracranial aneurysmal wall enhancement from high to low wall shear stress mediation with size increase: A hemodynamic study based on 7T magnetic resonance imaging. Heliyon 2024, 10, e30006. [Google Scholar] [CrossRef] [PubMed]
- Shantha Kumar, V.; Shantha Kumar, V. High Wall Shear Incites Cerebral Aneurysm Formation and Low Wall Shear Stress Propagates Cerebral Aneurysm Growth. J. Neurol. Res. 2023, 13, 1–11. [Google Scholar] [CrossRef]
- Meng, H.; Tutino, V.M.; Xiang, J.; Siddiqui, A. High WSS or Low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: Toward a unifying hypothesis. Am. J. Neuroradiol. 2014, 35, 1254–1262. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Ding, H.; Ren, Y.; Bai, D.; Wu, Z. Study of Typical Ruptured and Unruptured Intracranial Aneurysms Based on Fluid–Structure Interaction. World Neurosurg. 2023, 175, e115–e128. [Google Scholar] [CrossRef]
- Salimi Ashkezari, S.F.; Mut, F.; Robertson, A.M.; Cebral, J.R. Differences Between Ruptured Aneurysms with and Without Blebs: Mechanistic Implications. Cardiovasc. Eng. Technol. 2023, 14, 92–103. [Google Scholar] [CrossRef]
- Razaghi, R.; Biglari, H.; Karimi, A. Risk of rupture of the cerebral aneurysm in relation to traumatic brain injury using a patient-specific fluid-structure interaction model. Comput. Methods Programs Biomed. 2019, 176, 9–16. [Google Scholar] [CrossRef]
- Singh, G.; Yadav, P.N.; Gupta, S.; Chanda, A. Modeling of aneurysm progression in anterior cerebral arteries to estimate rupture risk: A computational study. Biomed. Eng. Adv. 2023, 6, 100106. [Google Scholar] [CrossRef]
- Jiang, H.; Lu, Z.; Gerdroodbary, M.B.; Sabernaeemi, A.; Salavatidezfouli, S. The influence of sac centreline on saccular aneurysm rupture: Computational study. Sci. Rep. 2023, 13, 11288. [Google Scholar] [CrossRef]
- Lee, U.Y.; Kwak, H.S. Analysis of morphological-hemodynamic risk factors for aneurysm rupture including a newly introduced total volume ratio. J. Pers. Med. 2021, 11, 744. [Google Scholar] [CrossRef]
- Muhib, F.; Islam, M.D.; Arafat, M.T. A study on the computational hemodynamic and mechanical parameters for understanding intracranial aneurysms of patients with hypertension and atrial fibrillation. Inform. Med. Unlocked 2022, 32, 101031. [Google Scholar] [CrossRef]
- Zhang, Q.; Su, Z.; Guo, Z. Computational evaluating on the role of sac centerline length on hemorrhage risk of anterior cerebral artery with saccular aneurysm. Chin. J. Phys. 2024, 92, 975–986. [Google Scholar] [CrossRef]
- Mantha, A.; Karmonik, C.; Benndorf, G.; Strother, C.; Metcalfe, R. Hemodynamics in a cerebral artery before and after the formation of an aneurysm. Am. J. Neuroradiol. 2006, 27, 1113–1118. [Google Scholar]
- Cmiel-Smorzyk, K.; Ladziński, P.; Kaspera, W. Biology, Physics and Genetics of Intracranial Aneurysm Formation: A Review. J. Neurol. Surg. Part A Cent. Eur. Neurosurg. 2022. [Google Scholar] [CrossRef] [PubMed]
- Tanioka, S.; Ishida, F.; Kishimoto, T.; Tsuji, M.; Tanaka, K.; Shimosaka, S.; Toyoda, M.; Kashiwagi, N.; Sano, T.; Suzuki, H. Quantification of hemodynamic irregularity using oscillatory velocity index in the associations with the rupture status of cerebral aneurysms. J. Neurointerv. Surg. 2019, 11, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Sano, T.; Ishida, F.; Tsuji, M.; Furukawa, K.; Shimosaka, S.; Suzuki, H. Hemodynamic Differences Between Ruptured and Unruptured Cerebral Aneurysms Simultaneously Existing in the Same Location: 2 Case Reports and Proposal of a Novel Parameter Oscillatory Velocity Index. World Neurosurg. 2017, 98, 868.e5–868.e10. [Google Scholar] [CrossRef]
