Introduction to Neuromechanics, a New MDPI Open Access Section of Biomechanics
- How do muscles, afferent sensors, and neural networks interact when generating single and multi-joint voluntary movement?
- How does the system, in its totality and its elements, respond to external perturbations?
- How do sensory organs feed back to the muscles and adapt to interventions designed to increase motor performance in patients, older adults, and athletes?
- What are the diagnostic and prognostic markers (i.e., transfer functions) characterizing and quantifying the coupling between a neural command and the ensuing motor behavior?
- What is the time course and nature of responses of these markers to short and long-term motor-cognitive, rehabilitative, robotic, and other therapeutic interventions and training programs designed to increase athletic performance?
- What are the neural processes underlying gait variability, quantified by dynamical systems outcomes in health and disease?
- What is the functional relevance and time course of association between the markers of intervention-induced neuroplasticity and behavioral outcomes such as upper extremity function, walking mechanics, postural control, and musculo-tendon quality in health and disease [4]?
- How can new mechanical modeling of motor actions improve athletic performance and patients’ functional ability in daily activities?
- How could integrative neuromechanical analyses monitor and improve athletic performance and the upper and lower extremity movements of patients using imaging and non-invasive brain stimulation (NIBS)?
Conflicts of Interest
References
- Keogh, J.W.L. Introduction to a New MDPI Open Access Journal: Biomechanics. Biomechanics 2021, 1, 163–166. [Google Scholar] [CrossRef]
- Enoka, R.M. Neuromechanincs of Human Movement, 4th ed.; Human Kinetics: Champaign, IL, USA, 2008. [Google Scholar]
- Nishikawa, K.; Biewener, A.A.; Aerts, P.; Ahn, A.N.; Chiel, H.J.; Daley, M.A.; Daniel, T.L.; Full, R.J.; Hale, M.E.; Hedrick, T.L.; et al. Neuromechanics: An integrative approach for understanding motor control. Integr. Comp. Biol. 2007, 47, 16–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hortobágyi, T.; Granacher, U.; Fernandez-Del-Olmo, M.; Howatson, G.; Manca, A.; Deriu, F.; Taube, W.; Gruber, M.; Marquez, G.; Lundbye-Jensen, J.; et al. Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci. Biobehav. Rev. 2021, 122, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Cerone, G.L. Tutorial. Surface EMG detection, conditioning and pre-processing: Best practices. J. Electromyogr. Kinesiol. 2020, 54, 102440. [Google Scholar] [CrossRef] [PubMed]
- Merletti, R.; Muceli, S. Tutorial. Surface EMG detection in space and time: Best practices. J. Electromyogr. Kinesiol. 2019, 49, 102363. [Google Scholar] [CrossRef]
- Del Vecchio, A.; Casolo, A.; Negro, F.; Scorcelletti, M.; Bazzucchi, I.; Enoka, R.; Felici, F.; Farina, D. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J. Physiol. 2019, 597, 1873–1887. [Google Scholar] [CrossRef] [Green Version]
- Vieira, T.M.; Botter, A. The Accurate Assessment of Muscle Excitation Requires the Detection of Multiple Surface Electromyograms. Exerc. Sport Sci. Rev. 2021, 49, 23–34. [Google Scholar] [CrossRef]
- Papegaaij, S.; Taube, W.; Baudry, S.; Otten, E.; Hortobagyi, T. Aging causes a reorganization of cortical and spinal control of posture. Front. Aging Neurosci. 2014, 6, 28. [Google Scholar] [CrossRef] [PubMed]
- Berghuis, K.M.M.; Semmler, J.G.; Opie, G.M.; Post, A.K.; Hortobagyi, T. Age-related changes in corticospinal excitability and intracortical inhibition after upper extremity motor learning: A systematic review and meta-analysis. Neurobiol. Aging. 2017, 55, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Colomer-Poveda, D.; Zijdewind, I.; Dolstra, J.; Marquez, G.; Hortobagyi, T. Voluntary suppression of associated activity decreases force steadiness in the active hand. Eur. J. Neurosci. 2021, 54, 5075–5091. [Google Scholar] [CrossRef] [PubMed]
- Marusic, U.; Narici, M.; Simunic, B.; Pisot, R.; Ritzmann, R. Nonuniform loss of muscle strength and atrophy during bed rest: A systematic review. J. Appl. Physiol. (1985) 2021, 131, 194–206. [Google Scholar] [CrossRef] [PubMed]
- Di Girolamo, F.G.; Fiotti, N.; Milanovic, Z.; Situlin, R.; Mearelli, F.; Vinci, P.; Simunic, B.; Pisot, R.; Narici, M.; Biolo, G. The Aging Muscle in Experimental Bed Rest: A Systematic Review and Meta-Analysis. Front. Nutr. 2021, 8, 633987. [Google Scholar] [CrossRef] [PubMed]
- Krupenevich, R.L.; Beck, O.N.; Sawicki, G.S.; Franz, J.R. Reduced Achilles Tendon Stiffness Disrupts Calf Muscle Neuromechanics in Elderly Gait. Gerontology 2021, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Yuan, P.; Wang, R.; Wang, D.; Liu, J.; Zhou, H. Effects of Foot Strike Techniques on Running Biomechanics: A Systematic Review and Meta-analysis. Sports Health 2021, 13, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Sederberg, M.; LaMarche, L.; Skinner, L.; Cushman, D.M. Distal semimembranosus tendinopathy: A narrative review. PM R 2021. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, S.C.; Leong, H.T.; Ling, S.K.; Oh, J.H.; Yung, P.S. Evaluation of animal models and methods for assessing shoulder function after rotator cuff tear: A systematic review. J. Orthop. Translat. 2021, 26, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mannen, E.M.; Siddicky, S.F.; Lee, J.M.; Latt, L.D. Gait alterations in posterior tibial tendonitis: A systematic review and meta-analysis. Gait Posture 2020, 76, 28–38. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.B.; Louie, D.R.; Peters, S.; Liu-Ambrose, T.; Boyd, L.A.; Eng, J.J. Brain activity during real-time walking and with walking interventions after stroke: A systematic review. J. Neuroeng. Rehabil. 2021, 18, 8. [Google Scholar] [CrossRef] [PubMed]
- Imura, T.; Mitsutake, T.; Iwamoto, Y.; Tanaka, R. A systematic review of the usefulness of magnetic resonance imaging in predicting the gait ability of stroke patients. Sci. Rep. 2021, 11, 14338. [Google Scholar] [CrossRef] [PubMed]
Short Biography of Author
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hortobágyi, T. Introduction to Neuromechanics, a New MDPI Open Access Section of Biomechanics. Biomechanics 2021, 1, 290-292. https://doi.org/10.3390/biomechanics1030024
Hortobágyi T. Introduction to Neuromechanics, a New MDPI Open Access Section of Biomechanics. Biomechanics. 2021; 1(3):290-292. https://doi.org/10.3390/biomechanics1030024
Chicago/Turabian StyleHortobágyi, Tibor. 2021. "Introduction to Neuromechanics, a New MDPI Open Access Section of Biomechanics" Biomechanics 1, no. 3: 290-292. https://doi.org/10.3390/biomechanics1030024
APA StyleHortobágyi, T. (2021). Introduction to Neuromechanics, a New MDPI Open Access Section of Biomechanics. Biomechanics, 1(3), 290-292. https://doi.org/10.3390/biomechanics1030024