Comparison of Ground Reaction Forces between Combat Boots and Sports Shoes
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.1.1. Shoe Specifications
2.1.2. Data Collection
2.1.3. Data Analyses
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knapik, J.J.; Reynolds, K.L.; Harman, E. Soldier load carriage: Historical, physiological, biomechanical, and medical aspects. Mil. Med. 2004, 169, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Schulze, C.; Lindner, T.; Woitge, S.; Schulz, K.; Finze, S.; Mittelmeier, W.; Bader, R. Influence of footwear and equipment on stride length and range of motion of ankle, knee and hip joint. Acta Bioeng. Biomech. 2014, 16, 45–51. [Google Scholar]
- Bush, R.A.; Brodine, S.K.; Shaffer, R.A. The association of blisters with musculoskeletal injuries in male marine recruits. J. Am. Podiatr. Med. Assoc. 2000, 90, 194–198. [Google Scholar] [CrossRef]
- Nunns, M.; Stiles, V.; Dixon, S. The effects of standard issue Royal Marine recruit footwear on risk factors associated with third metatarsal stress fractures. Footwear Sci. 2012, 4, 59–70. [Google Scholar] [CrossRef]
- Bullock, S.H.; Jones, B.H.; Gilchrist, J.; Marshall, S.W. Prevention of Physical Training–Related Injuries: Recommendations for the Military and Other Active Populations Based on Expedited Systematic Reviews. Am. J. Prev. Med. 2010, 38, S156–S181. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, K.R.; Brodine, S.; Shaffer, R. Military training-related injuries: Surveillance, research, and prevention. Am. J. Prev. Med. 2000, 18, 54–63. [Google Scholar] [CrossRef]
- Paisis, P.; Hanley, B.; Havenetidis, K.; Bissas, A. Cypriot and greek army military boot cushioning: Ground reaction forces and subjective responses. Mil. Med. 2013, 178, e493–e497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepúlveda, G.; Flores, F.L.; Gurgel, J.L.; Porto, F.; Espinosa, G.; Gonçalves, F.S.; Fontoura, A.; Russomano, T. Relação de custo-benefício de calçados esportivos de Corrida quanto à capacidade de absorção de impacto. In Proceedings of the XII Congresso Brasileiro de Biomecanica, Águas de São Pedro, SP, Brazil, 15 June 2007; pp. 1671–1676. [Google Scholar]
- Hamill, J. Evaluating sport shoes using ground reaction force data. In Proceedings of the 14 International Symposium on Biomechanics in Sports, Funchal, Madeira, Portugal, 25–29 June 1996; pp. 111–119. [Google Scholar]
- Pereira, G.; Avila, A.O.V.; Palhano, R. Vertical ground reaction force analysis during gait with unstable shoes. Fisioter. Em Mov. 2015, 28, 459–466. [Google Scholar] [CrossRef] [Green Version]
- Nigg, B.M. The role of impact forces and foot pronation: A new paradigm. Clin. J. Sports Med. 2001, 11, 2–9. [Google Scholar] [CrossRef]
- Crowell, H.P.; Davis, I.S. Gait retraining to reduce lower extremity loading in runners. Clin. Biomech. 2011, 26, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Zifchock, R.A.; Davis, I.; Hamill, J. Kinetic asymmetry in female runners with and without retrospective tibial stress fractures. J. Biomech. 2006, 39, 2792–2797. [Google Scholar] [CrossRef] [PubMed]
- Furey, M.J. Joint Lubrication. In Biomechanics: Principles and Applications; Bronzino, J.D., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 73–97. [Google Scholar]
- Wiegerinck, J.I.; Boyd, J.; Yoder, J.C.; Abbey, A.N.; Nunley, J.A.; Queen, R.M. Differences in plantar loading between training shoes and racing flats at a self-selected running speed. Gait Posture 2009, 29, 514–519. [Google Scholar] [CrossRef]
- Sinclair, J.; Taylor, P.J.; Atkins, S. Influence of running shoes and cross-trainers on Achilles tendon forces during running compared with military boots. J. R. Army Med. Corps 2015, 161, 140–143. [Google Scholar] [CrossRef]
- Sinclair, J.; Taylor, P.J.; Atkins, S. Effects of new military footwear on knee loading during running. Footwear Sci. 2015, 7, 165–171. [Google Scholar] [CrossRef] [Green Version]
- Even-Tzur, N.; Weisz, E.; Hirsch-Falk, Y.; Gefen, A. Role of EVA viscoelastic properties in the protective performance of a sport shoe: Computational studies. Bio-Med. Mater. Eng. 2006, 16, 289–299. [Google Scholar]
- Mara de Souza Muniz, A.; Sizenando, D.; Lobo, G.; Neves, E.B.; Gonçalves, M.; Marson, R.; Palhano, R.; Menegaldo, L.; Bini, R.R. Effects from loaded walking with polyurethane and styrene-butadiene rubber midsole military boots on kinematics and external forces: A statistical parametric mapping analysis. Appl. Ergon. 2021, 94, 103429. [Google Scholar] [CrossRef]
- Orr, R.M.; Johnston, V.; Coyle, J.; Pope, R. Reported Load Carriage Injuries of the Australian Army Soldier. J. Occup. Rehabil. 2015, 25, 316–322. [Google Scholar] [CrossRef] [Green Version]
- Faul, F.; Erdfelder, E.; Buchner, A.; Lang, A.-G. Statistical power analyses using G* Power 3.1: Tests for correlation and regression analyses. Behav. Res. Methods 2009, 41, 1149–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Construction Inferior of the Shoes—Bottom, Soles and Materials for this Purpose—Shore A and D Hardness Test; Arena Técnica: São Paulo, Brazil, 2020; ABNT NBR 14454.