- Cebral, J.R.; Mut, F.; Weir, J.; Putman, C.M. Association of Hemodynamic Characteristics and Cerebral Aneurysm Rupture. AJNR Am. J. Neuroradiol. 2011, 32, 264. [Google Scholar] [CrossRef]
- Li, Y.; Amili, O.; Moen, S.; Van de Moortele, P.F.; Grande, A.; Jagadeesan, B.; Coletti, F. Flow residence time in intracranial aneurysms evaluated by in vitro 4D flow MRI. J. Biomech. 2022, 141, 111211. [Google Scholar] [CrossRef]
- Rayz, V.L.; Boussel, L.; Ge, L.; Leach, J.R.; Martin, A.J.; Lawton, M.T.; McCulloch, C.; Saloner, D. Flow residence time and regions of intraluminal thrombus deposition in intracranial aneurysms. Ann. Biomed. Eng. 2010, 38, 3058–3069. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, H.; Chen, Y.; Dai, Y.; Lin, B.; Liang, F.; Wan, J.; Yang, Y.; Zhao, B. Morphological and Hemodynamic Factors Associated with Ruptured Middle Cerebral Artery Mirror Aneurysms: A Retrospective Study. World Neurosurg. 2020, 137, e138–e143. [Google Scholar] [CrossRef]
- Li, M.; Wang, J.; Liu, J.; Zhao, C.; Yang, X. Hemodynamics in Ruptured Intracranial Aneurysms with Known Rupture Points. World Neurosurg. 2018, 118, e721–e726. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, P.; Wu, J.; Gao, B.; Wang, S. The Morphological and Hemodynamic Characteristics of the Intraoperative Ruptured Aneurysm. Front. Neurosci. 2019, 13, 233. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Hasegawa, H.; Shibuya, K.; Fujiwara, H.; Oishi, M. Clinical and Hemodynamic Features of Aneurysm Rupture in Coil Embolization of Intracranial Aneurysms. Diagnostics 2024, 14, 1203. [Google Scholar] [CrossRef] [PubMed]
- Davidson, H.; Scardino, B.; Gamage, P.T.; Taebi, A. Variations of Middle Cerebral Artery Hemodynamics Due to Aneurysm Clipping Surgery. J. Eng. Sci. Med. Diagn. Ther. 2023, 7, 11008. [Google Scholar] [CrossRef]
- Zhou, L.; Dong, S.; Kheiri, A.A. Influence of physiological conditions on hemodynamics of internal carotid artery aneurysms. Sci. Rep. 2024, 14, 23106. [Google Scholar] [CrossRef]
- Yang, Y.; Yuan, T.; Panaitescu, C.; Li, R.; Wu, K.; Zhou, Y.; Pokrajac, D.; Dini, D.; Zhan, W. Exploring tissue permeability of brain tumours in different grades: Insights from pore-scale fluid dynamics analysis. Acta Biomater. 2024, 190, 398–409. [Google Scholar] [CrossRef]
- Deuter, D.; Haj, A.; Brawanski, A.; Krenkel, L.; Schmidt, N.O.; Doenitz, C. Fast simulation of hemodynamics in intracranial aneurysms for clinical use. Acta Neurochir. 2025, 167, 56. [Google Scholar] [CrossRef] [PubMed]
- Paritala, P.K.; Anbananthan, H.; Hautaniemi, J.; Smith, M.; George, A.; Allenby, M.; Mendieta, J.B.; Wang, J.; Maclachlan, L.; Liang, E.S.; et al. Reproducibility of the computational fluid dynamic analysis of a cerebral aneurysm monitored over a decade. Sci. Rep. 2023, 13, 219. [Google Scholar] [CrossRef]
- Campo-Deano, L.; Oliveira, M.S.N.; Pinho, F.T. A review of computational hemodynamics in middle cerebral aneurysms and rheological models for blood flow. Appl. Mech. Rev. 2015, 67, 030801. [Google Scholar] [CrossRef]
- Sun, H.T.; Sze, K.Y.; Chow, K.W.; On Tsang, A.C. A comparative study on computational fluid dynamic, fluid-structure interaction and static structural analyses of cerebral aneurysm. Eng. Appl. Comput. Fluid Mech. 2022, 16, 262–278. [Google Scholar] [CrossRef]
