Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective
Abstract
1. Introduction
2. Materials and Methods
2.1. Procedure
2.2. Bibliometric Analysis
3. Results of Bibliometric Analysis
3.1. Performance Analysis
3.2. Science Mapping
3.2.1. Co-Authorship Analysis
3.2.2. Bibliographic Coupling Analysis
3.2.3. Co-Citation Analysis
3.2.4. Clustering
- -
- Cluster 1: Biomechanical Assessment and Movement Analysis (34 items). This cluster encompasses a wide range of topics related to the assessment and analysis of human biomechanics and movement. It includes terms such as “3D kinematics”, “biomechanics”, “gait analysis”, and “electromyography”, indicating a focus on the detailed measurement and evaluation of physical movement. Other terms like “motor control”, “plasticity”, “virtual reality”, and “machine learning” suggest the application of advanced techniques and technologies in understanding and improving human movement and rehabilitation.
- -
- Cluster 2: Neurorehabilitation and Robotics (25 items). The second cluster is centered on the intersection of neurorehabilitation and robotic technologies. It includes terms like “exoskeleton”, “rehabilitation robotics”, “robot-assisted therapy”, and “brain injury”, indicating a strong emphasis on using robotics to support recovery from neurological conditions. Additional terms such as “motor recovery”, “movement biomechanics”, and “neurorehabilitation” suggest a focus on the rehabilitation of motor functions, particularly in individuals with neurological impairments.
- -
- Cluster 3: Motor Recovery and Functional Rehabilitation (12 items). The third cluster focuses on topics related to the recovery of motor function and functional rehabilitation. It includes terms like “constraint-induced movement therapy”, “physiotherapy”, “recovery”, and “upper limb”, which point to therapeutic approaches aimed at restoring movement and function in patients. This cluster highlights the application of various rehabilitation techniques to improve motor function, particularly in the context of upper extremity recovery and rehabilitation.
4. Narrative Review
4.1. Narrative Review on Biomechanical Assessment and Movement Analysis
4.2. Narrative Review on Neurorehabilitation and Robotics
4.3. Narrative Review on Motor Recovery and Functional Rehabilitation
4.4. Summary of the Results
5. Discussion
5.1. Bibliometric Analysis
5.2. Clinical Implications and Future Perspectives
5.3. Strengths and Limitations of the Study
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hellmich, C.; Ukaj, N.; Smeets, B.; van Oosterwyck, H.; Filipovic, N.; Zelaya-Lainez, L.; Kalliauer, J.; Scheiner, S. Hierarchical Biomechanics: Concepts, Bone as Prominent Example, and Perspectives Beyond. Appl. Mech. Rev. 2022, 74, 030802. [Google Scholar] [CrossRef]
- Pettenuzzo, S.; Arduino, A.; Belluzzi, E.; Pozzuoli, A.; Fontanella, C.G.; Ruggieri, P.; Salomoni, V.; Majorana, C.; Berardo, A. Biomechanics of Chondrocytes and Chondrons in Healthy Conditions and Osteoarthritis: A Review of the Mechanical Characterisations at the Microscale. Biomedicines 2023, 11, 1942. [Google Scholar] [CrossRef]
- Lu, T.-W.; Chang, C.-F. Biomechanics of Human Movement and Its Clinical Applications. Kaohsiung J. Med. Sci. 2012, 28, S13–S25. [Google Scholar] [CrossRef] [PubMed]