- Kim, H.J.; Park, I.; Lee, H.J.; Lee, O. The reliability and validity of gait speed with different walking pace and distances against general health, physical function, and chronic disease in aged adults. J. Exerc. Nutr. Biochem. 2016, 20, 46–50. [Google Scholar] [CrossRef] [PubMed]
- Zeni, J.A., Jr.; Richards, J.G.; Higginson, J.S. Two simple methods for determining gait events during treadmill and overground walking using kinematic data. Gait Posture 2008, 27, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge Academic: Hillsdale, NJ, USA, 1988; Volume 1, p. 590. [Google Scholar]
- Schulze, C.; Lindner, T.; Schulz, K.; Finze, S.; Kundt, G.; Mittelmeier, W.; Bader, R. The influence in airforce soldiers through wearing certain types of army-issue footwear on muscle activity in the lower extremities. Open Orthop. J. 2011, 5, 302–306. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, J.; Naemi, R.; Chockalingam, N.; Taylor, P.J.; Shore, H. The effects of shoe temperature on the kinetics and kinematics of running. Footwear Sci. 2015, 7, 173–180. [Google Scholar] [CrossRef] [Green Version]
- Erhart, J.C.; Dyrby, C.O.; D'Lima, D.D.; Colwell, C.W.; Andriacchi, T.P. Changes in in vivo knee loading with a variable-stiffness intervention shoe correlate with changes in the knee adduction moment. J. Orthop. Res. 2010, 28, 1548–1553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muniz, A.M.S.; Bini, R.R. Shock attenuation characteristics of three different military boots during gait. Gait Posture 2017, 58, 59–65. [Google Scholar] [CrossRef]
- Kong, P.W.; Candelaria, N.G.; Smith, D.R. Running in new and worn shoes: A comparison of three types of cushioning footwear. Br. J. Sports Med. 2009, 43, 745–749. [Google Scholar] [CrossRef] [PubMed]
- Revill, A.L.; Perry, S.D.; Michelle Edwards, A.; Dickey, J.P. Variability of the impact transient during repeated barefoot walking trials. J. Biomech. 2008, 41, 926–930. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, C.L.; Davis, B.L.; O'Connor, J.C. Gait Analysis Laboratory: An Interactive Book & Software Package. Diskette 2; Human Kinetics Publ.: Champaign, IL, USA, 1992. [Google Scholar]
- Jones, B.H.; Toner, M.M.; Daniels, W.L.; Knapik, J.J. The energy cost and heart-rate response of trained and untrained subjects walking and running in shoes and boots. Ergonomics 1984, 27, 895–902. [Google Scholar] [CrossRef] [PubMed]
- Dobson, J.A.; Riddiford-Harland, D.L.; Bell, A.F.; Steele, J.R. Work boot design affects the way workers walk: A systematic review of the literature. Appl. Ergon. 2017, 61, 53–68. [Google Scholar] [CrossRef] [Green Version]
Shoe Type | Mass (g) | Midsole Height (cm) | Shoe Structure and Midsole Properties | Insole |
---|---|---|---|---|
Combat boot (LV Distribuidora LTDA, Brazil) | 550 | Forefoot: 270 Height: 380 | 11 holes cording SBR midsole (≈65 Shore A stiffness) | EVA |
Military sports shoe (LV Distribuidora LTDA, Brazil) | 350 | Forefoot: 280 Height: 380 | 5 holes cording SBR midsole (≈65 Shore A stiffness) | EVA |
Running shoe (Prorunner 17, Mizuno) | 260 | Forefoot: 210 Height: 350 | 5 holes cording Carbon sole with 30% EVA (≈45 Shore A for EVA stiffness) | EVA |
Combat Boot | Military Sports Shoe | Running Shoe | |
---|---|---|---|
Gait speed (m/s) | 1.41 ± 0.01 | 1.42 ± 0.02 | 1.42 ± 0.01 |
Contact time (s) | 0.67 ± 0.02 | 0.67 ± 0.03 | 0.67 ± 0.03 |
Loading rate (% barefoot) | 19 ± 3 | 20 ± 5 | 16 ±2 *# |
First peak force (% barefoot) | 106 ± 3 | 105 ± 3 | 105 ± 3 |
Second peak force (% barefoot) | 104 ± 1 | 101 ± 2 | 101 ± 1 * |
Push-off rate of force (% barefoot) | 90 ± 12 | 83 ± 11 | 86 ± 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bini, R.R.; Kilpp, D.D.; Júnior, P.A.D.S.; Muniz, A.M.D.S. Comparison of Ground Reaction Forces between Combat Boots and Sports Shoes. Biomechanics 2021, 1, 281-289. https://doi.org/10.3390/biomechanics1030023
Bini RR, Kilpp DD, Júnior PADS, Muniz AMDS. Comparison of Ground Reaction Forces between Combat Boots and Sports Shoes. Biomechanics. 2021; 1(3):281-289. https://doi.org/10.3390/biomechanics1030023
Chicago/Turabian StyleBini, Rodrigo R., Daniel D. Kilpp, Pedro A. D. S. Júnior, and Adriane M. D. S. Muniz. 2021. "Comparison of Ground Reaction Forces between Combat Boots and Sports Shoes" Biomechanics 1, no. 3: 281-289. https://doi.org/10.3390/biomechanics1030023
APA StyleBini, R. R., Kilpp, D. D., Júnior, P. A. D. S., & Muniz, A. M. D. S. (2021). Comparison of Ground Reaction Forces between Combat Boots and Sports Shoes. Biomechanics, 1(3), 281-289. https://doi.org/10.3390/biomechanics1030023