- Rostam-Alilou, A.A.; Jarrah, H.R.; Zolfagharian, A.; Bodaghi, M. Fluid–structure interaction (FSI) simulation for studying the impact of atherosclerosis on hemodynamics, arterial tissue remodeling, and initiation risk of intracranial aneurysms. Biomech. Model. Mechanobiol. 2022, 21, 1393–1406. [Google Scholar] [CrossRef]
- M. Fauzi, M.F.; Johari, N.H.; M. Mokhtarudin, M.J. Brief Review of Recent Study on Fluid–Structure Interaction Modeling of Blood Flow in Peripheral Arterial Disease. In Proceedings of the 2nd Human Engineering Symposium; Hassan, M.H.A., Omar, M.N., Johari, N.H., Zhong, Y., Eds.; Springer Nature: Singapore, 2024; pp. 185–197. [Google Scholar]
- Torii, R.; Oshima, M.; Kobayashi, T.; Takagi, K.; Tezduyar, T.E. Fluid-structure interaction modeling of a patient-specific cerebral aneurysm: Influence of structural modeling. Comput. Mech. 2008, 43, 151–159. [Google Scholar] [CrossRef]
- Dwivedi, K.K.; Lakhani, P.; Kumar, S.; Kumar, N. A hyperelastic model to capture the mechanical behaviour and histological aspects of the soft tissues. J. Mech. Behav. Biomed. Mater. 2022, 126, 105013. [Google Scholar] [CrossRef]
- Lauric, A.; Hippelheuser, J.; Safain, M.G.; Malek, A.M. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation. J. Biomech. 2014, 47, 3018–3027. [Google Scholar] [CrossRef] [PubMed]
- Lampropoulos, D.S.; Hadjinicolaou, M. Investigating the impact of vessel geometry on cerebral aneurysm formation using multi-phase blood flow models. Comput. Math. Appl. 2024, 176, 257–269. [Google Scholar] [CrossRef]
- Csippa, B.; Závodszky, G.; Paál, G.; Szikora, I. A new hypothesis on the role of vessel topology in cerebral aneurysm initiation. Comput. Biol. Med. 2018, 103, 244–251. [Google Scholar] [CrossRef]
- Gao, B.L.; Hao, W.L.; Ren, C.F.; Li, C.H.; Wang, J.W.; Liu, J.F. Greater hemodynamic stresses initiated the anterior communicating artery aneurysm on the vascular bifurcation apex. J. Clin. Neurosci. 2022, 96, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Durgesh, V. Experimental study of flow structure impact on the fluid parameters in saccular aneurysm models. Exp. Therm. Fluid Sci. 2022, 138, 110675. [Google Scholar] [CrossRef]
- Chi, Q.; Li, X.; Chang, S.; Mu, L.; He, Y.; Gao, G. In-vitro experimental study on the fluid-structure interaction in an image-based flexible model with a lateral cerebral aneurysm. Med. Nov. Technol. Devices 2019, 3, 100019. [Google Scholar] [CrossRef]
- Souza, A.; Lopes, D.; Souza, S.; Ribeiro, J.; Lima, R.A.; Ferrera, C. Experimental and numerical analyses of the hemodynamics impact on real Experimental and numerical analyses of the hemodynamics impact on real intracranial aneurysms: A particle tracking velocimetry approach. Results Eng. 2024, 24, 103566. [Google Scholar] [CrossRef]
- Lai, S.S.M.; Tang, A.Y.S.; Tsang, A.C.O.; Leung, G.K.K.; Yu, A.C.H.; Chow, K.W. A joint computational-experimental study of intracranial aneurysms: Importance of the aspect ratio. J. Hydrodyn. 2016, 28, 462–472. [Google Scholar] [CrossRef]
- Shamloo, A.; Nejad, M.A.; Saeedi, M. Fluid–structure interaction simulation of a cerebral aneurysm: Effects of endovascular coiling treatment and aneurysm wall thickening. J. Mech. Behav. Biomed. Mater. 2017, 74, 72–83. [Google Scholar] [CrossRef]