- Plakias, S.; Tsatalas, T.; Mina, M.A.; Kokkotis, C.; Kellis, E.; Giakas, G. A Bibliometric Analysis of Soccer Biomechanics. Appl. Sci. 2024, 14, 6430. [Google Scholar] [CrossRef]
- Vlotinou, P.; Tsiakiri, A.; Frantzidis, C.A.; Katsouri, I.-G.; Aggelousis, N. The Effect of an Interventional Movement Program on the Mechanical Gait Characteristics of a Patient with Dementia. Eng. Proc. 2023, 50, 4. [Google Scholar] [CrossRef]
- Albert, S.J.; Kesselring, J. Neurorehabilitation of Stroke. J. Neurol. 2012, 259, 817–832. [Google Scholar] [CrossRef]
- World Health Organization. Package of Interventions for Rehabilitation. Module 3. Neurological Conditions; World Health Organization: Geneva, Switzerland, 2023; ISBN 978-92-4-007113-1. [Google Scholar]
- Orgianelis, I.; Merkouris, E.; Kitmeridou, S.; Tsiptsios, D.; Karatzetzou, S.; Sousanidou, A.; Gkantzios, A.; Christidi, F.; Polatidou, E.; Beliani, A.; et al. Exploring the Utility of Autonomic Nervous System Evaluation for Stroke Prognosis. Neurol. Int. 2023, 15, 661–696. [Google Scholar] [CrossRef]
- Ganguly, K.; Byl, N.N.; Abrams, G.M. Neurorehabilitation: Motor Recovery after Stroke as an Example. Ann. Neurol. 2013, 74, 373–381. [Google Scholar] [CrossRef]
- Maier, M.; Ballester, B.R.; Verschure, P.F.M.J. Principles of Neurorehabilitation After Stroke Based on Motor Learning and Brain Plasticity Mechanisms. Front. Syst. Neurosci. 2019, 13, 74. [Google Scholar] [CrossRef]
- Giarmatzis, G.; Fotiadou, S.; Giannakou, E.; Tsiptsios, D.; Vadikolias, K.; Aggelousis, N. Using Musculoskeletal Modelling to Evaluate Effect of Exercise on Chronic Post Stroke Gait. Gait Posture 2022, 97, S57–S58. [Google Scholar] [CrossRef]
- Fotiadou, S.; Aggeloussis, N.; Gourgoulis, V.; Malliou, P.; Papanas, N.; Giannakou, E.; Iliopoulos, I.; Vadikolias, K.; Terzoudi, A.; Piperidou, H. Reproducibility of Gait Kinematics and Kinetics in Chronic Stroke Patients. NeuroRehabilitation 2018, 42, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Guan, C. Brain–Computer Interface for Neurorehabilitation of Upper Limb After Stroke. Proc. IEEE 2015, 103, 944–953. [Google Scholar] [CrossRef]
- Vandermeeren, Y.; Lefebvre, S. Combining Motor Learning and Brain Stimulation to Enhance Post-Stroke Neurorehabilitation. Neural Regen. Res. 2015, 10, 1218–1220. [Google Scholar] [CrossRef] [PubMed]
- Christidi, F.; Orgianelis, I.; Merkouris, E.; Koutsokostas, C.; Tsiptsios, D.; Karavasilis, E.; Psatha, E.A.; Tsiakiri, A.; Serdari, A.; Aggelousis, N.; et al. A Comprehensive Review on the Role of Resting-State Functional Magnetic Resonance Imaging in Predicting Post-Stroke Motor and Sensory Outcomes. Neurol. Int. 2024, 16, 189–201. [Google Scholar] [CrossRef]
- Kwakkel, G.; Lannin, N.A.; Borschmann, K.; English, C.; Ali, M.; Churilov, L.; Saposnik, G.; Winstein, C.; van Wegen, E.E.H.; Wolf, S.L.; et al. Standardized Measurement of Sensorimotor Recovery in Stroke Trials: Consensus-Based Core Recommendations from the Stroke Recovery and Rehabilitation Roundtable. Int. J. Stroke 2017, 12, 451–461. [Google Scholar] [CrossRef]
- Ellegaard, O. The Application of Bibliometric Analysis: Disciplinary and User Aspects. Scientometrics 2018, 116, 181–202. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to Conduct a Bibliometric Analysis: An Overview and Guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Choudhri, A.F.; Siddiqui, A.; Khan, N.R.; Cohen, H.L. Understanding Bibliometric Parameters and Analysis. RadioGraphics 2015, 35, 736–746. [Google Scholar] [CrossRef]