- Philip, N.T.; Bolem, S.; Sudhir, B.J.; Patnaik, B.S. V Hemodynamics and bio-mechanics of morphologically distinct saccular intracranial aneurysms at bifurcations: Idealised vs Patient-specific geometries. Comput. Methods Programs Biomed. 2022, 227, 107237. [Google Scholar] [CrossRef]
- Huang, F.; Janiga, G.; Berg, P.; Hosseini, S.A. On flow fluctuations in ruptured and unruptured intracranial aneurysms: Resolved numerical study. Sci. Rep. 2024, 14, 19658. [Google Scholar] [CrossRef]
- Cebral, J.R.; Vazquez, M.; Sforza, D.M.; Houzeaux, G.; Tateshima, S.; Scrivano, E.; Bleise, C.; Lylyk, P.; Putman, C.M. Analysis of hemodynamics and wall mechanics at sites of cerebral aneurysm rupture. J. Neurointerv. Surg. 2015, 7, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Cebral, J.; Ollikainen, E.; Chung, B.J.; Mut, F.; Sippola, V.; Jahromi, B.R.; Tulamo, R.; Hernesniemi, J.; Niemelä, M.; Robertson, A.; et al. Flow conditions in the intracranial aneurysm lumen are associated with inflammation and degenerative changes of the aneurysm wall. Am. J. Neuroradiol. 2017, 38, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Yu, P.; Durgesh, V. Experimental study of large-scale flow structures in an aneurysm. In Proceedings of the ASME 2018 5th Joint US-European Fluids Engineering Division Summer Meeting, Montreal, QC, Canada, 15–20 July 2018; pp. 1–10. [Google Scholar] [CrossRef]
- Alagan, A.K.; Valeti, C.; Bolem, S.; Karve, O.S.; Arvind, K.R.; Rajalakshmi, P.; Sabareeswaran, A.; Gopal, S.; Matham, G.; Darshan, H.R.; et al. Histopathology-based near-realistic arterial wall reconstruction of a patient-specific cerebral aneurysm for fluid-structure interaction studies. Comput. Biol. Med. 2025, 185, 109579. [Google Scholar] [CrossRef] [PubMed]
- Fujimura, S.; Tanaka, K.; Takao, H.; Okudaira, T.; Koseki, H.; Hasebe, A.; Suzuki, T.; Uchiyama, Y.; Ishibashi, T.; Otani, K.; et al. Computational fluid dynamic analysis of the initiation of cerebral aneurysms. J. Neurosurg. 2022, 137, 335–343. [Google Scholar] [CrossRef]
- Cherkaoui, I.; Bettaibi, S.; Barkaoui, A.; Kuznik, F. Numerical study of pulsatile thermal magnetohydrodynamic blood flow in an artery with aneurysm using lattice Boltzmann method (LBM). Commun. Nonlinear Sci. Numer. Simul. 2023, 123, 107281. [Google Scholar] [CrossRef]
- Moghadasi, K.; Ghayesh, M.H.; Li, J.; Hu, E.; Amabili, M.; Żur, K.K.; Fitridge, R. Nonlinear biomechanical behaviour of extracranial carotid artery aneurysms in the framework of Windkessel effect via FSI technique. J. Mech. Behav. Biomed. Mater. 2024, 160, 106760. [Google Scholar] [CrossRef]
- Sharzehee, M.; Khalafvand, S.S.; Han, H.C. Fluid-structure interaction modeling of aneurysmal arteries under steady-state and pulsatile blood flow: A stability analysis. Comput. Methods Biomech. Biomed. Eng. 2018, 21, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.Y.; Barzegar Gerdroodbary, M.; Abazari, A.M.; Moradi, R. Computational study of blood flow characteristics on formation of the aneurysm in internal carotid artery. Eur. Phys. J. Plus 2021, 136, 541. [Google Scholar] [CrossRef]
- Fattahi, M.; Abdollahi, S.A.; Alibak, A.H.; Hosseini, S.; Dang, P. Usage of computational method for hemodynamic analysis of intracranial aneurysm rupture risk in different geometrical aspects. Sci. Rep. 2023, 13, 20749. [Google Scholar] [CrossRef]
- Cho, K.C.; Yang, H.; Kim, J.J.; Oh, J.H.; Kim, Y.B. Prediction of rupture risk in cerebral aneurysms by comparing clinical cases with fluid–structure interaction analyses. Sci. Rep. 2020, 10, 18237. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.L.; Santos, G.B.; Militzer, J.; Baccin, C.E.; Tatit, R.T.; Gasche, J.L. A longitudinal study of a lateral intracranial aneurysm: Identifying the hemodynamic parameters behind its inception and growth using computational fluid dynamics. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 138. [Google Scholar] [CrossRef]
- Zhu, Y.; Zou, R.; Sun, X.; Lei, X.; Xiang, J.; Guo, Z.; Su, H. Assessing the risk of intracranial aneurysm rupture using computational fluid dynamics: A pilot study. Front. Neurol. 2023, 14, 1277278. [Google Scholar] [CrossRef]
- Rahma, A.G.; Abdelhamid, T. Hemodynamic and fluid flow analysis of a cerebral aneurysm: A CFD simulation. SN Appl. Sci. 2023, 5, 62. [Google Scholar] [CrossRef]
- Závodszky, G.; Gyürki, D.; Károlyi, G.; Szikora, I.; Paál, G. Fractals and Chaos in the Hemodynamics of Intracranial Aneurysms. Adv. Neurobiol. 2024, 36, 397–412. [Google Scholar] [CrossRef]
- Salimi Ashkezari, S.F.; Mut, F.; Chung, B.J.; Robertson, A.M.; Frösen, J.; Cebral, J.R. Analysis of hemodynamic changes from aneurysm inception to large sizes. Int. J. Numer. Method. Biomed. Eng. 2021, 37, e3415. [Google Scholar] [CrossRef]
- Usmani, A.Y.; Muralidhar, K. Unsteady hemodynamics in intracranial aneurysms with varying dome orientations. J. Fluids Eng. Trans. ASME 2021, 143, 061206. [Google Scholar] [CrossRef]
- Li, Y.; Yoneyama, Y.; Isoda, H.; Terada, M.; Kosugi, T.; Kosugi, T.; Zhang, M.; Ohta, M. Haemodynamics in a patient-specific intracranial aneurysm according to experimental and numerical approaches: A comparison of PIV, CFD and PC-MRI. Technol. Health Care 2021, 29, 253–267. [Google Scholar] [CrossRef]
- Wu, X.; Gürzing, S.; Schinkel, C.; Toussaint, M.; Perinajová, R.; van Ooij, P.; Kenjereš, S. Hemodynamic Study of a Patient-Specific Intracranial Aneurysm: Comparative Assessment of Tomographic PIV, Stereoscopic PIV, In Vivo MRI and Computational Fluid Dynamics. Cardiovasc. Eng. Technol. 2022, 13, 428–442. [Google Scholar] [CrossRef]
- Tupin, S.; Saqr, K.M.; Ohta, M. Effects of wall compliance on multiharmonic pulsatile flow in idealized cerebral aneurysm models: Comparative PIV experiments. Exp. Fluids 2020, 61, 164. [Google Scholar] [CrossRef]
- Ikeya, N.; Yamazaki, T.; Tanaka, G.; Ohta, M.; Yamaguchi, R. Experimental evaluation of wall shear stress in an elastic cerebral aneurysm model. J. Biorheol. 2022, 36, 58–67. [Google Scholar] [CrossRef]
- Shen, F.; Lu, X.; Pang, Y.; Liu, Z. Experimental study on transient flow patterns in simplified saccular intracranial aneurysm models using particle image velocimetry. Acta Mech. Sin. 2022, 38, 322162. [Google Scholar] [CrossRef]
- Yazdi, S.G.; Mercier, D.; Bernard, R.; Tynan, A.; Ricci, D.R. Particle image velocimetry measurements of the flow-diverting effects of a new generation of the eclips implant for the treatment of intracranial bifurcation aneurysms. Appl. Sci. 2020, 10, 8639. [Google Scholar] [CrossRef]
- Murayama, Y.; Fujimura, S.; Suzuki, T.; Takao, H. Computational fluid dynamics as a risk assessment tool for aneurysm rupture. Neurosurg. Focus 2019, 47, E12. [Google Scholar] [CrossRef]
- Hadad, S.; Mut, F.; Kadirvel, R.; Ding, Y.H.; Kallmes, D.; Cebral, J.R. Evaluation of outcome prediction of flow diversion for intracranial aneurysms. Am. J. Neuroradiol. 2021, 42, 1973–1978. [Google Scholar] [CrossRef]