- Tsiamalou, A.; Dardiotis, E.; Paterakis, K.; Fotakopoulos, G.; Liampas, I.; Sgantzos, M.; Siokas, V.; Brotis, A.G. EEG in Neurorehabilitation: A Bibliometric Analysis and Content Review. Neurol. Int. 2022, 14, 1046–1061. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Dong, L.; Guo, X. Bibliometric Analysis of Stroke and Quality of Life. Front. Neurol. 2023, 14, 1143713. [Google Scholar] [CrossRef]
- Li, F.; Zhang, D.; Chen, J.; Tang, K.; Li, X.; Hou, Z. Research Hotspots and Trends of Brain-Computer Interface Technology in Stroke: A Bibliometric Study and Visualization Analysis. Front. Neurosci. 2023, 17, 1243151. [Google Scholar] [CrossRef] [PubMed]
- Carey, L.M.; Seitz, R.J. Functional Neuroimaging in Stroke Recovery and Neurorehabilitation: Conceptual Issues and Perspectives. Int. J. Stroke 2007, 2, 245–264. [Google Scholar] [CrossRef] [PubMed]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software Tools for Conducting Bibliometric Analysis in Science: An up-to-Date Review. EPI 2020, 29. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Becker, L.T.; Gould, E.M. Microsoft Power BI: Extending Excel to Manipulate, Analyze, and Visualize Diverse Data. Ser. Rev. 2019, 45, 184–188. [Google Scholar] [CrossRef]
- Purohit, R.; Wang, S.; Bhatt, T. Effect of Aging and Cortical Stroke on Motor Adaptation to Overground Gait-Slips: Quantifying Differences in Adaptation Rate and Adaptation Plateau. Biomechanics 2023, 3, 29–44. [Google Scholar] [CrossRef]
- Massie, C.L.; Du, Y.; Conroy, S.S.; Krebs, H.I.; Wittenberg, G.F.; Bever, C.T.; Whitall, J. A Clinically Relevant Method of Analyzing Continuous Change in Robotic Upper Extremity Chronic Stroke Rehabilitation. Neurorehabilit. Neural Repair 2016, 30, 703–712. [Google Scholar] [CrossRef]
- Kim, D.H.; Lee, K.-D.; Bulea, T.C.; Park, H.-S. Increasing Motor Cortex Activation during Grasping via Novel Robotic Mirror Hand Therapy: A Pilot fNIRS Study. J. NeuroEng. Rehabil. 2022, 19, 8. [Google Scholar] [CrossRef]
- Nie, J.Z.; Nie, J.W.; Hung, N.-T.; Cotton, R.J.; Slutzky, M.W. Portable, Open-Source Solutions for Estimating Wrist Position during Reaching in People with Stroke. Sci. Rep. 2021, 11, 22491. [Google Scholar] [CrossRef]
- Dos Santos, G.L.; Moreira Da Silva, E.S.; Desloovere, K.; Russo, T.L. Effects of Elastic Tape on Kinematic Parameters during a Functional Task in Chronic Hemiparetic Subjects: A Randomized Sham-Controlled Crossover Trial. PLoS ONE 2019, 14, e0211332. [Google Scholar] [CrossRef]
- Laver, K.; Liu, E.; Clemson, L.; Davies, O.; Gray, L.; Gitlin, L.N.; Crotty, M. Does Telehealth Delivery of a Dyadic Dementia Care Program Provide a Noninferior Alternative to Face-To-Face Delivery of the Same Program? A Randomized, Controlled Trial. Am. J. Geriatr. Psychiatry 2020, 28, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Ballester, B.R.; Antenucci, F.; Maier, M.; Coolen, A.C.C.; Verschure, P.F.M.J. Estimating Upper-Extremity Function from Kinematics in Stroke Patients Following Goal-Oriented Computer-Based Training. J. NeuroEng. Rehabil. 2021, 18, 186. [Google Scholar] [CrossRef] [PubMed]