- Cebral, J.R.; Mut, F.; Raschi, M.; Scrivano, E.; Ceratto, R.; Lylyk, P.; Putman, C.M. Putman Aneurysm rupture following treatment with flow-diverting stents: Computational hemodynamics analysis of treatment. Am. J. Neuroradiol. 2011, 32, 27–33. [Google Scholar] [CrossRef]
- Sheidani, A.; Barzegar Gerdroodbary, M.; Poozesh, A.; Sabernaeemi, A.; Salavatidezfouli, S.; Hajisharifi, A. Influence of the coiling porosity on the risk reduction of the cerebral aneurysm rupture: Computational study. Sci. Rep. 2022, 12, 19082. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Z.L.; Gao, B.L.; Xue, J.Y.; Li, T.X.; Zhao, T.Y.; Cai, D.Y.; He, Y.K. Use of a First Large-Sized Coil Versus Conventional Coils for Embolization of Cerebral Aneurysms: Effects on Packing Density, Coil Length, and Durable Occlusion. World Neurosurg. 2019, 127, e685–e691. [Google Scholar] [CrossRef] [PubMed]
- Jeong, W.; Han, M.H.; Rhee, K. Effects of framing coil shape, orientation, and thickness on intra-aneurysmal flow. Med. Biol. Eng. Comput. 2013, 51, 981–990. [Google Scholar] [CrossRef]
- Yao, Z.; Wen, H. Impact of aneurysm sac size on the effectiveness of endovascular coiling in patient-specific middle cerebral artery aneurysms: A computational study. Sci. Rep. 2025, 15, 8825. [Google Scholar] [CrossRef]
- Sadeh, A.; Kazemi, A.; Bahramkhoo, M.; Barzegar Gerdroodbary, M. Computational study of blood flow inside MCA aneurysm with/without endovascular coiling. Sci. Rep. 2023, 13, 4560. [Google Scholar] [CrossRef] [PubMed]
- Rostamian, A.; Fallah, K.; Rostamiyan, Y.; Alinejad, J. Computational study of the blood hemodynamic inside the cerebral double dome aneurysm filling with endovascular coiling. Sci. Rep. 2023, 13, 2909. [Google Scholar] [CrossRef]
- Yang, R.; Yang, L.; Ghane, G. Computational and statistical analyses of blood hemodynamic inside cerebral aneurysms for treatment evaluation of endovascular coiling. Sci. Rep. 2023, 13, 20461. [Google Scholar] [CrossRef] [PubMed]
- Boniforti, M.A.; Magini, R.; Orosco Salinas, T. Hemodynamic Investigation of the Flow Diverter Treatment of Intracranial Aneurysm. Fluids 2023, 8, 189. [Google Scholar] [CrossRef]
- Kim, S.; Yang, H.; Hong, I.; Oh, J.H.; Kim, Y.B. Computational Study of Hemodynamic Changes Induced by Overlapping and Compacting of Stents and Flow Diverter in Cerebral Aneurysms. Front. Neurol. 2021, 12, 705841. [Google Scholar] [CrossRef]
- Pei, J.; Xu, X.; Zhao, L.C. Hemodynamic evaluation of endovascular techniques of stenting and coiling for the treatment of internal carotid artery aneurysm: A computational study. Sci. Rep. 2024, 14, 29117. [Google Scholar] [CrossRef]
- Horn, J.D.; Maitland, D.J.; Hartman, J.; Ortega, J.M. Computational study of clot formation in aneurysms treated with shape memory polymer foam. Med. Eng. Phys. 2020, 75, 65–71. [Google Scholar] [CrossRef]
- Chen, L.; Leng, X.; Zheng, C.; Shan, Y.; Wang, M.; Bao, X.; Wu, J.; Zou, R.; Liu, X.; Xu, S.; et al. Computational fluid dynamics (CFD) analysis in a ruptured vertebral artery dissecting aneurysm implanted by Pipeline when recurrent after LVIS-assisted coiling treatment: Case report and review of the literatures. Interv. Neuroradiol. 2023, 29, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Davidson, H.; Scardino, B.; Hollingsworth, L.; Thibbotuwawa Gamage, P.; Taebi, A. A Comparative Study of Middle Cerebral Artery Hemodynamics Pre- and Post-Clipping of Cerebral Aneurysm. In Proceedings of the ASME 2023 International Mechanical Engineering Congress and Exposition, New Orleans, LA, USA, 29 October–2 November 2023. [Google Scholar] [CrossRef]
- Sanches, A.F.; Shit, S.; Özpeynirci, Y.; Liebig, T. CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment. Fluids 2022, 7, 254. [Google Scholar] [CrossRef]
- Shi, J.; Wu, P.; Zhou, Y.; Chen, Z. An experimental study on effects of interventional stent treatment on hemodynamics in elastic aneurysms. Phys. Fluids 2023, 35, 051906. [Google Scholar] [CrossRef]
- Roloff, C.; Berg, P. Effect of flow diverter stent malposition on intracranial aneurysm hemodynamics—An experimental framework using stereoscopic particle image velocimetry. PLoS ONE 2022, 17, e0264688. [Google Scholar] [CrossRef]
- Chodzyǹski, K.J.; Uzureau, P.; Nuyens, V.; Rousseau, A.; Coussement, G.; Zouaoui Boudjeltia, K. The impact of arterial flow complexity on flow diverter outcomes in aneurysms. Sci. Rep. 2020, 10, 10337. [Google Scholar] [CrossRef]
Authors | What Has Been Investigated | Methodology | Key Findings |
---|---|---|---|
Azhaganmaadevi et al. [175] | The influence of patient-specific aneurysm wall thickness on rupture risk | FSI | The maximum wall shear stress, displacement, and average wall stress were higher for patient-specific wall thickness models compared to uniform wall thickness models |
Fujimura et al. [176] | Hemodynamic factors related to aneurysm initiation based on angiographic images taken before and after aneurysm formation | CFD | Aneurysm initiation occurred in the area experiencing high tensile force and significant total pressure loss |
Cherkaoui et al. [177] | Effect of the magnetic field on pulsatile blood flow and heat transfer in an artery with an aneurysm |
|
|
Moghadasi et al. [178] |
| FSI |
|
Muhib et al. [137] | Effect of clinical conditions and geometry on aneurysms for patients with hypertension and atrial fibrillation | Two-way FSI |
|
Sharzehee et al. [179] | Buckling and post-buckling behaviors of aneurysmal arteries under pulsatile flow and their effects on rupture | FSI |
|
Shen et al. [180] | Effect of blood flow characteristics on ICA aneurysm rupture | CFD |
|
Singla et al. [123] | Effect of aneurysm size and wall thickness on blood flow behavior inside an aneurysm, as well as the rupture risk | CFD |
|
Fattahi et al. [181] | Effect of mean diameter of parent vessels on hemodynamic factors | CFD |
|
Cho et al. [182] | Predicted rupture risk of an aneurysm by comparing clinical cases with FSI simulations |
|
|
Oliveira et al. [183] | Analyzed the growth of unruptured lateral aneurysms over five years using CFD, based on two consecutive examinations | CFD |
|
Zhu et al. [184] | The role of hemodynamic and morphological parameters in evaluating rupture risk | CFD |
|
Rahma et al. [185] | Effect of hemodynamic parameters on anterior communicating artery aneurysm rupture | CFD |
|
Závodszky et al. [186] | Effect of moving tiny particles through cerebral vessel sections with aneurysmal malformations | CFD |
|
Lampropoulos et al. [23] | Hemodynamic characteristics of irregular-shaped IAs | CFD |
|
Ashkezari et al. [187] | Hemodynamics in the aneurysm over time from the early stage of formation to the later stage involving significant enlargement | CFD |
|
Usmani et al. [188] |
| Both experimental (PIV) and computational (FSI) |
|
Li et al. [189] | Investigated the flow pattern of a patient-specific cerebral aneurysm using both computational and experimental approaches |