- Pogrzeba, L.; Neumann, T.; Wacker, M.; Jung, B. Analysis and Quantification of Repetitive Motion in Long-Term Rehabilitation. IEEE J. Biomed. Health Inform. 2019, 23, 1075–1085. [Google Scholar] [CrossRef] [PubMed]
- Kudva, V.; Hegde, R.B.; Karimanasseri, C. Use of Advanced Technology for Rehabilitation of Human Disabilities Due to Damage to the CNS: A Review. Crit. Rev. Phys. Rehabil. Med. 2021, 33, 43–65. [Google Scholar] [CrossRef]
- Costa, H.; Fernandes, A.; Oliveira, D.; Brasileiro, J.; Ribeiro, T.; Vieira, E.; Campos, T. Intergame Analysis of Upper Limb Biomechanics of Stroke Patients in Real and Virtual Environment; Springer: Cham, Switzerland, 2020; Volume 76, pp. 610–617. [Google Scholar]
- Kantan, P.R.; Dahl, S.; Jørgensen, H.R.; Khadye, C.; Spaich, E.G. Designing Ecological Auditory Feedback on Lower Limb Kinematics for Hemiparetic Gait Training. Sensors 2023, 23, 3964. [Google Scholar] [CrossRef]
- Casas, R.; Sandison, M.; Nichols, D.; Martin, K.; Phan, K.; Chen, T.; Lum, P.S. Home-Based Therapy After Stroke Using the Hand Spring Operated Movement Enhancer (HandSOME II). Front. Neurorobot. 2021, 15, 773477. [Google Scholar] [CrossRef]
- Bonanno, M.; Calabrò, R.S. Robot-Aided Motion Analysis in Neurorehabilitation: Benefits and Challenges. Diagnostics 2023, 13, 3561. [Google Scholar] [CrossRef]
- Levin, M.F.; Baniña, M.C.; Frenkel-Toledo, S.; Berman, S.; Soroker, N.; Solomon, J.M.; Liebermann, D.G. Personalized Upper Limb Training Combined with Anodal-tDCS for Sensorimotor Recovery in Spastic Hemiparesis: Study Protocol for a Randomized Controlled Trial. Trials 2018, 19, 7. [Google Scholar] [CrossRef]
- Demers, M.; Levin, M.F. Kinematic Validity of Reaching in a 2D Virtual Environment for Arm Rehabilitation after Stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 679–686. [Google Scholar] [CrossRef]
- Wang, Y.; Ye, M.; Tong, Y.; Xiong, L.; Wu, X.; Geng, C.; Zhang, W.; Dai, Z.; Tian, W.; Rong, J. Effects of Robot-Assisted Therapy on Upper Limb and Cognitive Function in Patients with Stroke: Study Protocol of a Randomized Controlled Study. Trials 2022, 23, 538. [Google Scholar] [CrossRef]
- Preface—Application and Progress of Biomechanics in Medicine-Part I|Request PDF. Available online: https://www.researchgate.net/publication/378624799_PREFACE_-_APPLICATION_AND_PROGRESS_OF_BIOMECHANICS_IN_MEDICINE-PART_I (accessed on 12 August 2024).
- Rajashekar, D.; Boyer, A.; Larkin-Kaiser, K.A.; Dukelow, S.P. Technological Advances in Stroke Rehabilitation: Robotics and Virtual Reality. Phys. Med. Rehabil. Clin. N. Am. 2024, 35, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Georghiou, L. Global Cooperation in Research. Res. Policy 1998, 27, 611–626. [Google Scholar] [CrossRef]
- Schwachula, A. Transnational Science Cooperation for Sustainable Development. In The Palgrave Handbook of Development Cooperation for Achieving the 2030 Agenda: Contested Collaboration; Chaturvedi, S., Janus, H., Klingebiel, S., Li, X., de Mello e Souza, A., Sidiropoulos, E., Wehrmann, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 59–88. ISBN 978-3-030-57938-8. [Google Scholar]
- Wang, S.; Bhatt, T. Gait Kinematics and Asymmetries Affecting Fall Risk in People with Chronic Stroke: A Retrospective Study. Biomechanics 2022, 2, 453–465. [Google Scholar] [CrossRef]