|
|
Wu et al. [190] | Comparative evaluation of hemodynamics of patient-specific intracranial saccular aneurysm |
|
|
Tupin et al. [191] | Effect of wall compliance on intracranial aneurysm (IA) hemodynamic patterns and flow field variables | Experimental approach (PIV) |
|
Ikeya et al. [192] | Effect of wall deformation on the WSS of elastic cerebral aneurysms |
|
|
Shen et al. [193] | Effect of aspect ratio (AR) on internal flow patterns and the hemodynamics of IAs |
|
|
Yazdi et al. [194] | Effect of eCLIPs (a coil retention device) implanted bifurcation flow diverter on flow diversion from the aneurysm (the eCLIPs implanted bifurcation flow diverter is termed the eBFD) |
|
|
Authors | What Has Been Investigated | Methodology | Research Outcome |
---|---|---|---|
Yao et al. [201] | Improvement of hemodynamic efficiency after coil embolization in MCA aneurysm (original and scaled-down geometries) | CFD |
|
Sadeh et al. [202] | Impact of endovascular coiling on blood hemodynamics and MCA aneurysm rupture | CFD |
|
Rostamian et al. [203] | Effect of coiling on aneurysm progress and risk of rupture | CFD |
|
Yang et al. [204] | Effect of coil embolization on hemodynamic factors of the aneurysm | CFD |
|
Boniforti et al. [205] | Effect of flow diversion stents (FDSs) on hemodynamic factors | CFD |
|
Kim et al. [206] | Effect of overlapping and compacting stents on hemodynamic factors
| CFD |
|
Pei et al. [207] | Hemodynamic evaluation was performed on coil embolization and stent to reduce the rupture risk of ICA aneurysm | Both CFD and FSI |
|
Horn et al. [208] | Effect of shape memory polymer foam (SMPF) treatment technique on clot formation to prevent rupture risk | CFD |
|
Chen et al. [209] | Investigated the effect of the hemodynamics on the recurrence of the vertebral artery dissecting aneurysm (VADA)
| FEA (coiling and stent deployment) and CFD (hemodynamics) |
|
Davidson et al. [210] | Role of flow characteristics and hemodynamic variables on cerebral arteries before and after neurosurgical clipping treatment | CFD |
|
Sanches et al. [211] | Effect of flow diversion stent (FDS) and regular stent (RS) on IAs | CFD |
|
Juan et al. [212] | Effect of blood inflow rate, wall compliance, and stent on hemodynamics factors of elastic aneurysm | Experimental |
|
Roloff et al. [213] | Effect of malposition of flow-diverting stent on hemodynamic factors of intracranial aneurysm | Experimental (PIV) |
|
Chodzyǹski et al. [214] | Flow diversion stent performance in a cerebral aneurysm | Experimental (in vitro study) |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, P.R.; Lai, V.K.; Zhang, R. Flow Dynamics in Brain Aneurysms: A Review of Computational and Experimental Studies. Biomechanics 2025, 5, 36. https://doi.org/10.3390/biomechanics5020036
Chowdhury PR, Lai VK, Zhang R. Flow Dynamics in Brain Aneurysms: A Review of Computational and Experimental Studies. Biomechanics. 2025; 5(2):36. https://doi.org/10.3390/biomechanics5020036
Chicago/Turabian StyleChowdhury, Prantik Roy, Victor K. Lai, and Ruihang Zhang. 2025. "Flow Dynamics in Brain Aneurysms: A Review of Computational and Experimental Studies" Biomechanics 5, no. 2: 36. https://doi.org/10.3390/biomechanics5020036
APA StyleChowdhury, P. R., Lai, V. K., & Zhang, R. (2025). Flow Dynamics in Brain Aneurysms: A Review of Computational and Experimental Studies. Biomechanics, 5(2), 36. https://doi.org/10.3390/biomechanics5020036