- Thompson, L.A.; Melendez, R.A.R.; Chen, J. Investigating Biomechanical Postural Control Strategies in Healthy Aging Adults and Survivors of Stroke. Biomechanics 2024, 4, 153–164. [Google Scholar] [CrossRef]
Author | Documents | Citations | Total Link Strength |
---|---|---|---|
Colombo, Roberto | 8 | 750 | 147 |
Pisano, Fabrizio | 7 | 639 | 136 |
Micera, Silvestro | 6 | 611 | 102 |
Delconte, Carmen | 5 | 577 | 117 |
Mazzone, Alessandra | 5 | 577 | 117 |
Awad, Louis N. | 4 | 548 | 8 |
Dario, Paolo | 6 | 547 | 90 |
Krebs, Hermano Igo | 2 | 458 | 6 |
Bae, Jaehyun | 2 | 448 | 4 |
Ellis, Terry D. | 2 | 448 | 4 |
Walsh, Conor J. | 2 | 448 | 4 |
Kwakkel, Gert | 2 | 416 | 8 |
Minuco, Giuseppe | 2 | 342 | 38 |
Krakauer, John W. | 3 | 293 | 22 |
Lang, Catherine E. | 3 | 292 | 4 |
Cohen, Leonardo G. | 2 | 288 | 0 |
Sterpi, Irma | 5 | 276 | 96 |
Bowden, Mark G. | 2 | 272 | 1 |
Kautz, Steven A. | 2 | 272 | 1 |
Burdet, Etienne | 2 | 231 | 21 |
Source | Documents | Citations |
---|---|---|
Neurorehabilitation and Neural Repair | 31 | 2179 |
Journal of Neuroengineering and Rehabilitation | 19 | 663 |
Ieee Transactions on Neural Systems and Rehabilitation Engineering | 17 | 1118 |
Frontiers in Neurorobotics | 4 | 127 |
Neurorehabilitation | 4 | 33 |
Brain Sciences | 4 | 19 |
Clinical Biomechanics | 3 | 101 |
Ieee International Conference on Rehabilitation Robotics | 3 | 50 |
Journal of Rehabilitation Research and Development | 3 | 44 |
Stroke | 2 | 288 |
Journal of Neuroscience Methods | 2 | 79 |
Functional Neurology | 2 | 76 |
Plos One | 2 | 74 |
Annals of The New York Academy of Sciences | 2 | 66 |
Biomed Research International | 2 | 51 |
Journal of Stroke and Cerebrovascular Diseases | 2 | 38 |
Frontiers in Neurology | 2 | 35 |
International Journal of Rehabilitation Research | 2 | 35 |
Proceedings of the Annual International Conference of the Ieee Engineering in Medicine and Biology Society, EMBS | 2 | 13 |
Bulletin of Russian State Medical University | 2 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsiakiri, A.; Plakias, S.; Karakitsiou, G.; Nikova, A.; Christidi, F.; Kokkotis, C.; Giarmatzis, G.; Tsakni, G.; Katsouri, I.-G.; Dimitrios, S.; et al. Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective. Biomechanics 2024, 4, 664-684. https://doi.org/10.3390/biomechanics4040048
Tsiakiri A, Plakias S, Karakitsiou G, Nikova A, Christidi F, Kokkotis C, Giarmatzis G, Tsakni G, Katsouri I-G, Dimitrios S, et al. Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective. Biomechanics. 2024; 4(4):664-684. https://doi.org/10.3390/biomechanics4040048
Chicago/Turabian StyleTsiakiri, Anna, Spyridon Plakias, Georgia Karakitsiou, Alexandrina Nikova, Foteini Christidi, Christos Kokkotis, Georgios Giarmatzis, Georgia Tsakni, Ioanna-Giannoula Katsouri, Sarris Dimitrios, and et al. 2024. "Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective" Biomechanics 4, no. 4: 664-684. https://doi.org/10.3390/biomechanics4040048
APA StyleTsiakiri, A., Plakias, S., Karakitsiou, G., Nikova, A., Christidi, F., Kokkotis, C., Giarmatzis, G., Tsakni, G., Katsouri, I.-G., Dimitrios, S., Vadikolias, K., Aggelousis, N., & Vlotinou, P. (2024). Mapping the Landscape of Biomechanics Research in Stroke Neurorehabilitation: A Bibliometric Perspective. Biomechanics, 4(4), 664-684. https://doi.org/10.3390/biomechanics4040048